metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1,2-bis­­[2-(1H-imidazol-1-yl)eth­­oxy]ethane-κ2N3,N3′}di­chloridocadmium(II) monohydrate

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: liugx@live.com

(Received 13 May 2010; accepted 21 May 2010; online 29 May 2010)

The asymmetric unit of the title compound, [CdCl2(C12H18N4O2)2]·H2O, contains one water mol­ecule and two halves of a [CdCl2(BIEE)2] complex mol­ecule {BIEE is 1,2-bis­[2-(1H-imidazol-1-yl)eth­oxy]ethane}, with the CdII atoms lying on inversion centres. Each metal atom displays an elongated octa­hedral coordination geometry provided by two trans-arranged chloride anions and four N atoms from two BIEE ligands. Weak O—H⋯Cl hydrogen-bond inter­actions contribute to the stability of the crystal packing.

Related literature

For general background to flexible bis­(imidazole) ligands, see: Liu et al. (2007[Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Cryst. Growth Des. 7, 3027-3037.]); Wen et al. (2007[Wen, L. L., Lu, Z. D., Lin, J. G., Tian, Z. F., Zhu, H. Z. & Meng, Q. J. (2007). Cryst. Growth Des. 7, 93-99.]); Jin et al. (2006[Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039-5041.]). For a related structure, see: Liu et al. (2010[Liu, G. X., Chen, H. & Ren, X. M. (2010). Chin. J. Inorg. Chem. 743, 161-165.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C12H18N4O2)2]·H2O

  • Mr = 701.92

  • Monoclinic, P 21 /c

  • a = 15.3629 (13) Å

  • b = 11.0659 (9) Å

  • c = 18.4492 (16) Å

  • β = 102.558 (1)°

  • V = 3061.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.835

  • 21862 measured reflections

  • 5691 independent reflections

  • 4148 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.04

  • 5691 reflections

  • 372 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯Cl2i 0.85 (2) 2.33 (3) 3.165 (3) 164 (5)
O1W—H1WA⋯Cl1ii 0.88 (6) 2.42 (5) 3.198 (4) 147 (7)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of beautiful metal organic frameworks (MOFs) of ingenious design based on flexible bis(imidazole) ligands, such as (N-im)2(CH2)n (n = 1-4), have recently been constructed (Liu et al., 2007; Wen et al., 2007; Jin et al., 2006). These ligands bearing alkyl spacers are good choices of N-donor ligands, because the flexible nature of the spacers allows the ligands to bend and rotate when it coordinates to metal centers. The structures and properties also can be modified by changing the spacer groups, for an instance, by varying the length of the spacer. We designed and prepared a long ligand, 1,2-bis(2-(1H-imidazol-1-yl)ethoxy)ethane (BIEE), which is longer than 1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1H-imidazole)) (obbm). The increasing length may control the physical dimensions of the crystalline architecture and, accordingly, affects the internal chemistry of the coordination polymers. Therefore, the exploration of this ligand is necessary in order to enrich and develop this field.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one water molecule and two crystallographically independent half of a [CdCl2(BIEE)2] complex molecule, with the metal atoms lying on inversion centres. Each cadmium(II) atom displays an elongated octahedral coordination geometry, with four N atoms from two BIEE ligands providing the equatorial plane and two Cl anions at the axial positions. The Cd—N lengths range from 2.328 (2) to 2.365 (2) Å; these values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Liu et al., 2010). The values of the bond angles around the cadmium atoms are close to those expected for a regular octahedral geometry, the largest deviation being observed for the N8—Cd1—N5 angle [91.68 (8)°]. Weak O—H···Cl interactions (Table 1) contribute to the stability of the crystal packing (Fig. 2).

Related literature top

For general background to flexible bis(imidazole) ligands, see: Liu et al. (2007); Wen et al., (2007); Jin et al. (2006). For a related structure, see: Liu et al. (2010).

Experimental top

An aqueous solution (15 ml) of CdCl2.2.5H2O (0.23 g, 1.0 mmol) was added slowly with constant stirring to a solution of 1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1H-imidazole)) (0.21 g, 0.1 mmol) in water (20 ml). The reaction mixture was then heated to reflux for 3 h. The resulting mixture was left to stand at room temperature for three weeks. Colourless block crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent. Yield: 67% (based on Cd).

Refinement top

The water H atoms were located in a difference Fourier map and refined with the O—H bond distances restrained to 0.86 Å. All other H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Structure description top

A large number of beautiful metal organic frameworks (MOFs) of ingenious design based on flexible bis(imidazole) ligands, such as (N-im)2(CH2)n (n = 1-4), have recently been constructed (Liu et al., 2007; Wen et al., 2007; Jin et al., 2006). These ligands bearing alkyl spacers are good choices of N-donor ligands, because the flexible nature of the spacers allows the ligands to bend and rotate when it coordinates to metal centers. The structures and properties also can be modified by changing the spacer groups, for an instance, by varying the length of the spacer. We designed and prepared a long ligand, 1,2-bis(2-(1H-imidazol-1-yl)ethoxy)ethane (BIEE), which is longer than 1,1'-(2,2'-oxybis(ethane-2,1-diyl))bis(1H-imidazole)) (obbm). The increasing length may control the physical dimensions of the crystalline architecture and, accordingly, affects the internal chemistry of the coordination polymers. Therefore, the exploration of this ligand is necessary in order to enrich and develop this field.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one water molecule and two crystallographically independent half of a [CdCl2(BIEE)2] complex molecule, with the metal atoms lying on inversion centres. Each cadmium(II) atom displays an elongated octahedral coordination geometry, with four N atoms from two BIEE ligands providing the equatorial plane and two Cl anions at the axial positions. The Cd—N lengths range from 2.328 (2) to 2.365 (2) Å; these values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Liu et al., 2010). The values of the bond angles around the cadmium atoms are close to those expected for a regular octahedral geometry, the largest deviation being observed for the N8—Cd1—N5 angle [91.68 (8)°]. Weak O—H···Cl interactions (Table 1) contribute to the stability of the crystal packing (Fig. 2).

For general background to flexible bis(imidazole) ligands, see: Liu et al. (2007); Wen et al., (2007); Jin et al. (2006). For a related structure, see: Liu et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Bis{1,2-bis[2-(1H-imidazol-1-yl)ethoxy]ethane- κ2N3,N3'}dichloridocadmium(II) monohydrate top
Crystal data top
[CdCl2(C12H18N4O2)2]·H2OF(000) = 1440
Mr = 701.92Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9598 reflections
a = 15.3629 (13) Åθ = 2.2–27.2°
b = 11.0659 (9) ŵ = 0.94 mm1
c = 18.4492 (16) ÅT = 293 K
β = 102.558 (1)°Block, colorless
V = 3061.4 (4) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5691 independent reflections
Radiation source: sealed tube4148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.793, Tmax = 0.835k = 1313
21862 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0331P)2 + 3.6911P]
where P = (Fo2 + 2Fc2)/3
5691 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.53 e Å3
8 restraintsΔρmin = 0.38 e Å3
Crystal data top
[CdCl2(C12H18N4O2)2]·H2OV = 3061.4 (4) Å3
Mr = 701.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3629 (13) ŵ = 0.94 mm1
b = 11.0659 (9) ÅT = 293 K
c = 18.4492 (16) Å0.26 × 0.22 × 0.20 mm
β = 102.558 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4148 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.835Rint = 0.022
21862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0308 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
5691 reflectionsΔρmin = 0.38 e Å3
372 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.50000.03408 (9)
Cd20.00000.50000.50000.03731 (10)
Cl10.35374 (6)0.07994 (8)0.40345 (5)0.0623 (3)
Cl20.14291 (6)0.51856 (10)0.38908 (5)0.0654 (3)
N10.06622 (17)0.6671 (2)0.45294 (15)0.0453 (6)
N20.1595 (2)0.7621 (3)0.39710 (16)0.0555 (7)
N30.0872 (3)0.2692 (3)0.3298 (2)0.0799 (11)
N40.06263 (18)0.3669 (3)0.42699 (17)0.0508 (7)
N50.58186 (17)0.1608 (2)0.46622 (14)0.0398 (6)
N60.61728 (16)0.3470 (2)0.44305 (13)0.0373 (6)
N70.48013 (18)0.2327 (2)0.69235 (13)0.0394 (6)
N80.46279 (17)0.1245 (2)0.59039 (13)0.0386 (6)
O10.1550 (2)0.6593 (3)0.25676 (15)0.0883 (10)
O20.1213 (4)0.4214 (4)0.2164 (2)0.148 (2)
O30.60598 (15)0.42888 (19)0.70446 (12)0.0457 (5)
O40.62769 (15)0.51267 (18)0.56526 (12)0.0456 (5)
O1W0.6777 (2)0.5003 (4)0.26691 (19)0.0850 (10)
C10.6641 (2)0.1620 (3)0.44932 (19)0.0488 (8)
H10.69930.09400.44760.059*
C20.6870 (2)0.2762 (3)0.43540 (18)0.0460 (8)
H20.73980.30120.42310.055*
C30.5561 (2)0.2744 (3)0.46206 (16)0.0392 (7)
H30.50210.30100.47120.047*
C40.6131 (2)0.4790 (3)0.43723 (17)0.0444 (8)
H4A0.55150.50490.43040.053*
H4B0.63480.50430.39400.053*
C50.6676 (2)0.5382 (3)0.50518 (17)0.0436 (7)
H5A0.72810.50730.51520.052*
H5B0.66970.62480.49770.052*
C60.6773 (2)0.5605 (3)0.63323 (17)0.0454 (8)
H6A0.69210.64440.62670.055*
H6B0.73240.51560.64910.055*
C70.6227 (2)0.5509 (3)0.68994 (18)0.0472 (8)
H7A0.65380.58950.73540.057*
H7B0.56660.59270.67260.057*
C80.5455 (2)0.4203 (3)0.75265 (17)0.0462 (8)
H8A0.49130.46430.73180.055*
H8B0.57200.45550.80050.055*
C90.5243 (2)0.2903 (3)0.76207 (16)0.0499 (8)
H9A0.57910.24720.78260.060*
H9B0.48600.28410.79740.060*
C100.5194 (2)0.1621 (3)0.65024 (16)0.0408 (7)
H100.57960.14180.66180.049*
C110.3925 (2)0.2424 (3)0.65710 (17)0.0442 (8)
H110.34850.28630.67290.053*
C120.3827 (2)0.1752 (3)0.59443 (17)0.0416 (7)
H120.32960.16510.55950.050*
C130.0398 (3)0.3551 (4)0.3545 (2)0.0640 (10)
H130.00410.40100.32400.077*
C140.1286 (2)0.2831 (3)0.4502 (3)0.0665 (11)
H140.15800.26960.49910.080*
C150.1439 (3)0.2235 (4)0.3904 (4)0.0868 (16)
H150.18560.16240.39060.104*
C160.0786 (4)0.2352 (6)0.2505 (3)0.131 (3)
H16A0.10190.15400.24900.157*
H16B0.01560.23240.22730.157*
C170.1193 (6)0.3070 (6)0.2090 (3)0.139 (3)
H17A0.18070.28000.21690.167*
H17B0.09200.29030.15750.167*
C180.1213 (7)0.5041 (6)0.1698 (3)0.153 (3)
H18A0.06040.50980.14160.184*
H18B0.15610.47350.13580.184*
C190.1489 (4)0.6200 (5)0.1849 (3)0.0984 (16)
H19A0.10810.67300.15200.118*
H19B0.20710.62900.17300.118*
C200.1985 (3)0.7675 (4)0.2759 (2)0.0749 (12)
H20A0.15800.83380.25850.090*
H20B0.24850.77380.25180.090*
C210.2309 (3)0.7774 (4)0.3559 (2)0.0711 (11)
H21A0.25830.85610.36750.085*
H21B0.27630.71660.37230.085*
C220.1212 (3)0.8467 (3)0.4339 (2)0.0635 (10)
H220.13210.92950.43520.076*
C230.1232 (2)0.6563 (3)0.40966 (19)0.0506 (8)
H230.13690.58320.38990.061*
C240.0646 (2)0.7880 (3)0.4682 (2)0.0588 (9)
H240.02990.82410.49760.071*
H1WA0.678 (5)0.550 (6)0.230 (3)0.19 (3)*
H1WB0.7311 (18)0.505 (5)0.292 (3)0.12 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04100 (18)0.02596 (15)0.03493 (17)0.00286 (12)0.00747 (13)0.00432 (12)
Cd20.03589 (17)0.04115 (18)0.03550 (17)0.00300 (13)0.00907 (13)0.00258 (13)
Cl10.0565 (5)0.0578 (5)0.0629 (5)0.0116 (4)0.0079 (4)0.0091 (4)
Cl20.0485 (5)0.0866 (7)0.0535 (5)0.0051 (5)0.0056 (4)0.0107 (5)
N10.0415 (15)0.0459 (15)0.0483 (15)0.0039 (12)0.0091 (12)0.0062 (13)
N20.0594 (19)0.0520 (17)0.0558 (18)0.0209 (15)0.0145 (15)0.0010 (14)
N30.091 (3)0.061 (2)0.107 (3)0.018 (2)0.062 (2)0.030 (2)
N40.0454 (16)0.0502 (16)0.0607 (18)0.0017 (13)0.0199 (14)0.0053 (14)
N50.0420 (14)0.0334 (13)0.0442 (14)0.0046 (11)0.0096 (12)0.0012 (11)
N60.0453 (15)0.0339 (13)0.0328 (13)0.0049 (11)0.0086 (11)0.0011 (10)
N70.0552 (17)0.0327 (13)0.0325 (13)0.0055 (12)0.0142 (12)0.0016 (10)
N80.0483 (15)0.0322 (13)0.0361 (13)0.0023 (11)0.0112 (12)0.0025 (11)
O10.111 (2)0.103 (2)0.0575 (17)0.053 (2)0.0321 (16)0.0108 (16)
O20.293 (6)0.086 (3)0.085 (3)0.037 (3)0.083 (3)0.021 (2)
O30.0581 (14)0.0379 (12)0.0451 (12)0.0010 (10)0.0197 (11)0.0046 (10)
O40.0514 (13)0.0461 (13)0.0399 (12)0.0151 (10)0.0112 (10)0.0070 (10)
O1W0.0576 (19)0.133 (3)0.0605 (19)0.0083 (19)0.0039 (16)0.016 (2)
C10.0482 (19)0.0413 (18)0.058 (2)0.0046 (15)0.0131 (16)0.0043 (16)
C20.0413 (18)0.0467 (18)0.053 (2)0.0050 (15)0.0175 (15)0.0033 (15)
C30.0403 (17)0.0369 (16)0.0419 (17)0.0026 (13)0.0121 (14)0.0008 (13)
C40.059 (2)0.0336 (16)0.0378 (17)0.0056 (14)0.0052 (15)0.0076 (13)
C50.054 (2)0.0332 (15)0.0440 (18)0.0085 (14)0.0118 (15)0.0051 (14)
C60.0509 (19)0.0383 (17)0.0449 (18)0.0109 (15)0.0057 (15)0.0062 (14)
C70.054 (2)0.0383 (17)0.0477 (19)0.0041 (15)0.0081 (16)0.0113 (15)
C80.061 (2)0.0445 (18)0.0348 (16)0.0075 (16)0.0136 (15)0.0097 (14)
C90.073 (2)0.0488 (19)0.0286 (16)0.0135 (17)0.0135 (15)0.0028 (14)
C100.0435 (17)0.0406 (17)0.0397 (17)0.0043 (14)0.0117 (14)0.0021 (14)
C110.060 (2)0.0324 (16)0.0443 (18)0.0069 (15)0.0204 (16)0.0002 (14)
C120.0473 (18)0.0330 (16)0.0422 (17)0.0031 (14)0.0049 (14)0.0038 (13)
C130.069 (3)0.059 (2)0.068 (3)0.004 (2)0.026 (2)0.015 (2)
C140.046 (2)0.053 (2)0.102 (3)0.0028 (18)0.021 (2)0.006 (2)
C150.066 (3)0.049 (2)0.162 (5)0.003 (2)0.061 (3)0.020 (3)
C160.169 (6)0.119 (5)0.140 (5)0.065 (4)0.110 (5)0.085 (4)
C170.235 (8)0.112 (5)0.068 (4)0.037 (5)0.028 (4)0.029 (3)
C180.268 (10)0.119 (6)0.057 (3)0.041 (6)0.003 (5)0.014 (3)
C190.138 (5)0.107 (4)0.060 (3)0.013 (4)0.042 (3)0.001 (3)
C200.074 (3)0.077 (3)0.080 (3)0.019 (2)0.031 (2)0.010 (2)
C210.066 (3)0.073 (3)0.080 (3)0.026 (2)0.028 (2)0.000 (2)
C220.069 (3)0.043 (2)0.075 (3)0.0130 (19)0.008 (2)0.0078 (19)
C230.050 (2)0.0487 (19)0.055 (2)0.0121 (16)0.0150 (17)0.0019 (16)
C240.058 (2)0.051 (2)0.069 (2)0.0039 (18)0.0163 (19)0.0040 (18)
Geometric parameters (Å, º) top
Cd1—N82.328 (2)C2—H20.9300
Cd1—N8i2.328 (2)C3—H30.9300
Cd1—N52.340 (2)C4—C51.499 (4)
Cd1—N5i2.340 (2)C4—H4A0.9700
Cd1—Cl12.6951 (9)C4—H4B0.9700
Cd1—Cl1i2.6952 (9)C5—H5A0.9700
Cd2—N4ii2.339 (3)C5—H5B0.9700
Cd2—N42.339 (3)C6—C71.480 (4)
Cd2—N12.365 (3)C6—H6A0.9700
Cd2—N1ii2.365 (3)C6—H6B0.9700
Cd2—Cl22.6639 (9)C7—H7A0.9700
Cd2—Cl2ii2.6639 (9)C7—H7B0.9700
N1—C231.313 (4)C8—C91.493 (4)
N1—C241.368 (4)C8—H8A0.9700
N2—C231.338 (4)C8—H8B0.9700
N2—C221.363 (5)C9—H9A0.9700
N2—C211.473 (4)C9—H9B0.9700
N3—C131.337 (5)C10—H100.9300
N3—C151.357 (6)C11—C121.355 (4)
N3—C161.487 (6)C11—H110.9300
N4—C131.313 (5)C12—H120.9300
N4—C141.372 (5)C13—H130.9300
N5—C31.315 (4)C14—C151.350 (6)
N5—C11.366 (4)C14—H140.9300
N6—C31.340 (4)C15—H150.9300
N6—C21.360 (4)C16—C171.348 (7)
N6—C41.464 (4)C16—H16A0.9700
N7—C101.335 (4)C16—H16B0.9700
N7—C111.366 (4)C17—H17A0.9700
N7—C91.464 (4)C17—H17B0.9700
N8—C101.316 (4)C18—C191.360 (7)
N8—C121.370 (4)C18—H18A0.9700
O1—C191.378 (5)C18—H18B0.9700
O1—C201.379 (5)C19—H19A0.9700
O2—C181.256 (7)C19—H19B0.9700
O2—C171.273 (7)C20—C211.456 (6)
O3—C71.411 (4)C20—H20A0.9700
O3—C81.422 (4)C20—H20B0.9700
O4—C51.407 (4)C21—H21A0.9700
O4—C61.420 (4)C21—H21B0.9700
O1W—H1WA0.88 (6)C22—C241.348 (5)
O1W—H1WB0.85 (2)C22—H220.9300
C1—C21.351 (4)C23—H230.9300
C1—H10.9300C24—H240.9300
N8—Cd1—N8i180.00 (9)C7—C6—H6B110.0
N8—Cd1—N588.32 (8)H6A—C6—H6B108.3
N8i—Cd1—N591.68 (8)O3—C7—C6110.9 (3)
N8—Cd1—N5i91.68 (8)O3—C7—H7A109.5
N8i—Cd1—N5i88.32 (8)C6—C7—H7A109.5
N5—Cd1—N5i180.0O3—C7—H7B109.5
N8—Cd1—Cl188.85 (7)C6—C7—H7B109.5
N8i—Cd1—Cl191.15 (7)H7A—C7—H7B108.0
N5—Cd1—Cl189.63 (7)O3—C8—C9109.0 (3)
N5i—Cd1—Cl190.37 (7)O3—C8—H8A109.9
N8—Cd1—Cl1i91.15 (7)C9—C8—H8A109.9
N8i—Cd1—Cl1i88.85 (7)O3—C8—H8B109.9
N5—Cd1—Cl1i90.37 (7)C9—C8—H8B109.9
N5i—Cd1—Cl1i89.63 (7)H8A—C8—H8B108.3
Cl1—Cd1—Cl1i180.0N7—C9—C8112.9 (2)
N4ii—Cd2—N4179.999 (1)N7—C9—H9A109.0
N4ii—Cd2—N189.01 (10)C8—C9—H9A109.0
N4—Cd2—N190.99 (10)N7—C9—H9B109.0
N4ii—Cd2—N1ii90.99 (10)C8—C9—H9B109.0
N4—Cd2—N1ii89.01 (10)H9A—C9—H9B107.8
N1—Cd2—N1ii180.0N8—C10—N7111.9 (3)
N4ii—Cd2—Cl291.17 (8)N8—C10—H10124.1
N4—Cd2—Cl288.84 (8)N7—C10—H10124.1
N1—Cd2—Cl290.36 (7)C12—C11—N7106.2 (3)
N1ii—Cd2—Cl289.65 (7)C12—C11—H11126.9
N4ii—Cd2—Cl2ii88.83 (8)N7—C11—H11126.9
N4—Cd2—Cl2ii91.17 (8)C11—C12—N8109.7 (3)
N1—Cd2—Cl2ii89.64 (7)C11—C12—H12125.2
N1ii—Cd2—Cl2ii90.35 (7)N8—C12—H12125.2
Cl2—Cd2—Cl2ii179.999 (1)N4—C13—N3112.0 (4)
C23—N1—C24105.0 (3)N4—C13—H13124.0
C23—N1—Cd2123.3 (2)N3—C13—H13124.0
C24—N1—Cd2131.4 (2)C15—C14—N4108.9 (4)
C23—N2—C22105.9 (3)C15—C14—H14125.5
C23—N2—C21125.1 (3)N4—C14—H14125.5
C22—N2—C21128.9 (3)C14—C15—N3107.2 (4)
C13—N3—C15106.5 (4)C14—C15—H15126.4
C13—N3—C16125.2 (5)N3—C15—H15126.4
C15—N3—C16128.3 (5)C17—C16—N3117.2 (5)
C13—N4—C14105.4 (3)C17—C16—H16A108.0
C13—N4—Cd2126.7 (3)N3—C16—H16A108.0
C14—N4—Cd2127.9 (3)C17—C16—H16B108.0
C3—N5—C1105.0 (3)N3—C16—H16B108.0
C3—N5—Cd1124.8 (2)H16A—C16—H16B107.3
C1—N5—Cd1130.2 (2)O2—C17—C16121.9 (6)
C3—N6—C2107.1 (3)O2—C17—H17A106.9
C3—N6—C4126.5 (3)C16—C17—H17A106.9
C2—N6—C4126.2 (3)O2—C17—H17B106.9
C10—N7—C11107.0 (2)C16—C17—H17B106.9
C10—N7—C9125.8 (3)H17A—C17—H17B106.7
C11—N7—C9127.2 (3)O2—C18—C19126.4 (5)
C10—N8—C12105.2 (2)O2—C18—H18A105.7
C10—N8—Cd1124.6 (2)C19—C18—H18A105.7
C12—N8—Cd1130.2 (2)O2—C18—H18B105.7
C19—O1—C20116.7 (3)C19—C18—H18B105.7
C18—O2—C17130.9 (5)H18A—C18—H18B106.2
C7—O3—C8110.7 (2)C18—C19—O1116.6 (5)
C5—O4—C6112.2 (2)C18—C19—H19A108.1
H1WA—O1W—H1WB102 (6)O1—C19—H19A108.1
C2—C1—N5110.1 (3)C18—C19—H19B108.1
C2—C1—H1124.9O1—C19—H19B108.1
N5—C1—H1124.9H19A—C19—H19B107.3
C1—C2—N6106.0 (3)O1—C20—C21111.4 (3)
C1—C2—H2127.0O1—C20—H20A109.3
N6—C2—H2127.0C21—C20—H20A109.3
N5—C3—N6111.7 (3)O1—C20—H20B109.3
N5—C3—H3124.1C21—C20—H20B109.3
N6—C3—H3124.1H20A—C20—H20B108.0
N6—C4—C5111.5 (3)C20—C21—N2112.7 (3)
N6—C4—H4A109.3C20—C21—H21A109.1
C5—C4—H4A109.3N2—C21—H21A109.1
N6—C4—H4B109.3C20—C21—H21B109.1
C5—C4—H4B109.3N2—C21—H21B109.1
H4A—C4—H4B108.0H21A—C21—H21B107.8
O4—C5—C4108.1 (2)C24—C22—N2107.1 (3)
O4—C5—H5A110.1C24—C22—H22126.4
C4—C5—H5A110.1N2—C22—H22126.4
O4—C5—H5B110.1N1—C23—N2112.5 (3)
C4—C5—H5B110.1N1—C23—H23123.7
H5A—C5—H5B108.4N2—C23—H23123.7
O4—C6—C7108.7 (3)C22—C24—N1109.4 (3)
O4—C6—H6A110.0C22—C24—H24125.3
C7—C6—H6A110.0N1—C24—H24125.3
O4—C6—H6B110.0
N4ii—Cd2—N1—C23173.1 (3)C5—O4—C6—C7169.1 (3)
N4—Cd2—N1—C236.9 (3)C8—O3—C7—C6173.5 (3)
Cl2—Cd2—N1—C2395.8 (3)O4—C6—C7—O364.0 (3)
Cl2ii—Cd2—N1—C2384.2 (3)C7—O3—C8—C9175.8 (3)
N4ii—Cd2—N1—C241.1 (3)C10—N7—C9—C8100.1 (4)
N4—Cd2—N1—C24178.9 (3)C11—N7—C9—C878.3 (4)
Cl2—Cd2—N1—C2492.3 (3)O3—C8—C9—N762.2 (4)
Cl2ii—Cd2—N1—C2487.7 (3)C12—N8—C10—N70.5 (3)
N1—Cd2—N4—C1370.7 (3)Cd1—N8—C10—N7179.79 (18)
N1ii—Cd2—N4—C13109.3 (3)C11—N7—C10—N80.6 (3)
Cl2—Cd2—N4—C1319.7 (3)C9—N7—C10—N8179.3 (3)
Cl2ii—Cd2—N4—C13160.3 (3)C10—N7—C11—C120.4 (3)
N1—Cd2—N4—C14111.2 (3)C9—N7—C11—C12179.1 (3)
N1ii—Cd2—N4—C1468.8 (3)N7—C11—C12—N80.1 (3)
Cl2—Cd2—N4—C14158.5 (3)C10—N8—C12—C110.2 (3)
Cl2ii—Cd2—N4—C1421.5 (3)Cd1—N8—C12—C11179.4 (2)
N8—Cd1—N5—C340.5 (3)C14—N4—C13—N30.2 (4)
N8i—Cd1—N5—C3139.5 (3)Cd2—N4—C13—N3178.7 (2)
Cl1—Cd1—N5—C348.4 (2)C15—N3—C13—N40.1 (5)
Cl1i—Cd1—N5—C3131.6 (2)C16—N3—C13—N4178.9 (4)
N8—Cd1—N5—C1137.2 (3)C13—N4—C14—C150.4 (4)
N8i—Cd1—N5—C142.8 (3)Cd2—N4—C14—C15178.8 (2)
Cl1—Cd1—N5—C1133.9 (3)N4—C14—C15—N30.4 (5)
Cl1i—Cd1—N5—C146.1 (3)C13—N3—C15—C140.3 (5)
N5—Cd1—N8—C1068.9 (2)C16—N3—C15—C14179.1 (4)
N5i—Cd1—N8—C10111.1 (2)C13—N3—C16—C1779.4 (8)
Cl1—Cd1—N8—C10158.6 (2)C15—N3—C16—C1799.2 (8)
Cl1i—Cd1—N8—C1021.4 (2)C18—O2—C17—C16147.6 (9)
N5—Cd1—N8—C12110.1 (2)N3—C16—C17—O238.2 (12)
N5i—Cd1—N8—C1269.9 (2)C17—O2—C18—C19159.6 (9)
Cl1—Cd1—N8—C1220.5 (2)O2—C18—C19—O118.3 (14)
Cl1i—Cd1—N8—C12159.5 (2)C20—O1—C19—C18168.1 (6)
C3—N5—C1—C20.2 (4)C19—O1—C20—C21158.1 (4)
Cd1—N5—C1—C2177.9 (2)O1—C20—C21—N255.9 (5)
N5—C1—C2—N60.6 (4)C23—N2—C21—C2076.6 (5)
C3—N6—C2—C10.8 (4)C22—N2—C21—C20108.3 (5)
C4—N6—C2—C1176.5 (3)C23—N2—C22—C241.0 (4)
C1—N5—C3—N60.4 (3)C21—N2—C22—C24174.8 (4)
Cd1—N5—C3—N6178.53 (18)C24—N1—C23—N21.0 (4)
C2—N6—C3—N50.8 (3)Cd2—N1—C23—N2172.7 (2)
C4—N6—C3—N5176.5 (3)C22—N2—C23—N11.3 (4)
C3—N6—C4—C599.4 (4)C21—N2—C23—N1174.7 (3)
C2—N6—C4—C575.5 (4)N2—C22—C24—N10.4 (4)
C6—O4—C5—C4177.2 (3)C23—N1—C24—C220.3 (4)
N6—C4—C5—O466.5 (3)Cd2—N1—C24—C22172.7 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Cl2iii0.85 (2)2.33 (3)3.165 (3)164 (5)
O1W—H1WA···Cl1iv0.88 (6)2.42 (5)3.198 (4)147 (7)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C12H18N4O2)2]·H2O
Mr701.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.3629 (13), 11.0659 (9), 18.4492 (16)
β (°) 102.558 (1)
V3)3061.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.793, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
21862, 5691, 4148
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.04
No. of reflections5691
No. of parameters372
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Cl2i0.85 (2)2.33 (3)3.165 (3)164 (5)
O1W—H1WA···Cl1ii0.88 (6)2.42 (5)3.198 (4)147 (7)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of the Educational Commission of Anhui Province of China (No. KJ2010A229).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039–5041.  Web of Science CSD CrossRef Google Scholar
First citationLiu, G. X., Chen, H. & Ren, X. M. (2010). Chin. J. Inorg. Chem. 743, 161–165.  Google Scholar
First citationLiu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Cryst. Growth Des. 7, 3027–3037.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L. L., Lu, Z. D., Lin, J. G., Tian, Z. F., Zhu, H. Z. & Meng, Q. J. (2007). Cryst. Growth Des. 7, 93–99.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds