organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Meth­oxy­phen­yl)-1-(2-oxoindolin-3-yl­­idene)thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Chemistry, Government College University, Lahore, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 May 2010; accepted 15 May 2010; online 22 May 2010)

In the title compound, C16H14N4O2S, intra­molecular N—H⋯N hydrogen bonding forms an S(5) ring, whereas N—H⋯O and C—H⋯S inter­actions complete S(6) ring motifs. In the crystal, mol­ecules form inversion dimers due to N—H⋯O inter­actions. The dimers are inter­linked through N—H⋯S hydrogen bonds and ππ inter­actions occur with a centroid–centroid distance of 3.8422 (11) Å between the meth­oxy-containing benzene ring and the five-membered heterocyclic ring.

Related literature

For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thio­semicarbazones, see: Pervez et al. (2007[Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178-1186.], 2008[Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem. 23, 848-854.], 2009[Pervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem. 24, 437-446.], 2010a[Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102-108.]). For a related structure, see: Pervez et al. (2010b[Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O2S

  • Mr = 326.37

  • Monoclinic, P 21 /n

  • a = 15.1793 (5) Å

  • b = 7.2473 (2) Å

  • c = 15.4764 (5) Å

  • β = 111.179 (2)°

  • V = 1587.55 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.34 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.960

  • 13861 measured reflections

  • 3925 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.04

  • 3925 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.04 2.875 (2) 164
N3—H3A⋯O1 0.86 2.06 2.7441 (19) 136
N4—H4A⋯N2 0.86 2.19 2.620 (2) 110
N4—H4A⋯S1ii 0.86 2.87 3.5806 (16) 141
C11—H11⋯S1 0.93 2.74 3.212 (2) 112
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our work on the synthesis of medicinally important organic molecules (Pervez et al., 2007, 2008, 2009, 2010a), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide has been published (Pervez et al., 2010b). The title compound (I) differs from (II) due to the attachment of methoxy group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N^4^ of the thiosemicarbazone moiety.

In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerised (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. The dimers are interlinked through N—H···S type of H-bonding. There exist π···π interaction at a distance of 3.8422 (11) Å between the benzene ring (C10—C15) and the heterocyclic ring (N1/C7/C2/C1/C8).

Related literature top

For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thiosemicarbazones, see: Pervez et al. (2007, 2008, 2009, 2010a). For a related structure, see: Pervez et al. (2010b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(3-methoxyphenyl)thiosemicarbazide (0.99 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during refluxing was collected by suction filtration. Thorough washing with hot ethanol followed by ether afforded the target compound (I) in pure form (1.25 g, 77%), m. p. 477 K (d). The single crystals of (I) were grown in acetone by slow evaporation at room temperature.

Structure description top

In continuation of our work on the synthesis of medicinally important organic molecules (Pervez et al., 2007, 2008, 2009, 2010a), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide has been published (Pervez et al., 2010b). The title compound (I) differs from (II) due to the attachment of methoxy group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N^4^ of the thiosemicarbazone moiety.

In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerised (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. The dimers are interlinked through N—H···S type of H-bonding. There exist π···π interaction at a distance of 3.8422 (11) Å between the benzene ring (C10—C15) and the heterocyclic ring (N1/C7/C2/C1/C8).

For the preparation and structures of biologically important N4-aryl-substituted isatin-3-thiosemicarbazones, see: Pervez et al. (2007, 2008, 2009, 2010a). For a related structure, see: Pervez et al. (2010b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intra-molecular H-bondings.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked.
4-(3-Methoxyphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide top
Crystal data top
C16H14N4O2SF(000) = 680
Mr = 326.37Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2898 reflections
a = 15.1793 (5) Åθ = 3.2–28.3°
b = 7.2473 (2) ŵ = 0.22 mm1
c = 15.4764 (5) ÅT = 296 K
β = 111.179 (2)°Prism, yellow
V = 1587.55 (9) Å30.34 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3925 independent reflections
Radiation source: fine-focus sealed tube2898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.946, Tmax = 0.960l = 2019
13861 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.6227P]
where P = (Fo2 + 2Fc2)/3
3925 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H14N4O2SV = 1587.55 (9) Å3
Mr = 326.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1793 (5) ŵ = 0.22 mm1
b = 7.2473 (2) ÅT = 296 K
c = 15.4764 (5) Å0.34 × 0.22 × 0.20 mm
β = 111.179 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2898 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.960Rint = 0.028
13861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
3925 reflectionsΔρmin = 0.35 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19826 (11)0.3610 (2)0.45348 (11)0.0329 (3)
C20.26044 (11)0.3126 (2)0.54720 (11)0.0345 (3)
C30.35347 (12)0.2547 (3)0.58412 (12)0.0434 (4)
H30.38820.23320.54640.052*
C40.39313 (14)0.2298 (3)0.67919 (13)0.0515 (5)
H40.45550.19080.70570.062*
C50.34181 (15)0.2617 (3)0.73516 (13)0.0529 (5)
H50.37050.24460.79880.063*
C60.24859 (14)0.3187 (3)0.69884 (12)0.0491 (5)
H60.21400.34030.73670.059*
C70.20928 (11)0.3419 (2)0.60448 (11)0.0382 (4)
C80.10524 (11)0.4125 (2)0.46058 (11)0.0359 (4)
C90.17432 (11)0.4498 (2)0.22293 (11)0.0360 (4)
C100.30202 (12)0.3962 (2)0.16100 (12)0.0388 (4)
C110.24941 (12)0.3445 (2)0.07119 (12)0.0407 (4)
H110.18650.31030.05520.049*
C120.29128 (13)0.3440 (3)0.00497 (13)0.0446 (4)
C130.38568 (14)0.3931 (3)0.02993 (15)0.0539 (5)
H130.41390.39480.01430.065*
C140.43705 (14)0.4392 (3)0.11998 (16)0.0554 (5)
H140.50060.46890.13660.066*
C150.39605 (13)0.4423 (3)0.18678 (14)0.0477 (4)
H150.43130.47480.24760.057*
C160.14733 (15)0.2526 (3)0.11290 (15)0.0613 (6)
H16A0.11420.35780.10230.092*
H16B0.13870.14960.07770.092*
H16C0.12300.22220.17760.092*
N10.11680 (10)0.3984 (2)0.55058 (10)0.0429 (4)
H10.07330.42100.57250.051*
N20.22156 (9)0.36975 (19)0.38155 (9)0.0351 (3)
N30.15482 (9)0.4293 (2)0.30214 (9)0.0374 (3)
H3A0.09920.45480.30130.045*
N40.26118 (10)0.3955 (2)0.23067 (10)0.0416 (4)
H4A0.29660.35520.28420.050*
O10.03312 (8)0.45962 (19)0.39631 (8)0.0452 (3)
O20.24526 (10)0.2944 (2)0.08484 (9)0.0610 (4)
S10.09025 (3)0.53985 (8)0.13109 (3)0.04856 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (7)0.0360 (8)0.0318 (8)0.0010 (6)0.0115 (6)0.0041 (6)
C20.0357 (8)0.0370 (9)0.0304 (8)0.0024 (6)0.0115 (6)0.0028 (6)
C30.0409 (9)0.0480 (10)0.0403 (9)0.0111 (7)0.0136 (7)0.0015 (8)
C40.0456 (10)0.0572 (12)0.0423 (10)0.0146 (9)0.0045 (8)0.0006 (9)
C50.0585 (12)0.0603 (12)0.0312 (9)0.0100 (9)0.0060 (8)0.0039 (8)
C60.0547 (11)0.0628 (12)0.0320 (9)0.0061 (9)0.0182 (8)0.0004 (8)
C70.0370 (8)0.0444 (9)0.0329 (8)0.0019 (7)0.0123 (7)0.0013 (7)
C80.0306 (7)0.0442 (9)0.0335 (8)0.0012 (6)0.0121 (6)0.0050 (7)
C90.0361 (8)0.0396 (9)0.0331 (8)0.0034 (7)0.0136 (7)0.0010 (7)
C100.0408 (9)0.0398 (9)0.0411 (9)0.0054 (7)0.0211 (7)0.0075 (7)
C110.0412 (9)0.0431 (10)0.0421 (9)0.0028 (7)0.0200 (7)0.0032 (7)
C120.0518 (10)0.0442 (10)0.0445 (10)0.0062 (8)0.0253 (8)0.0032 (8)
C130.0548 (11)0.0636 (13)0.0570 (12)0.0033 (10)0.0367 (10)0.0059 (10)
C140.0414 (10)0.0658 (13)0.0656 (13)0.0035 (9)0.0272 (10)0.0046 (10)
C150.0415 (9)0.0565 (12)0.0465 (10)0.0005 (8)0.0174 (8)0.0036 (9)
C160.0634 (13)0.0705 (15)0.0487 (12)0.0020 (11)0.0187 (10)0.0053 (10)
N10.0337 (7)0.0646 (10)0.0332 (7)0.0050 (7)0.0154 (6)0.0018 (7)
N20.0345 (7)0.0396 (8)0.0317 (7)0.0018 (6)0.0124 (6)0.0014 (6)
N30.0303 (6)0.0520 (9)0.0304 (7)0.0027 (6)0.0114 (5)0.0015 (6)
N40.0355 (7)0.0579 (10)0.0330 (7)0.0072 (6)0.0143 (6)0.0079 (6)
O10.0303 (6)0.0680 (9)0.0342 (6)0.0061 (5)0.0081 (5)0.0031 (6)
O20.0614 (9)0.0838 (11)0.0445 (8)0.0019 (8)0.0272 (7)0.0089 (7)
S10.0377 (2)0.0708 (4)0.0363 (2)0.0074 (2)0.01228 (18)0.0104 (2)
Geometric parameters (Å, º) top
C1—N21.286 (2)C10—C111.381 (2)
C1—C21.459 (2)C10—N41.425 (2)
C1—C81.503 (2)C11—C121.387 (2)
C2—C31.383 (2)C11—H110.9300
C2—C71.390 (2)C12—O21.359 (2)
C3—C41.386 (3)C12—C131.389 (3)
C3—H30.9300C13—C141.370 (3)
C4—C51.378 (3)C13—H130.9300
C4—H40.9300C14—C151.386 (3)
C5—C61.384 (3)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.374 (2)C16—O21.422 (3)
C6—H60.9300C16—H16A0.9600
C7—N11.410 (2)C16—H16B0.9600
C8—O11.2319 (19)C16—H16C0.9600
C8—N11.343 (2)N1—H10.8600
C9—N41.339 (2)N2—N31.3504 (18)
C9—N31.369 (2)N3—H3A0.8600
C9—S11.6624 (17)N4—H4A0.8600
C10—C151.377 (2)
N2—C1—C2126.25 (14)C10—C11—H11120.3
N2—C1—C8127.64 (14)C12—C11—H11120.3
C2—C1—C8105.94 (13)O2—C12—C11123.55 (17)
C3—C2—C7120.33 (15)O2—C12—C13116.72 (17)
C3—C2—C1132.91 (15)C11—C12—C13119.72 (18)
C7—C2—C1106.72 (13)C14—C13—C12119.75 (18)
C2—C3—C4117.73 (17)C14—C13—H13120.1
C2—C3—H3121.1C12—C13—H13120.1
C4—C3—H3121.1C13—C14—C15121.26 (18)
C5—C4—C3121.22 (17)C13—C14—H14119.4
C5—C4—H4119.4C15—C14—H14119.4
C3—C4—H4119.4C10—C15—C14118.52 (18)
C4—C5—C6121.48 (17)C10—C15—H15120.7
C4—C5—H5119.3C14—C15—H15120.7
C6—C5—H5119.3O2—C16—H16A109.5
C7—C6—C5117.13 (17)O2—C16—H16B109.5
C7—C6—H6121.4H16A—C16—H16B109.5
C5—C6—H6121.4O2—C16—H16C109.5
C6—C7—C2122.09 (16)H16A—C16—H16C109.5
C6—C7—N1128.44 (16)H16B—C16—H16C109.5
C2—C7—N1109.47 (14)C8—N1—C7111.39 (14)
O1—C8—N1127.11 (15)C8—N1—H1124.3
O1—C8—C1126.47 (15)C7—N1—H1124.3
N1—C8—C1106.42 (13)C1—N2—N3116.95 (13)
N4—C9—N3114.35 (14)N2—N3—C9121.05 (13)
N4—C9—S1128.21 (13)N2—N3—H3A119.5
N3—C9—S1117.43 (12)C9—N3—H3A119.5
C15—C10—C11121.28 (16)C9—N4—C10127.93 (14)
C15—C10—N4118.06 (16)C9—N4—H4A116.0
C11—C10—N4120.61 (15)C10—N4—H4A116.0
C10—C11—C12119.44 (16)C12—O2—C16117.57 (15)
N2—C1—C2—C34.6 (3)C10—C11—C12—C130.8 (3)
C8—C1—C2—C3179.95 (19)O2—C12—C13—C14178.02 (19)
N2—C1—C2—C7172.98 (16)C11—C12—C13—C140.9 (3)
C8—C1—C2—C72.51 (18)C12—C13—C14—C151.6 (3)
C7—C2—C3—C40.8 (3)C11—C10—C15—C141.2 (3)
C1—C2—C3—C4176.49 (19)N4—C10—C15—C14178.50 (17)
C2—C3—C4—C50.0 (3)C13—C14—C15—C100.6 (3)
C3—C4—C5—C60.4 (3)O1—C8—N1—C7179.55 (17)
C4—C5—C6—C70.1 (3)C1—C8—N1—C70.0 (2)
C5—C6—C7—C20.9 (3)C6—C7—N1—C8177.47 (19)
C5—C6—C7—N1179.92 (19)C2—C7—N1—C81.6 (2)
C3—C2—C7—C61.3 (3)C2—C1—N2—N3175.68 (15)
C1—C2—C7—C6176.60 (17)C8—C1—N2—N31.2 (2)
C3—C2—C7—N1179.52 (16)C1—N2—N3—C9177.49 (15)
C1—C2—C7—N12.6 (2)N4—C9—N3—N23.9 (2)
N2—C1—C8—O15.7 (3)S1—C9—N3—N2175.20 (12)
C2—C1—C8—O1178.91 (17)N3—C9—N4—C10178.85 (16)
N2—C1—C8—N1173.84 (17)S1—C9—N4—C102.1 (3)
C2—C1—C8—N11.57 (19)C15—C10—N4—C9142.08 (19)
C15—C10—C11—C121.8 (3)C11—C10—N4—C940.6 (3)
N4—C10—C11—C12179.12 (16)C11—C12—O2—C164.2 (3)
C10—C11—C12—O2179.65 (17)C13—C12—O2—C16176.89 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.875 (2)164
N3—H3A···O10.862.062.7441 (19)136
N4—H4A···N20.862.192.620 (2)110
N4—H4A···S1ii0.862.873.5806 (16)141
C11—H11···S10.932.743.212 (2)112
C8—O1···Cg3iii1.23 (1)3.64 (1)3.7399 (17)85 (1)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N4O2S
Mr326.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.1793 (5), 7.2473 (2), 15.4764 (5)
β (°) 111.179 (2)
V3)1587.55 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13861, 3925, 2898
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.04
No. of reflections3925
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86002.04002.875 (2)164.00
N3—H3A···O10.86002.06002.7441 (19)136.00
N4—H4A···N20.86002.19002.620 (2)110.00
N4—H4A···S1ii0.86002.87003.5806 (16)141.00
C11—H11···S10.93002.74003.212 (2)112.00
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

HP, MSI and NS thank the Higher Education Commission (HEC), Pakistan, for financial assistance under the National Research Program for Universities (project No. 20–873/R&D/07/452).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem. 24, 437–446.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem. 23, 848–854.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov. 7, 102–108.  CrossRef CAS Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds