organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,3-Di­methyl-5-oxo-1-phenyl-2,5-di­hydro-1H-pyrazol-4-yl)sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 9 April 2010; accepted 28 April 2010; online 8 May 2010)

In the title sydnone compound [systematic name: 3-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)-1,2,3-oxadiazol-3-ium-5-olate], C13H12N4O3, the oxadiazole and pyrazole rings are essentially planar [maximum deviations = 0.006 (1) and 0.019 (1) Å, respectively] and are inclined at inter­planar angles of 37.84 (4) and 46.60 (4)°, respectively, with respect to the benzene ring. In the crystal, adjacent mol­ecules are inter­connected into a three-dimensional supra­molecular network via inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular ππ aromatic stacking inter­actions [centroid–centroid distance = 3.5251 (5) Å] further stabilize the crystal packing.

Related literature

For general background to and applications of sydnone derivatives, see: Baker et al. (1949[Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307-314.]); Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For the preparation of 3-aryl sydnones, see Kalluraya et al. (2004[Kalluraya, B., Rai, G., Rai, N. S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem. 14, 127-130.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For related structures, see: Baker & Ollis (1957[Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15-29]); Goh et al. (2009a[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088-o3089.],b[Goh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099-o3100.], 2010a[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010a). Acta Cryst. E66, o1225-o1226.],b[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010b). Acta Cryst. E66, o1303.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O3

  • Mr = 272.27

  • Monoclinic, P 21 /c

  • a = 10.6525 (3) Å

  • b = 7.3014 (3) Å

  • c = 15.6828 (4) Å

  • β = 93.982 (1)°

  • V = 1216.83 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.56 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.992

  • 44010 measured reflections

  • 6426 independent reflections

  • 4895 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.04

  • 6426 reflections

  • 229 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.981 (14) 2.492 (13) 3.2155 (10) 130.4 (10)
C11—H11A⋯O2i 0.944 (13) 2.543 (13) 3.4163 (10) 153.9 (11)
C12—H12B⋯O2ii 0.984 (13) 2.369 (13) 3.3022 (10) 158.1 (11)
C13—H13A⋯O3iii 0.958 (14) 2.516 (15) 3.3606 (10) 147.0 (12)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones constitute a well-defined class of mesoionic compounds that contain a 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

3-aryl sydnones are prepared by the cyclisation of N-nitroso-N-aryl glycines with acetic anhydride. These N-nitroso-N-aryl glycines were obtained by the nitrosation of N-substituted glycines. The N-substituted glycine was obtained by the hydrolysis of corresponding ester with sodiumhydroxide. The ester is in turn obtained by the reaction of appropriately substituted aniline with ethyl aceto acetate in absolute ethanol medium employing anhydrous sodium acetate as the catalyst (Kalluraya et al., 2004; Rai et al., 2008)

In the title sydnone compound (Fig. 1), the 1,2,3-oxadiazole (N3/N4/O1/C10/C11) and pyrazole (N1/N2/C7-C9) rings are essentially planar, with maximum deviations of 0.006 (1) and -0.019 (1) Å, respectively, at atoms N4 and N1. These two rings are inclined at interplanar angles of 37.84 (4) and 46.60 (4)°, respectively, with the C1-C6 benzene ring. As reported previously (Goh et al., 2010a,b), the exocyclic C10–O3 bond length of 1.2205 (9) Å is inconsistent with the formulation of Baker & Ollis (1957), which involves the delocalization of a positive charge in the 1,2,3-oxadiazole ring, and a negative charge in the exocyclic oxygen. The bond lengths (Allen et al., 1987) and angles are within normal range and comparable to those observed in closely related pyrazole (Goh et al., 2009a,b) and sydnone (Goh et al., 2010a,b) structures.

In the crystal packing, C1—H1A···O3, C13—H13A···O3, C11—H11A···O2 and C12—H12B···O2 hydrogen bonds (Table 1) form two different pairs of intermolecular bifurcated acceptor hydrogen bonds, which link the molecules into a three-dimensional supramolecular network. The crystal packing is further stabilized by weak intermolecular ππ aromatic stacking interactions [Cg1···Cg2ii = 3.5251 (5) Å, (ii) = -x+1, y-1/2, -z+1/2 where Cg1 and Cg2 are centroids of pyrazole and benzene rings, respectively].

Related literature top

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For the preparation of 3-aryl sydnones, see Kalluraya et al. (2004); Rai et al. (2008). For related structures, see: Baker & Ollis (1957); Goh et al. (2009a,b, 2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(nitroso) amino]acetic acid (0.1 mol) was heated with acetic anhydride (0.5 mol) on a water bath for 2–4 h, the reaction mixture was kept aside at room temperature for overnight. It was then poured into ice cold water, filtered and washed with water, sodium bicarbonate solution (5 %) and again with water. The solid product was dried and crystallized from benzene. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

All hydrogen atoms were located from difference Fourier map [range of C—H = 0.944 (13)–0.993 (16) Å] and allowed to refine freely.

Structure description top

Sydnones constitute a well-defined class of mesoionic compounds that contain a 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

3-aryl sydnones are prepared by the cyclisation of N-nitroso-N-aryl glycines with acetic anhydride. These N-nitroso-N-aryl glycines were obtained by the nitrosation of N-substituted glycines. The N-substituted glycine was obtained by the hydrolysis of corresponding ester with sodiumhydroxide. The ester is in turn obtained by the reaction of appropriately substituted aniline with ethyl aceto acetate in absolute ethanol medium employing anhydrous sodium acetate as the catalyst (Kalluraya et al., 2004; Rai et al., 2008)

In the title sydnone compound (Fig. 1), the 1,2,3-oxadiazole (N3/N4/O1/C10/C11) and pyrazole (N1/N2/C7-C9) rings are essentially planar, with maximum deviations of 0.006 (1) and -0.019 (1) Å, respectively, at atoms N4 and N1. These two rings are inclined at interplanar angles of 37.84 (4) and 46.60 (4)°, respectively, with the C1-C6 benzene ring. As reported previously (Goh et al., 2010a,b), the exocyclic C10–O3 bond length of 1.2205 (9) Å is inconsistent with the formulation of Baker & Ollis (1957), which involves the delocalization of a positive charge in the 1,2,3-oxadiazole ring, and a negative charge in the exocyclic oxygen. The bond lengths (Allen et al., 1987) and angles are within normal range and comparable to those observed in closely related pyrazole (Goh et al., 2009a,b) and sydnone (Goh et al., 2010a,b) structures.

In the crystal packing, C1—H1A···O3, C13—H13A···O3, C11—H11A···O2 and C12—H12B···O2 hydrogen bonds (Table 1) form two different pairs of intermolecular bifurcated acceptor hydrogen bonds, which link the molecules into a three-dimensional supramolecular network. The crystal packing is further stabilized by weak intermolecular ππ aromatic stacking interactions [Cg1···Cg2ii = 3.5251 (5) Å, (ii) = -x+1, y-1/2, -z+1/2 where Cg1 and Cg2 are centroids of pyrazole and benzene rings, respectively].

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For the preparation of 3-aryl sydnones, see Kalluraya et al. (2004); Rai et al. (2008). For related structures, see: Baker & Ollis (1957); Goh et al. (2009a,b, 2010a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing a three-dimensional supramolecular network. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
3-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)-1,2,3- oxadiazol-3-ium-5-olate top
Crystal data top
C13H12N4O3F(000) = 568
Mr = 272.27Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9368 reflections
a = 10.6525 (3) Åθ = 3.1–37.4°
b = 7.3014 (3) ŵ = 0.11 mm1
c = 15.6828 (4) ÅT = 100 K
β = 93.982 (1)°Block, brown
V = 1216.83 (7) Å30.56 × 0.17 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6426 independent reflections
Radiation source: fine-focus sealed tube4895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 37.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.941, Tmax = 0.992k = 1212
44010 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.1919P]
where P = (Fo2 + 2Fc2)/3
6426 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H12N4O3V = 1216.83 (7) Å3
Mr = 272.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6525 (3) ŵ = 0.11 mm1
b = 7.3014 (3) ÅT = 100 K
c = 15.6828 (4) Å0.56 × 0.17 × 0.08 mm
β = 93.982 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6426 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4895 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.992Rint = 0.048
44010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125All H-atom parameters refined
S = 1.04Δρmax = 0.55 e Å3
6426 reflectionsΔρmin = 0.41 e Å3
229 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93586 (5)1.20867 (9)0.00540 (4)0.02015 (12)
O20.51808 (5)1.07724 (9)0.11293 (4)0.01697 (11)
O30.83681 (6)1.19975 (11)0.12824 (4)0.02477 (14)
N10.59770 (5)0.96695 (9)0.24595 (4)0.01428 (11)
N20.71755 (6)0.94159 (9)0.28563 (4)0.01458 (11)
N30.79599 (6)1.09624 (9)0.08032 (4)0.01374 (11)
N40.91049 (6)1.16505 (11)0.08800 (4)0.01949 (13)
C10.37495 (7)0.95237 (11)0.26642 (5)0.01608 (13)
C20.27426 (7)0.99016 (12)0.31562 (6)0.01978 (14)
C30.29319 (8)1.07726 (13)0.39442 (6)0.02155 (15)
C40.41384 (8)1.12975 (12)0.42404 (5)0.01955 (14)
C50.51539 (7)1.09504 (11)0.37507 (5)0.01622 (13)
C60.49514 (6)1.00508 (10)0.29691 (4)0.01404 (12)
C70.80407 (6)0.97734 (10)0.22937 (5)0.01404 (12)
C80.74125 (6)1.03529 (10)0.15426 (4)0.01342 (12)
C90.60776 (6)1.03268 (10)0.16264 (4)0.01363 (12)
C100.83202 (7)1.16748 (12)0.05217 (5)0.01728 (13)
C110.74198 (7)1.09301 (11)0.00008 (5)0.01608 (13)
C120.73637 (7)0.82345 (12)0.36075 (5)0.01818 (14)
C130.93987 (7)0.94884 (12)0.25274 (5)0.01862 (14)
H1A0.3617 (12)0.8870 (19)0.2119 (9)0.023 (3)*
H2A0.1903 (13)0.953 (2)0.2965 (9)0.030 (3)*
H3A0.2226 (13)1.100 (2)0.4312 (9)0.031 (3)*
H4A0.4263 (14)1.193 (2)0.4800 (10)0.035 (4)*
H5A0.5999 (12)1.134 (2)0.3956 (8)0.026 (3)*
H11A0.6593 (12)1.0502 (18)0.0133 (9)0.023 (3)*
H13A0.9830 (14)0.939 (2)0.2013 (9)0.033 (4)*
H13B0.9704 (14)1.055 (2)0.2880 (10)0.040 (4)*
H13C0.9524 (14)0.841 (2)0.2879 (10)0.036 (4)*
H12A0.7723 (15)0.894 (2)0.4061 (10)0.040 (4)*
H12B0.6549 (12)0.7786 (18)0.3781 (8)0.024 (3)*
H12C0.7870 (14)0.718 (2)0.3489 (9)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (2)0.0304 (3)0.0140 (2)0.0050 (2)0.00113 (18)0.0030 (2)
O20.0129 (2)0.0238 (3)0.0137 (2)0.00159 (19)0.00223 (17)0.00001 (19)
O30.0216 (3)0.0389 (4)0.0139 (2)0.0011 (2)0.0019 (2)0.0053 (2)
N10.0093 (2)0.0214 (3)0.0119 (2)0.00001 (19)0.00034 (18)0.0004 (2)
N20.0103 (2)0.0204 (3)0.0128 (2)0.00010 (19)0.00083 (18)0.0023 (2)
N30.0120 (2)0.0165 (3)0.0126 (2)0.00043 (19)0.00062 (18)0.00050 (19)
N40.0159 (3)0.0288 (4)0.0138 (3)0.0064 (2)0.0007 (2)0.0014 (2)
C10.0118 (3)0.0194 (3)0.0169 (3)0.0000 (2)0.0002 (2)0.0015 (2)
C20.0124 (3)0.0245 (4)0.0227 (3)0.0014 (2)0.0026 (2)0.0057 (3)
C30.0192 (3)0.0260 (4)0.0202 (3)0.0055 (3)0.0071 (3)0.0056 (3)
C40.0232 (3)0.0210 (3)0.0150 (3)0.0042 (3)0.0047 (3)0.0022 (3)
C50.0169 (3)0.0183 (3)0.0134 (3)0.0001 (2)0.0008 (2)0.0002 (2)
C60.0119 (3)0.0171 (3)0.0132 (3)0.0001 (2)0.0016 (2)0.0007 (2)
C70.0114 (2)0.0171 (3)0.0136 (3)0.0003 (2)0.0006 (2)0.0003 (2)
C80.0116 (2)0.0170 (3)0.0116 (3)0.0001 (2)0.0009 (2)0.0005 (2)
C90.0124 (3)0.0165 (3)0.0119 (3)0.0003 (2)0.0002 (2)0.0008 (2)
C100.0145 (3)0.0229 (3)0.0144 (3)0.0006 (2)0.0006 (2)0.0010 (2)
C110.0137 (3)0.0219 (3)0.0125 (3)0.0006 (2)0.0003 (2)0.0008 (2)
C120.0169 (3)0.0237 (4)0.0138 (3)0.0005 (3)0.0008 (2)0.0042 (3)
C130.0115 (3)0.0256 (4)0.0186 (3)0.0024 (2)0.0004 (2)0.0030 (3)
Geometric parameters (Å, º) top
O1—N41.3789 (9)C3—C41.3898 (13)
O1—C101.4108 (10)C3—H3A0.993 (14)
O2—C91.2340 (9)C4—C51.3926 (11)
O3—C101.2205 (9)C4—H4A0.992 (15)
N1—N21.3933 (8)C5—C61.3941 (10)
N1—C91.4030 (9)C5—H5A0.978 (13)
N1—C61.4252 (9)C7—C81.3801 (10)
N2—C71.3450 (9)C7—C131.4821 (10)
N2—C121.4626 (10)C8—C91.4373 (10)
N3—N41.3169 (9)C10—C111.4113 (10)
N3—C111.3494 (10)C11—H11A0.944 (13)
N3—C81.4060 (9)C12—H12A0.939 (16)
C1—C61.3896 (10)C12—H12B0.984 (13)
C1—C21.3916 (11)C12—H12C0.964 (15)
C1—H1A0.981 (13)C13—H13A0.958 (15)
C2—C31.3920 (13)C13—H13B0.993 (16)
C2—H2A0.962 (15)C13—H13C0.962 (16)
N4—O1—C10110.85 (6)C5—C6—N1120.48 (6)
N2—N1—C9109.54 (5)N2—C7—C8107.80 (6)
N2—N1—C6119.34 (6)N2—C7—C13120.80 (7)
C9—N1—C6124.51 (6)C8—C7—C13131.39 (7)
C7—N2—N1109.25 (6)C7—C8—N3126.63 (6)
C7—N2—C12125.52 (6)C7—C8—C9110.00 (6)
N1—N2—C12120.54 (6)N3—C8—C9123.32 (6)
N4—N3—C11115.11 (6)O2—C9—N1124.94 (6)
N4—N3—C8118.67 (6)O2—C9—C8131.77 (7)
C11—N3—C8126.22 (6)N1—C9—C8103.28 (6)
N3—N4—O1104.05 (6)O3—C10—O1120.01 (7)
C6—C1—C2118.78 (7)O3—C10—C11135.75 (7)
C6—C1—H1A120.5 (8)O1—C10—C11104.24 (6)
C2—C1—H1A120.7 (8)N3—C11—C10105.74 (6)
C1—C2—C3120.87 (7)N3—C11—H11A122.8 (8)
C1—C2—H2A120.5 (9)C10—C11—H11A131.5 (8)
C3—C2—H2A118.6 (9)N2—C12—H12A108.2 (10)
C4—C3—C2119.75 (7)N2—C12—H12B110.2 (8)
C4—C3—H3A118.7 (8)H12A—C12—H12B107.1 (12)
C2—C3—H3A121.6 (9)N2—C12—H12C111.3 (9)
C3—C4—C5120.08 (8)H12A—C12—H12C112.3 (13)
C3—C4—H4A119.2 (9)H12B—C12—H12C107.6 (12)
C5—C4—H4A120.7 (9)C7—C13—H13A108.6 (9)
C4—C5—C6119.46 (7)C7—C13—H13B107.8 (9)
C4—C5—H5A119.9 (8)H13A—C13—H13B111.8 (12)
C6—C5—H5A120.7 (8)C7—C13—H13C110.5 (9)
C1—C6—C5121.04 (7)H13A—C13—H13C111.3 (13)
C1—C6—N1118.48 (7)H13B—C13—H13C106.8 (13)
C9—N1—N2—C73.85 (9)N2—C7—C8—N3176.29 (7)
C6—N1—N2—C7156.60 (7)C13—C7—C8—N35.07 (14)
C9—N1—N2—C12160.86 (7)N2—C7—C8—C91.23 (9)
C6—N1—N2—C1246.38 (10)C13—C7—C8—C9177.42 (8)
C11—N3—N4—O11.06 (9)N4—N3—C8—C724.91 (12)
C8—N3—N4—O1179.40 (6)C11—N3—C8—C7155.61 (8)
C10—O1—N4—N31.21 (9)N4—N3—C8—C9152.29 (8)
C6—C1—C2—C30.73 (12)C11—N3—C8—C927.19 (12)
C1—C2—C3—C40.93 (13)N2—N1—C9—O2176.15 (7)
C2—C3—C4—C50.10 (13)C6—N1—C9—O225.12 (12)
C3—C4—C5—C60.92 (12)N2—N1—C9—C82.90 (8)
C2—C1—C6—C50.31 (12)C6—N1—C9—C8153.93 (7)
C2—C1—C6—N1179.62 (7)C7—C8—C9—O2177.90 (8)
C4—C5—C6—C11.14 (12)N3—C8—C9—O20.29 (13)
C4—C5—C6—N1179.58 (7)C7—C8—C9—N11.05 (8)
N2—N1—C6—C1152.08 (7)N3—C8—C9—N1178.67 (7)
C9—N1—C6—C159.49 (10)N4—O1—C10—O3178.89 (8)
N2—N1—C6—C528.61 (11)N4—O1—C10—C110.94 (9)
C9—N1—C6—C5119.82 (8)N4—N3—C11—C100.50 (10)
N1—N2—C7—C83.07 (9)C8—N3—C11—C10180.00 (7)
C12—N2—C7—C8158.67 (7)O3—C10—C11—N3179.50 (10)
N1—N2—C7—C13175.74 (7)O1—C10—C11—N30.29 (9)
C12—N2—C7—C1320.15 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.981 (14)2.492 (13)3.2155 (10)130.4 (10)
C11—H11A···O2i0.944 (13)2.543 (13)3.4163 (10)153.9 (11)
C12—H12B···O2ii0.984 (13)2.369 (13)3.3022 (10)158.1 (11)
C13—H13A···O3iii0.958 (14)2.516 (15)3.3606 (10)147.0 (12)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H12N4O3
Mr272.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6525 (3), 7.3014 (3), 15.6828 (4)
β (°) 93.982 (1)
V3)1216.83 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.56 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.941, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
44010, 6426, 4895
Rint0.048
(sin θ/λ)max1)0.859
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.04
No. of reflections6426
No. of parameters229
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.55, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.981 (14)2.492 (13)3.2155 (10)130.4 (10)
C11—H11A···O2i0.944 (13)2.543 (13)3.4163 (10)153.9 (11)
C12—H12B···O2ii0.984 (13)2.369 (13)3.3022 (10)158.1 (11)
C13—H13A···O3iii0.958 (14)2.516 (15)3.3606 (10)147.0 (12)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc. 11, 15–29  CrossRef CAS Web of Science Google Scholar
First citationBaker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010b). Acta Cryst. E66, o1303.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B., Rai, G., Rai, N. S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem. 14, 127–130.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds