organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Pyridylmethanimidamido)pyridine-2-carboximidamide

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wyingchun0107@126.com

(Received 2 April 2010; accepted 4 May 2010; online 29 May 2010)

In the title mol­ecule, C12H12N6, the dihedral angles between the pyridine rings and the central dimethan­imine–hydrazine group are 0.30 (3) and 13.94 (3)°. Two intra­molecular N—H⋯N hydrogen bonds stabilize the planar conformation of one pyridine ring with respect to its hydrazine-residue neighbour, whereas the other pyridine ring and an N-bonded H atom are rotated out of the plane and link the mol­ecules into inter­molecular N—H⋯N chains propagating in [010].

Related literature

For the phase transition of pyridinium tetra­chloro­iodate(III) studied by X-ray analysis and dielectric and heat capacity measurements, see: Asaji et al. (2007[Asaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24-28.]). For the synthesis of 2-pyridylpyridines via Diels–Alder reactions between 3-pyridyl-1,2,4-triazines and vinyl­alcanoates, see: Shintou et al. (2005[Shintou, T., Ikeuchi, F., Kuwabara, H., Umihara, K. & Itoh, I. J. (2005). Chemistry Lett. 34, 836-838.]). For the ferroelecric properties of pyridinum perrhenate, see: Wasicki et al. (1997[Wasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W. & Szepanski, W. (1997). J. Chem. Phys. 107, 576-578.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N6

  • Mr = 240.28

  • Orthorhombic, P b c a

  • a = 13.218 (3) Å

  • b = 9.4979 (19) Å

  • c = 19.811 (4) Å

  • V = 2487.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.5, Tmax = 0.5

  • 23997 measured reflections

  • 2848 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.222

  • S = 1.09

  • 2848 reflections

  • 168 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N5i 0.86 2.60 3.096 (3) 117
N2—H2B⋯N1 0.79 (4) 2.34 (4) 2.670 (4) 106 (3)
N3—H3B⋯N5 0.86 2.33 2.619 (3) 100
N4—H4B⋯N2 0.86 2.31 2.608 (3) 101
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The study of seignette-electrics materials has received much attention. Some materials have predominant dielectric-ferroelectric performance. The study of phase transition and related dielectric-ferroelectric property about PyHX (X=ICl4, ClO4, IO4, ReO4etc) (Asaji et al. (2007); Wasicki et al. (1997)) has received much attention. As one part of our continuing studies on finding for dielectric-ferroelectric materials, especially which contain N—H···N hydrogen bonds, we synthesized the title compound C12H12N6(I). It has no phase-transition in dielectric measurement during 93 K to 425 K (m.p 458 K).

The compound contains approximate non-crystallographic inversion symmetry (Fig 1). The torsion angles of N2—C6—C5—N1 and N4—N3—C6—C5 are 3.3 (3)° and 179.12 (19)°, N3—C6—C5—N1 and N4—N3—C6—N2 are -176.7 (2)° and -0.9 (4)°, C7—N4—N3—C6 is 174.0 (2)°. H5 rotates out of the molecular plane to prevent collision with the H4B of the intermolecular hydrogen N4—H4B···N5i bond. Two intramolecular hydrogen bonds (N2—H2B···N1 and N4—H4B···N2) contribute to the planar conformation of the N1 pyridine with the dimethanimine-hydrazine group. The other pyridine unit rotates out of the central hydrazine by 13.94 (3)° because N5—H5···N6 intramolecular bond is not realized. The intermolecular hydrogen bonds (N4—H4B···N5i, Table 1) link the molecules into chains along the b-axis (Fig 2).

Related literature top

For the phase transition of pyridinium tetrachloroiodate(III) studied by X-ray analysis and dielectric and heat capacity measurements, see: Asaji et al. (2007). For the synthesis of 2-pyridylpyridines via Diels–Alder reactions between 3-pyridyl-1,2,4-triazines and vinylalcanoates, see: Shintou et al. (2005). For the ferroelecric properties of pyridinum perrhenate, see: Wasicki et al. (1997).

Experimental top

Picolinonitrile 5.2 g (100 mmol) and hydrazine hydrate 2.94 g (85%, 100 mmol) in flask and water (75 ml) was added, then the reagent react at 50°C for 24 h (Shintou et al.(2005)). The reaction solution was extracted by dichloromethane, and the solvate was removed under reduced pressure and the product was obtained as yellow solid. The crystals suitable for structure determination were grown by slow evaporation in dichloromethane and methanol (1: 1) at room temperature.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded,with C—H = 0.93Å , N—H = 0.75-0.86 Å; with Uiso(H) = 1.2Ueq(C), and with Uiso(H) = 1.2-1.5Ueq(N).

Structure description top

The study of seignette-electrics materials has received much attention. Some materials have predominant dielectric-ferroelectric performance. The study of phase transition and related dielectric-ferroelectric property about PyHX (X=ICl4, ClO4, IO4, ReO4etc) (Asaji et al. (2007); Wasicki et al. (1997)) has received much attention. As one part of our continuing studies on finding for dielectric-ferroelectric materials, especially which contain N—H···N hydrogen bonds, we synthesized the title compound C12H12N6(I). It has no phase-transition in dielectric measurement during 93 K to 425 K (m.p 458 K).

The compound contains approximate non-crystallographic inversion symmetry (Fig 1). The torsion angles of N2—C6—C5—N1 and N4—N3—C6—C5 are 3.3 (3)° and 179.12 (19)°, N3—C6—C5—N1 and N4—N3—C6—N2 are -176.7 (2)° and -0.9 (4)°, C7—N4—N3—C6 is 174.0 (2)°. H5 rotates out of the molecular plane to prevent collision with the H4B of the intermolecular hydrogen N4—H4B···N5i bond. Two intramolecular hydrogen bonds (N2—H2B···N1 and N4—H4B···N2) contribute to the planar conformation of the N1 pyridine with the dimethanimine-hydrazine group. The other pyridine unit rotates out of the central hydrazine by 13.94 (3)° because N5—H5···N6 intramolecular bond is not realized. The intermolecular hydrogen bonds (N4—H4B···N5i, Table 1) link the molecules into chains along the b-axis (Fig 2).

For the phase transition of pyridinium tetrachloroiodate(III) studied by X-ray analysis and dielectric and heat capacity measurements, see: Asaji et al. (2007). For the synthesis of 2-pyridylpyridines via Diels–Alder reactions between 3-pyridyl-1,2,4-triazines and vinylalcanoates, see: Shintou et al. (2005). For the ferroelecric properties of pyridinum perrhenate, see: Wasicki et al. (1997).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.
N-(2-Pyridylmethanimidamido)pyridine-2-carboximidamide top
Crystal data top
C12H12N6F(000) = 1008
Mr = 240.28Dx = 1.283 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8973 reflections
a = 13.218 (3) Åθ = 3.0–8973°
b = 9.4979 (19) ŵ = 0.09 mm1
c = 19.811 (4) ÅT = 293 K
V = 2487.2 (9) Å3Prism, colorless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2848 independent reflections
Radiation source: fine-focus sealed tube1934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.5, Tmax = 0.5l = 2525
23997 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1052P)2 + 1.2299P]
where P = (Fo2 + 2Fc2)/3
2848 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.67 e Å3
Crystal data top
C12H12N6V = 2487.2 (9) Å3
Mr = 240.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.218 (3) ŵ = 0.09 mm1
b = 9.4979 (19) ÅT = 293 K
c = 19.811 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2848 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1934 reflections with I > 2σ(I)
Tmin = 0.5, Tmax = 0.5Rint = 0.075
23997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0732 restraints
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.46 e Å3
2848 reflectionsΔρmin = 0.67 e Å3
168 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.15435 (14)0.0172 (2)0.56008 (10)0.0402 (5)
H4B0.15160.06180.53900.048*
N30.09172 (14)0.0508 (2)0.61420 (10)0.0411 (5)
H3B0.09790.12630.63790.049*
C60.02347 (17)0.0432 (2)0.62501 (12)0.0397 (6)
C70.21721 (16)0.1167 (2)0.54472 (12)0.0361 (5)
C80.28736 (18)0.0908 (2)0.48714 (12)0.0408 (6)
C50.04819 (17)0.0210 (3)0.68259 (13)0.0421 (6)
C40.0456 (2)0.0985 (3)0.72202 (14)0.0501 (7)
H4A0.00190.16870.71380.060*
N50.22387 (18)0.2410 (2)0.57686 (13)0.0556 (7)
H50.22210.22900.61430.083*
N60.36735 (17)0.1762 (2)0.48319 (13)0.0570 (7)
N10.11358 (18)0.1259 (3)0.69313 (13)0.0622 (7)
N20.0109 (2)0.1617 (3)0.58838 (14)0.0637 (8)
C120.2684 (2)0.0139 (3)0.44062 (14)0.0549 (7)
H12A0.21110.07010.44420.066*
C10.1144 (2)0.1123 (4)0.77361 (15)0.0594 (8)
H1A0.11420.19210.80080.071*
C110.4310 (3)0.1556 (4)0.4320 (2)0.0815 (11)
H11A0.48720.21410.42840.098*
C90.3363 (3)0.0335 (4)0.38862 (17)0.0737 (10)
H9A0.32630.10460.35700.088*
C20.1828 (2)0.0077 (4)0.78440 (17)0.0668 (9)
H2A0.23070.01540.81860.080*
C100.4181 (3)0.0526 (4)0.38424 (19)0.0836 (12)
H10A0.46470.04190.34940.100*
C30.1799 (2)0.1083 (4)0.7442 (2)0.0771 (10)
H3A0.22640.17970.75240.093*
H2B0.035 (3)0.213 (4)0.596 (2)0.094 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0408 (11)0.0333 (10)0.0464 (11)0.0003 (8)0.0028 (9)0.0029 (9)
N30.0382 (10)0.0371 (11)0.0480 (12)0.0019 (9)0.0041 (9)0.0033 (9)
C60.0343 (11)0.0377 (12)0.0472 (13)0.0026 (10)0.0009 (10)0.0029 (10)
C70.0352 (11)0.0328 (11)0.0404 (12)0.0027 (9)0.0015 (9)0.0039 (9)
C80.0428 (13)0.0333 (12)0.0464 (13)0.0046 (10)0.0036 (10)0.0045 (10)
C50.0354 (12)0.0433 (13)0.0474 (13)0.0030 (10)0.0020 (10)0.0079 (11)
C40.0458 (14)0.0514 (15)0.0532 (15)0.0018 (12)0.0002 (12)0.0005 (13)
N50.0655 (15)0.0419 (13)0.0594 (14)0.0072 (11)0.0184 (12)0.0095 (10)
N60.0511 (13)0.0472 (13)0.0727 (16)0.0064 (11)0.0222 (11)0.0075 (11)
N10.0541 (14)0.0555 (15)0.0771 (17)0.0111 (11)0.0220 (12)0.0025 (12)
N20.0590 (15)0.0525 (15)0.0797 (18)0.0209 (13)0.0172 (14)0.0130 (13)
C120.0655 (18)0.0471 (15)0.0520 (15)0.0007 (13)0.0043 (13)0.0019 (13)
C10.0573 (17)0.0675 (19)0.0534 (16)0.0132 (15)0.0033 (13)0.0029 (14)
C110.071 (2)0.071 (2)0.102 (3)0.0065 (18)0.047 (2)0.009 (2)
C90.102 (3)0.0601 (19)0.0585 (19)0.015 (2)0.0157 (18)0.0142 (15)
C20.0563 (17)0.083 (2)0.0610 (19)0.0120 (16)0.0198 (14)0.0093 (17)
C100.091 (3)0.076 (2)0.085 (3)0.009 (2)0.049 (2)0.005 (2)
C30.0621 (19)0.078 (2)0.091 (3)0.0125 (17)0.0332 (19)0.006 (2)
Geometric parameters (Å, º) top
N4—C71.295 (3)N6—C111.333 (4)
N4—N31.392 (3)N1—C31.349 (4)
N4—H4B0.8600N2—H2B0.79 (4)
N3—C61.287 (3)C12—C91.379 (4)
N3—H3B0.8600C12—H12A0.9300
C6—N21.350 (3)C1—C21.360 (4)
C6—C51.498 (3)C1—H1A0.9300
C7—N51.344 (3)C11—C101.371 (5)
C7—C81.490 (3)C11—H11A0.9300
C8—N61.335 (3)C9—C101.359 (5)
C8—C121.379 (4)C9—H9A0.9300
C5—N11.336 (3)C2—C31.360 (5)
C5—C41.378 (4)C2—H2A0.9300
C4—C11.374 (4)C10—H10A0.9300
C4—H4A0.9300C3—H3A0.9300
N5—H50.7500
C7—N4—N3113.29 (19)C5—N1—C3116.4 (3)
C7—N4—H4B123.4C6—N2—H2B121 (3)
N3—N4—H4B123.4C8—C12—C9118.6 (3)
C6—N3—N4112.7 (2)C8—C12—H12A120.7
C6—N3—H3B123.7C9—C12—H12A120.7
N4—N3—H3B123.7C2—C1—C4119.1 (3)
N3—C6—N2125.2 (2)C2—C1—H1A120.4
N3—C6—C5118.2 (2)C4—C1—H1A120.4
N2—C6—C5116.7 (2)N6—C11—C10123.5 (3)
N4—C7—N5124.9 (2)N6—C11—H11A118.3
N4—C7—C8117.3 (2)C10—C11—H11A118.3
N5—C7—C8117.8 (2)C10—C9—C12118.9 (3)
N6—C8—C12122.9 (2)C10—C9—H9A120.5
N6—C8—C7115.9 (2)C12—C9—H9A120.5
C12—C8—C7121.2 (2)C3—C2—C1118.7 (3)
N1—C5—C4122.8 (2)C3—C2—H2A120.6
N1—C5—C6115.0 (2)C1—C2—H2A120.6
C4—C5—C6122.2 (2)C9—C10—C11119.0 (3)
C1—C4—C5119.0 (3)C9—C10—H10A120.5
C1—C4—H4A120.5C11—C10—H10A120.5
C5—C4—H4A120.5N1—C3—C2123.9 (3)
C7—N5—H5109.5N1—C3—H3A118.0
C11—N6—C8117.1 (3)C2—C3—H3A118.0
C7—N4—N3—C6174.0 (2)C12—C8—N6—C110.9 (4)
N4—N3—C6—N20.9 (4)C7—C8—N6—C11179.7 (3)
N4—N3—C6—C5179.12 (19)C4—C5—N1—C31.4 (4)
N3—N4—C7—N50.3 (3)C6—C5—N1—C3179.3 (3)
N3—N4—C7—C8179.77 (18)N6—C8—C12—C91.6 (4)
N4—C7—C8—N6163.2 (2)C7—C8—C12—C9179.6 (3)
N5—C7—C8—N616.7 (3)C5—C4—C1—C20.1 (4)
N4—C7—C8—C1217.9 (3)C8—N6—C11—C100.0 (6)
N5—C7—C8—C12162.2 (2)C8—C12—C9—C101.4 (5)
N3—C6—C5—N1176.7 (2)C4—C1—C2—C30.9 (5)
N2—C6—C5—N13.3 (3)C12—C9—C10—C110.5 (6)
N3—C6—C5—C42.7 (3)N6—C11—C10—C90.2 (6)
N2—C6—C5—C4177.3 (2)C5—N1—C3—C20.3 (5)
N1—C5—C4—C11.4 (4)C1—C2—C3—N10.8 (6)
C6—C5—C4—C1179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N5i0.862.603.096 (3)117
N2—H2B···N10.79 (4)2.34 (4)2.670 (4)106 (3)
N3—H3B···N50.862.332.619 (3)100
N4—H4B···N20.862.312.608 (3)101
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H12N6
Mr240.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.218 (3), 9.4979 (19), 19.811 (4)
V3)2487.2 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.5, 0.5
No. of measured, independent and
observed [I > 2σ(I)] reflections
23997, 2848, 1934
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.222, 1.09
No. of reflections2848
No. of parameters168
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.67

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N5i0.862.603.096 (3)117.4
N2—H2B···N10.79 (4)2.34 (4)2.670 (4)106 (3)
N3—H3B···N50.862.332.619 (3)100.1
N4—H4B···N20.862.312.608 (3)100.8
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAsaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShintou, T., Ikeuchi, F., Kuwabara, H., Umihara, K. & Itoh, I. J. (2005). Chemistry Lett. 34, 836–838.  Web of Science CrossRef CAS Google Scholar
First citationWasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W. & Szepanski, W. (1997). J. Chem. Phys. 107, 576–578.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds