metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­imidazole­bis­(tri­chloro­acetato)copper(II)

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and cDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 22 April 2010; accepted 12 May 2010; online 22 May 2010)

The title compound, [Cu(C2Cl3O2)2(C3H4N2)4], was prepared by the reaction of imidazole and trichloro­acetatocopper(II). The CuII atom adopts a distorted octa­hedral coordination geometry, binding the N atoms of four imidazole ligands and the carboxyl­ate O atoms of two trichloro­acetate anions. The mol­ecular structure and packing are stabilized by N—H⋯O hydrogen-bonding inter­actions. Close inter­molecular Cl⋯Cl contacts [3.498 (3) Å] are also found in the structure.

Related literature

For background to work on metal-organic frameworks, see: Chen et al. (2001[Chen, B., Eddaoudi, M., Hyde, S. T., OKeeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021-1023.]); Fang et al. (2005[Fang, Q. R., Zhu, G. S., Xue, M., Sun, J. Y., Wei, Y., Qiu, S. & Xu, R. R. (2005). Angew. Chem. Int. Ed. 44, 3845-3848.]). For a related structure, see: Moncol et al. (2007[Moncol, J., Maroszova, J., Peter, L., Mark, H., Marian, V., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213-3225.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2Cl3O2)2(C3H4N2)4]

  • Mr = 660.61

  • Triclinic, [P \overline 1]

  • a = 10.054 (2) Å

  • b = 10.539 (2) Å

  • c = 12.959 (3) Å

  • α = 108.12 (3)°

  • β = 92.93 (3)°

  • γ = 95.18 (3)°

  • V = 1295.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 12377 measured reflections

  • 5823 independent reflections

  • 5048 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.168

  • S = 1.05

  • 5823 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N7 1.997 (2)
Cu1—N3 2.001 (2)
Cu1—N1 2.011 (3)
Cu1—N5 2.022 (3)
Cu1—O3 2.479 (2)
Cu1—O2 2.618 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯O1i 0.86 2.03 2.885 (3) 177
N6—H6A⋯O4ii 0.86 2.02 2.854 (3) 164
N2—H2A⋯O1iii 0.86 1.96 2.790 (3) 162
N4—H4B⋯O4iv 0.86 1.93 2.764 (3) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z; (iv) -x, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ion exchange, adsorption, catalytic and magnetic properties (Chen et al., 2001; Fang et al., 2005 ). In order to search for new complexes of this type, we synthesized the title compound and report its crystal structure here.

The title structure contains one copper(II) cation, four imidazole ligands and two trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a slightly distorted octahedron. The Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The crystal packing is stabilized by C—H···O and N—H···O hydrogen interaction (Table 1).

Related literature top

For background to work on metal-organic frameworks, see: Chen et al. (2001); Fang et al. (2005). For a related structure, see: Moncol et al. (2007).

Experimental top

The title compound was obtained by adding imidazole(4 mmol) dropwise to a solution of copper(II) trichloroacetate acid (1 mmol) in ethanol (30 ml) with stirring for 1 hour at room temperature. A blue solution formed and after a few days rod-like crystals precipitated.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic H atoms and 0.86Å, Uiso = 1.2Ueq (N) for the NH groups.

Structure description top

Metal-organic framework coordination polymers have attracted tremendous attention because of their molecular topologies and their potentially useful ion exchange, adsorption, catalytic and magnetic properties (Chen et al., 2001; Fang et al., 2005 ). In order to search for new complexes of this type, we synthesized the title compound and report its crystal structure here.

The title structure contains one copper(II) cation, four imidazole ligands and two trichloroacetate anions. The coordination sphere of the copper(II) ion is best described as a slightly distorted octahedron. The Cu—N bond lengths are in agreement with those reported recently (Moncol et al., 2007). The crystal packing is stabilized by C—H···O and N—H···O hydrogen interaction (Table 1).

For background to work on metal-organic frameworks, see: Chen et al. (2001); Fang et al. (2005). For a related structure, see: Moncol et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c axis.
Tetraimidazolebis(trichloroacetato)copper(II) top
Crystal data top
[Cu(C2Cl3O2)2(C3H4N2)4]Z = 2
Mr = 660.61F(000) = 662
Triclinic, P1Dx = 1.694 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.054 (2) ÅCell parameters from 2238 reflections
b = 10.539 (2) Åθ = 2.1–26.3°
c = 12.959 (3) ŵ = 1.50 mm1
α = 108.12 (3)°T = 293 K
β = 92.93 (3)°Rod, blue
γ = 95.18 (3)°0.22 × 0.20 × 0.18 mm
V = 1295.2 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5048 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1310
12377 measured reflectionsk = 1313
5823 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1013P)2 + 0.8989P]
where P = (Fo2 + 2Fc2)/3
5823 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Cu(C2Cl3O2)2(C3H4N2)4]γ = 95.18 (3)°
Mr = 660.61V = 1295.2 (4) Å3
Triclinic, P1Z = 2
a = 10.054 (2) ÅMo Kα radiation
b = 10.539 (2) ŵ = 1.50 mm1
c = 12.959 (3) ÅT = 293 K
α = 108.12 (3)°0.22 × 0.20 × 0.18 mm
β = 92.93 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5048 reflections with I > 2σ(I)
12377 measured reflectionsRint = 0.053
5823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 1.43 e Å3
5823 reflectionsΔρmin = 0.86 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26177 (3)0.25376 (3)0.24476 (3)0.02655 (14)
Cl10.41741 (11)0.13876 (10)0.38566 (9)0.0542 (3)
Cl40.12008 (10)0.61045 (11)0.09196 (10)0.0593 (3)
Cl60.14287 (9)0.67968 (9)0.19926 (13)0.0687 (4)
Cl20.44972 (12)0.16467 (11)0.16082 (9)0.0619 (3)
Cl30.67814 (10)0.15040 (9)0.30617 (13)0.0744 (4)
Cl50.08098 (15)0.63279 (11)0.31833 (10)0.0716 (4)
N70.2999 (2)0.3951 (2)0.3900 (2)0.0290 (5)
N30.2209 (2)0.1099 (2)0.1006 (2)0.0296 (5)
N10.1157 (2)0.1667 (2)0.3089 (2)0.0294 (5)
O10.6441 (2)0.1316 (2)0.3576 (2)0.0412 (6)
O30.1177 (2)0.4023 (2)0.1870 (2)0.0390 (5)
C160.0052 (3)0.4292 (3)0.1668 (2)0.0271 (6)
N50.4180 (2)0.3358 (2)0.1859 (2)0.0269 (5)
C140.5229 (3)0.0894 (3)0.2966 (3)0.0349 (7)
N80.3302 (3)0.5850 (3)0.5243 (2)0.0424 (7)
H8A0.33490.66950.55910.051*
C150.0107 (3)0.5819 (3)0.1915 (3)0.0357 (7)
C40.1621 (3)0.0146 (3)0.0788 (3)0.0377 (7)
H4A0.13070.05070.13110.045*
C30.0074 (3)0.1991 (3)0.3191 (3)0.0335 (6)
H3A0.03900.27080.30180.040*
N60.6185 (2)0.3773 (3)0.1383 (2)0.0337 (6)
H6A0.70060.36860.12450.040*
O20.4247 (2)0.1096 (2)0.3115 (2)0.0460 (6)
C120.2979 (4)0.5269 (3)0.4173 (3)0.0394 (7)
H12A0.27690.57270.36890.047*
N20.0805 (3)0.1150 (3)0.3579 (2)0.0376 (6)
H2A0.16330.11840.37130.045*
C130.5316 (3)0.0686 (3)0.3258 (3)0.0294 (6)
C90.5368 (3)0.2938 (3)0.1716 (3)0.0313 (6)
H9A0.56080.21590.18330.038*
C10.1205 (3)0.0559 (3)0.3430 (3)0.0399 (7)
H1A0.19570.01120.34540.048*
N40.1536 (3)0.0808 (3)0.0272 (3)0.0433 (7)
H4B0.11950.16260.05810.052*
C80.5480 (3)0.4792 (3)0.1302 (3)0.0424 (8)
H8B0.57890.55220.10860.051*
C20.0014 (3)0.0224 (4)0.3726 (3)0.0438 (8)
H2B0.02620.04910.39780.053*
C70.4245 (3)0.4526 (3)0.1596 (3)0.0381 (7)
H7A0.35460.50520.16180.046*
C110.3542 (4)0.4870 (4)0.5681 (3)0.0456 (8)
H11A0.37850.49800.64090.055*
C60.2081 (5)0.0029 (5)0.0779 (3)0.0653 (13)
H6B0.21600.01610.15230.078*
C50.2490 (5)0.1207 (4)0.0017 (3)0.0543 (10)
H5A0.29020.19740.00950.065*
C100.3354 (4)0.3696 (3)0.4845 (3)0.0405 (7)
H10A0.34520.28520.49040.049*
O40.1012 (2)0.3534 (2)0.1345 (2)0.0390 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0222 (2)0.0225 (2)0.0301 (2)0.00600 (13)0.00312 (13)0.00353 (15)
Cl10.0542 (6)0.0461 (5)0.0682 (6)0.0106 (4)0.0040 (4)0.0314 (4)
Cl40.0390 (5)0.0648 (6)0.0921 (8)0.0136 (4)0.0025 (5)0.0498 (6)
Cl60.0311 (5)0.0322 (5)0.1425 (12)0.0079 (3)0.0069 (5)0.0329 (5)
Cl20.0673 (7)0.0517 (6)0.0537 (6)0.0014 (5)0.0007 (5)0.0010 (4)
Cl30.0299 (5)0.0347 (5)0.1577 (13)0.0097 (4)0.0054 (6)0.0295 (6)
Cl50.0955 (9)0.0523 (6)0.0649 (7)0.0291 (6)0.0273 (6)0.0068 (5)
N70.0274 (12)0.0239 (12)0.0307 (12)0.0021 (9)0.0016 (9)0.0032 (9)
N30.0265 (12)0.0227 (12)0.0352 (13)0.0011 (9)0.0000 (9)0.0045 (9)
N10.0220 (12)0.0265 (12)0.0366 (13)0.0031 (9)0.0016 (9)0.0072 (10)
O10.0255 (11)0.0243 (11)0.0680 (16)0.0004 (8)0.0045 (10)0.0072 (10)
O30.0243 (11)0.0312 (11)0.0648 (16)0.0079 (9)0.0020 (10)0.0193 (10)
C160.0235 (13)0.0207 (13)0.0377 (15)0.0043 (10)0.0042 (10)0.0096 (10)
N50.0215 (11)0.0241 (11)0.0319 (12)0.0026 (9)0.0001 (9)0.0059 (9)
C140.0225 (14)0.0250 (14)0.056 (2)0.0005 (11)0.0017 (12)0.0128 (13)
N80.0403 (16)0.0304 (14)0.0435 (16)0.0018 (11)0.0021 (12)0.0050 (12)
C150.0238 (14)0.0259 (14)0.058 (2)0.0039 (11)0.0032 (13)0.0142 (13)
C40.0408 (18)0.0237 (14)0.0433 (18)0.0025 (12)0.0015 (13)0.0049 (12)
C30.0240 (14)0.0353 (16)0.0424 (17)0.0007 (11)0.0042 (11)0.0144 (13)
N60.0193 (12)0.0384 (14)0.0436 (15)0.0014 (10)0.0066 (10)0.0132 (11)
O20.0285 (12)0.0370 (13)0.0778 (19)0.0111 (10)0.0030 (11)0.0239 (12)
C120.0413 (18)0.0271 (15)0.0458 (19)0.0002 (13)0.0012 (14)0.0075 (13)
N20.0210 (12)0.0474 (16)0.0459 (15)0.0026 (11)0.0043 (10)0.0184 (12)
C130.0260 (14)0.0209 (13)0.0437 (16)0.0048 (10)0.0085 (11)0.0121 (11)
C90.0257 (14)0.0303 (14)0.0398 (16)0.0050 (11)0.0042 (11)0.0132 (12)
C10.0252 (15)0.0426 (18)0.059 (2)0.0046 (13)0.0035 (13)0.0259 (15)
N40.0420 (16)0.0270 (14)0.0465 (17)0.0031 (11)0.0039 (12)0.0062 (12)
C80.0301 (16)0.0394 (18)0.067 (2)0.0030 (13)0.0102 (15)0.0290 (16)
C20.0341 (18)0.049 (2)0.056 (2)0.0062 (14)0.0003 (14)0.0309 (17)
C70.0255 (15)0.0341 (16)0.062 (2)0.0053 (12)0.0068 (13)0.0243 (15)
C110.049 (2)0.048 (2)0.0307 (16)0.0056 (16)0.0007 (13)0.0033 (14)
C60.087 (3)0.059 (3)0.0338 (19)0.020 (2)0.0015 (19)0.0010 (18)
C50.073 (3)0.047 (2)0.0355 (18)0.0206 (19)0.0033 (17)0.0105 (15)
C100.048 (2)0.0372 (17)0.0346 (16)0.0008 (14)0.0011 (13)0.0101 (13)
O40.0229 (10)0.0261 (11)0.0637 (16)0.0024 (8)0.0011 (9)0.0102 (10)
Geometric parameters (Å, º) top
Cu1—N71.997 (2)N8—H8A0.8600
Cu1—N32.001 (2)C4—N41.327 (4)
Cu1—N12.011 (3)C4—H4A0.9300
Cu1—N52.022 (3)C3—N21.333 (4)
Cu1—O32.479 (2)C3—H3A0.9300
Cu1—O22.618 (2)N6—C91.333 (4)
Cl1—C141.768 (4)N6—C81.367 (4)
Cl4—C151.767 (4)N6—H6A0.8600
Cl6—C151.757 (3)O2—C131.220 (4)
Cl2—C141.778 (4)C12—H12A0.9300
Cl3—C141.754 (3)N2—C21.364 (5)
Cl5—C151.768 (4)N2—H2A0.8600
N7—C121.325 (4)C9—H9A0.9300
N7—C101.370 (4)C1—C21.353 (5)
N3—C41.328 (4)C1—H1A0.9300
N3—C51.362 (5)N4—C61.350 (6)
N1—C31.316 (4)N4—H4B0.8600
N1—C11.375 (4)C8—C71.348 (5)
O1—C131.240 (4)C8—H8B0.9300
O3—C161.226 (4)C2—H2B0.9300
C16—O41.245 (4)C7—H7A0.9300
C16—C151.565 (4)C11—C101.358 (5)
N5—C91.312 (4)C11—H11A0.9300
N5—C71.372 (4)C6—C51.357 (5)
C14—C131.582 (4)C6—H6B0.9300
N8—C121.339 (5)C5—H5A0.9300
N8—C111.358 (5)C10—H10A0.9300
N7—Cu1—N3178.78 (10)N3—C4—H4A124.3
N7—Cu1—N187.99 (10)N1—C3—N2110.6 (3)
N3—Cu1—N190.80 (11)N1—C3—H3A124.7
N7—Cu1—N591.08 (10)N2—C3—H3A124.7
N3—Cu1—N590.11 (10)C9—N6—C8107.4 (3)
N1—Cu1—N5175.95 (10)C9—N6—H6A126.3
N7—Cu1—O388.90 (10)C8—N6—H6A126.3
N3—Cu1—O391.37 (9)N7—C12—N8110.6 (3)
N1—Cu1—O395.17 (9)N7—C12—H12A124.7
N5—Cu1—O388.70 (9)N8—C12—H12A124.7
N7—Cu1—O288.42 (10)C3—N2—C2108.2 (3)
N3—Cu1—O291.36 (10)C3—N2—H2A125.9
N1—Cu1—O287.03 (9)C2—N2—H2A125.9
N5—Cu1—O289.06 (9)O2—C13—O1129.8 (3)
O3—Cu1—O2176.47 (7)O2—C13—C14113.8 (3)
C12—N7—C10105.8 (3)O1—C13—C14116.3 (2)
C12—N7—Cu1130.0 (2)N5—C9—N6111.3 (3)
C10—N7—Cu1124.2 (2)N5—C9—H9A124.4
C4—N3—C5104.8 (3)N6—C9—H9A124.4
C4—N3—Cu1129.0 (2)C2—C1—N1109.2 (3)
C5—N3—Cu1126.2 (2)C2—C1—H1A125.4
C3—N1—C1106.1 (3)N1—C1—H1A125.4
C3—N1—Cu1126.4 (2)C4—N4—C6107.9 (3)
C1—N1—Cu1127.3 (2)C4—N4—H4B126.0
O3—C16—O4129.6 (3)C6—N4—H4B126.0
O3—C16—C15116.0 (3)C7—C8—N6106.1 (3)
O4—C16—C15114.3 (2)C7—C8—H8B126.9
C9—N5—C7105.8 (3)N6—C8—H8B126.9
C9—N5—Cu1127.4 (2)C1—C2—N2105.9 (3)
C7—N5—Cu1126.8 (2)C1—C2—H2B127.0
C13—C14—Cl3114.2 (2)N2—C2—H2B127.0
C13—C14—Cl1108.4 (2)C8—C7—N5109.4 (3)
Cl3—C14—Cl1108.81 (19)C8—C7—H7A125.3
C13—C14—Cl2108.8 (2)N5—C7—H7A125.3
Cl3—C14—Cl2107.99 (19)C10—C11—N8106.2 (3)
Cl1—C14—Cl2108.56 (17)C10—C11—H11A126.9
C12—N8—C11108.0 (3)N8—C11—H11A126.9
C12—N8—H8A126.0N4—C6—C5105.9 (4)
C11—N8—H8A126.0N4—C6—H6B127.0
C16—C15—Cl6112.6 (2)C5—C6—H6B127.0
C16—C15—Cl4111.9 (2)C6—C5—N3110.0 (4)
Cl6—C15—Cl4107.7 (2)C6—C5—H5A125.0
C16—C15—Cl5106.0 (2)N3—C5—H5A125.0
Cl6—C15—Cl5109.80 (19)C11—C10—N7109.4 (3)
Cl4—C15—Cl5108.70 (17)C11—C10—H10A125.3
N4—C4—N3111.3 (3)N7—C10—H10A125.3
N4—C4—H4A124.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O1i0.862.032.885 (3)177
N6—H6A···O4ii0.862.022.854 (3)164
N2—H2A···O1iii0.861.962.790 (3)162
N4—H4B···O4iv0.861.932.764 (3)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2Cl3O2)2(C3H4N2)4]
Mr660.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.054 (2), 10.539 (2), 12.959 (3)
α, β, γ (°)108.12 (3), 92.93 (3), 95.18 (3)
V3)1295.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12377, 5823, 5048
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.168, 1.05
No. of reflections5823
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.86

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N71.997 (2)Cu1—N52.022 (3)
Cu1—N32.001 (2)Cu1—O32.479 (2)
Cu1—N12.011 (3)Cu1—O22.618 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···O1i0.862.032.885 (3)177.1
N6—H6A···O4ii0.862.022.854 (3)164.1
N2—H2A···O1iii0.861.962.790 (3)162.4
N4—H4B···O4iv0.861.932.764 (3)162.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y, z.
 

Acknowledgements

The authors would like to thank the Natural Science Foundation of Shandong Province for financial support (No. Y2008B30).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, B., Eddaoudi, M., Hyde, S. T., OKeeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFang, Q. R., Zhu, G. S., Xue, M., Sun, J. Y., Wei, Y., Qiu, S. & Xu, R. R. (2005). Angew. Chem. Int. Ed. 44, 3845–3848.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoncol, J., Maroszova, J., Peter, L., Mark, H., Marian, V., Morris, H., Svorec, J., Melnik, M., Mazur, M. & Koman, M. (2007). Inorg. Chim. Acta, 360, 3213–3225.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds