organic compounds
4-[(2E)-2-(4-Chlorobenzylidene)hydrazinylidene]-1-methyl-1,4-dihydropyridine monohydrate
aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100 Ízmir, Turkey, dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, eInstitute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland 97074 Würzburg, Germany, and fInstitute of Inorganic Chemistry, University of Würzburg, Am Hubland 97074 Würzburg, Germany
*Correspondence e-mail: aaydin@kastamonu.edu.tr
In the title compound, C13H12ClN3·H2O, the organic molecule is almost planar, with a dihedral angle of 3.22 (10)° between the benzene and pyridine rings. The is stabilized by O—H⋯N and C—H⋯O hydrogen bonding and π–π stacking interactions [centroid–centroid distances = 3.630 (1) and 3.701 (1) Å].
Related literature
For the synthesis and pharmacological activity of (benzylidene-hydrazono)-1,4-dihydropyridine derivatives, see: Douglas et al. (1977); Alptüzün et al. (2010); Savini et al. (2002); Pandey et al. (2002); Salgın-Gökşen et al. (2007); Silva et al. (2004); Vicini et al. (2009). For bond-length data, see: Allen et al. (1987); Diao et al. (2008); Odabaşoğlu et al. (2003). For quantum-chemical calculations, see: Pople & Beveridge (1970).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810015709/sj2782sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015709/sj2782Isup2.hkl
4-Hydrazinylpyridine (1.09 g, 0.01 mol) and 4-chlorobenzaldehyde (1.41 g, 0.01 mol) were stirred in ethanol (30 ml) at room temperature for 5-10 h. The precipitate was filtered and washed with cool ethanol and crystallized from ethanol. A mixture of 4-[(4-Chlorobenzylidene)hydrazinyl] pyridine (0.232 g, 0.001 mol) and methyl iodide (0.141 g, 0.002 mol) was refluxed in ethanol (20 ml) for 20 h. The mixture was cooled to room temperature and the resulting precipitate was filtered and washed with cool ethanol. The crude products were crystallized from ethanol to give the compound 4-(2-(4-Chlorobenzylidenehydrazinyl)-1-methylpyridinium iodide. This product (0.374 g, 0.001 mol) was partitioned between CH2Cl2 (50 ml) and 2 M NaOH (50 ml). The organic layer was evaporated to dryness and the residue recrystallized from ethanol-water.
Yield 88%, yellow needles, mp 407-409 K (lit. (Douglas et al. , 1977) 403-405 K). IR (KBr) vmax 1654, 1517, 1492, 1203, 824 cm-1. 1H-NMR (DMSO-d6): δ ppm 3.29 (3H, s, N—CH3), 6.12 (1H, dd, J=2.4/8.0 Hz, H-3 or H-5), 6.98 (1H, dd, J=2.0/7.8 Hz, H-3 or H-5), 7.23 (2H, td, J=7.2/2.0 Hz, H-2, H-6 ), 7.39 (2H, d, J=8.4 Hz, H-2', H-6'), 7.69 (2H, d, J=8.4 Hz, H-3', H-5'), 8.16 (1H, s, N=CH). 13 C NMR (CH3OH- d4): δ ppm 43.18 (q), 107.78 (d), 112.11 (d), 129.35 (d), 129.79 (d), 135.59 (s), 136.58 (s), 140.15 (d), 140.75 (d), 148.84 (d), 162.25 (s). EI—MS m/z (% relative intensity): 247 (M+2, 14), 246 (M+1, 28), 245 (M+, 43), 181 (25), 93 (100), 92 (24), 66 (30), 42 (18). C13H12N3Cl.H2O. C, H, N combustion analysis: Calc. (%) C 59.21, H 5.36, N 15.93; found (%) C 59.45, H 5.33, N 15.72.
The H atoms of the water molecule were found from a difference Fourier map and their isotropic thermal parameters were refined by using a riding model with Uiso(H) = 1.5Ueq(O). Their positional parameters are refined freely [d(O–H) = 0.84 (3) and 0.91 (4) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.96 Å, and Uiso(H) = 1.2 or 1.5Ueq(C).
Hydrazones, a special group of compounds in the class of the
are known to show significant biological activities including antimicrobial, antitubercular, anticancer, analgesic, anti-inflammatory, antiplatelet and antiviral activities (Savini et al., 2002; Pandey et al., 2002; Salgın-Gökşen et al., 2007; Silva et al., 2004; Vicini et al., 2009). In addition, (benzylidene-hydrazono)-1,4-dihydropyridine derivatives have anticoccidial activity (Douglas et al., 1977) and also display anti-Alzheimer's activity by inhibiting ABeta fibril formation and acetylcholinesterase (Alptüzün et al., 2010).The title molecule (I), Fig. 1, crystallized as a monohydrate in the monoclinic
P21/c. All bond lengths are as expected (Allen et al., 1987). The Cl1—C4, and N1—N2 bond lengths are 1.742 (2) Å, and 1.388 (2) Å, respectively. The Cl1—C4—C5 and N2—N1—C7 bond angles are 119.88 (18) ° and 113.95 (19) °, respectively. The bond lengths and the bond angles of (I) are comparable to those observed in related structures (Diao et al., 2008; Odabaşoğlu et al., 2003).The main molecule is almost planar, except the methyl H atoms, forming a dihedral angle of 3.22 (10)° between the benzene (C1–C6) and dihydropyridine (N3/C8–C12) rings.
The π-π stacking interactions [Cg1···Cg1(-x, 1-y, -z) = 3.630 (1) Å and Cg1···Cg2(1-x, 1-y, 1-z) = 3.701 (1) Å, Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively].
is stabilized by O—H···N and C—H···O hydrogen bonding (Table 1, Fig. 2) andWe have also carried out the quantum mechanical calculations using the CNDO (Pople et al., 1970) approximation. The spatial view of the single molecule considered in a vacuum, is shown in Fig.3. According to the theoretical CNDO and experimental X-rays results, the values of the geometric parameters of (I) are closely comparable within the observed experimental errors. The calculated
of (I) is about 11.481 Debye. The HOMO and LUMO energy levels are -8.3484 and 1.3565 eV, respectively.For the synthesis and pharmacological activity of (benzylidene-hydrazono)-1,4-dihydropyridine derivatives, see: Douglas et al. (1977); Alptüzün et al. (2010); Savini et al. (2002); Pandey et al. (2002); Salgın-Gökşen et al. (2007); Silva et al. (2004); Vicini et al. (2009). For bond-length data, see: Allen et al. (1987); Diao et al. (2008); Odabaşoğlu et al. (2003). For quantum-chemical calculations, see: Pople & Beveridge (1970).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H12ClN3·H2O | F(000) = 552 |
Mr = 263.72 | Dx = 1.321 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11448 reflections |
a = 5.8492 (4) Å | θ = 1.8–27.3° |
b = 20.3101 (10) Å | µ = 0.28 mm−1 |
c = 12.2035 (7) Å | T = 296 K |
β = 113.855 (4)° | Needle, yellow |
V = 1325.90 (14) Å3 | 0.60 × 0.30 × 0.04 mm |
Z = 4 |
Stoe IPDS 2 diffractometer | 2759 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1746 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.064 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.5°, θmin = 2.0° |
ω scans | h = −7→7 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −25→25 |
Tmin = 0.905, Tmax = 0.989 | l = −15→15 |
14028 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0426P)2] where P = (Fo2 + 2Fc2)/3 |
2759 reflections | (Δ/σ)max < 0.001 |
170 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C13H12ClN3·H2O | V = 1325.90 (14) Å3 |
Mr = 263.72 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.8492 (4) Å | µ = 0.28 mm−1 |
b = 20.3101 (10) Å | T = 296 K |
c = 12.2035 (7) Å | 0.60 × 0.30 × 0.04 mm |
β = 113.855 (4)° |
Stoe IPDS 2 diffractometer | 2759 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 1746 reflections with I > 2σ(I) |
Tmin = 0.905, Tmax = 0.989 | Rint = 0.064 |
14028 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.95 | Δρmax = 0.16 e Å−3 |
2759 reflections | Δρmin = −0.18 e Å−3 |
170 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.22894 (12) | 0.72508 (3) | 0.80784 (5) | 0.0626 (2) | |
N1 | 0.3123 (3) | 0.56701 (10) | 0.35465 (13) | 0.0453 (6) | |
N2 | 0.0774 (3) | 0.54841 (9) | 0.27204 (13) | 0.0441 (6) | |
N3 | 0.0599 (4) | 0.39257 (9) | 0.05147 (14) | 0.0478 (6) | |
C1 | 0.5371 (4) | 0.63831 (11) | 0.52012 (15) | 0.0414 (7) | |
C2 | 0.5222 (4) | 0.69371 (12) | 0.58483 (16) | 0.0452 (7) | |
C3 | 0.7336 (4) | 0.72021 (11) | 0.67306 (16) | 0.0466 (7) | |
C4 | 0.9614 (4) | 0.69105 (12) | 0.69752 (16) | 0.0449 (7) | |
C5 | 0.9807 (4) | 0.63606 (12) | 0.63540 (16) | 0.0460 (8) | |
C6 | 0.7697 (4) | 0.60996 (12) | 0.54740 (16) | 0.0460 (7) | |
C7 | 0.3079 (4) | 0.61193 (11) | 0.42743 (16) | 0.0435 (7) | |
C8 | 0.0859 (4) | 0.49832 (11) | 0.20400 (15) | 0.0396 (7) | |
C9 | 0.3019 (4) | 0.46263 (11) | 0.21152 (16) | 0.0437 (7) | |
C10 | 0.2819 (4) | 0.41223 (12) | 0.13694 (18) | 0.0480 (7) | |
C11 | −0.1504 (4) | 0.42521 (12) | 0.04046 (17) | 0.0473 (7) | |
C12 | −0.1430 (4) | 0.47578 (12) | 0.11261 (16) | 0.0449 (7) | |
C13 | 0.0497 (5) | 0.33651 (13) | −0.0272 (2) | 0.0668 (10) | |
O1 | 0.6224 (4) | 0.61903 (10) | 0.21954 (15) | 0.0611 (7) | |
H2 | 0.36750 | 0.71300 | 0.56810 | 0.0540* | |
H3 | 0.72240 | 0.75730 | 0.71540 | 0.0560* | |
H5 | 1.13590 | 0.61680 | 0.65300 | 0.0550* | |
H6 | 0.78280 | 0.57290 | 0.50560 | 0.0550* | |
H7 | 0.15450 | 0.62820 | 0.42110 | 0.0520* | |
H9 | 0.45830 | 0.47440 | 0.26870 | 0.0520* | |
H10 | 0.42620 | 0.38990 | 0.14420 | 0.0580* | |
H11 | −0.30330 | 0.41230 | −0.01840 | 0.0570* | |
H12 | −0.29140 | 0.49680 | 0.10280 | 0.0540* | |
H13A | 0.18000 | 0.34090 | −0.05550 | 0.1000* | |
H13B | −0.10970 | 0.33600 | −0.09420 | 0.1000* | |
H13C | 0.07200 | 0.29620 | 0.01700 | 0.1000* | |
H1A | 0.551 (6) | 0.6046 (17) | 0.262 (2) | 0.0920* | |
H1B | 0.768 (6) | 0.5959 (17) | 0.242 (2) | 0.0920* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0551 (4) | 0.0646 (4) | 0.0574 (3) | −0.0114 (3) | 0.0116 (2) | −0.0153 (3) |
N1 | 0.0411 (10) | 0.0499 (12) | 0.0415 (8) | −0.0024 (9) | 0.0133 (7) | −0.0039 (8) |
N2 | 0.0365 (10) | 0.0484 (12) | 0.0446 (8) | −0.0022 (9) | 0.0135 (7) | −0.0053 (8) |
N3 | 0.0558 (12) | 0.0433 (12) | 0.0455 (9) | −0.0060 (10) | 0.0216 (8) | −0.0054 (8) |
C1 | 0.0461 (13) | 0.0438 (13) | 0.0351 (9) | −0.0015 (11) | 0.0173 (9) | 0.0023 (8) |
C2 | 0.0453 (13) | 0.0457 (14) | 0.0446 (10) | 0.0042 (11) | 0.0182 (9) | 0.0017 (9) |
C3 | 0.0577 (14) | 0.0395 (13) | 0.0434 (10) | 0.0004 (12) | 0.0212 (10) | −0.0043 (9) |
C4 | 0.0472 (13) | 0.0469 (14) | 0.0387 (10) | −0.0069 (11) | 0.0154 (9) | 0.0011 (9) |
C5 | 0.0431 (13) | 0.0481 (15) | 0.0456 (11) | 0.0046 (11) | 0.0167 (10) | −0.0020 (9) |
C6 | 0.0485 (14) | 0.0474 (14) | 0.0406 (10) | 0.0035 (11) | 0.0164 (9) | −0.0065 (9) |
C7 | 0.0422 (12) | 0.0473 (14) | 0.0429 (10) | 0.0003 (11) | 0.0191 (9) | −0.0014 (9) |
C8 | 0.0393 (12) | 0.0407 (13) | 0.0388 (9) | −0.0004 (10) | 0.0158 (8) | 0.0028 (9) |
C9 | 0.0374 (12) | 0.0458 (14) | 0.0428 (10) | −0.0013 (10) | 0.0110 (9) | 0.0001 (9) |
C10 | 0.0456 (13) | 0.0460 (14) | 0.0545 (11) | 0.0041 (11) | 0.0223 (10) | 0.0025 (10) |
C11 | 0.0424 (13) | 0.0503 (15) | 0.0437 (10) | −0.0070 (12) | 0.0118 (9) | −0.0004 (10) |
C12 | 0.0357 (12) | 0.0511 (15) | 0.0439 (10) | −0.0021 (11) | 0.0120 (9) | −0.0015 (9) |
C13 | 0.084 (2) | 0.0570 (17) | 0.0615 (14) | −0.0065 (15) | 0.0316 (14) | −0.0174 (12) |
O1 | 0.0514 (11) | 0.0661 (13) | 0.0668 (10) | 0.0032 (9) | 0.0250 (8) | 0.0088 (8) |
Cl1—C4 | 1.742 (2) | C8—C9 | 1.427 (3) |
O1—H1B | 0.91 (4) | C8—C12 | 1.428 (3) |
O1—H1A | 0.84 (3) | C9—C10 | 1.343 (3) |
N1—N2 | 1.388 (2) | C11—C12 | 1.342 (3) |
N1—C7 | 1.281 (3) | C2—H2 | 0.9300 |
N2—C8 | 1.327 (3) | C3—H3 | 0.9300 |
N3—C10 | 1.356 (3) | C5—H5 | 0.9300 |
N3—C11 | 1.355 (3) | C6—H6 | 0.9300 |
N3—C13 | 1.475 (3) | C7—H7 | 0.9300 |
C1—C2 | 1.398 (3) | C9—H9 | 0.9300 |
C1—C7 | 1.462 (3) | C10—H10 | 0.9300 |
C1—C6 | 1.388 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.379 (3) | C12—H12 | 0.9300 |
C3—C4 | 1.376 (3) | C13—H13C | 0.9600 |
C4—C5 | 1.380 (3) | C13—H13A | 0.9600 |
C5—C6 | 1.373 (3) | C13—H13B | 0.9600 |
Cl1···C2i | 3.521 (2) | C11···C8iv | 3.516 (3) |
Cl1···C7i | 3.572 (2) | C11···O1iv | 3.378 (3) |
Cl1···H10ii | 2.9800 | C13···C4xi | 3.598 (3) |
O1···N2iii | 2.859 (3) | C13···C3xi | 3.490 (4) |
O1···C11iv | 3.378 (3) | C3···H13Ax | 2.9800 |
O1···N1 | 3.089 (3) | C7···H1Bvii | 3.07 (3) |
O1···H13Biv | 2.9100 | C7···H1A | 2.91 (3) |
O1···H3v | 2.5800 | C8···H1Bvii | 2.88 (4) |
O1···H11iv | 2.4900 | C12···H1Bvii | 3.06 (3) |
O1···H13Avi | 2.8100 | H1A···N1 | 2.26 (3) |
N1···O1 | 3.089 (3) | H1A···C7 | 2.91 (3) |
N2···O1vii | 2.859 (3) | H1B···H12iii | 2.5700 |
N1···H1A | 2.26 (3) | H1B···N2iii | 1.95 (4) |
N1···H6 | 2.6200 | H1B···C7iii | 3.07 (3) |
N1···H9 | 2.4700 | H1B···C8iii | 2.88 (4) |
N2···H1Bvii | 1.95 (4) | H1B···C12iii | 3.06 (3) |
C2···Cl1viii | 3.521 (2) | H1B···H7iii | 2.5100 |
C3···C10ix | 3.576 (3) | H2···H7 | 2.4300 |
C3···C13x | 3.490 (4) | H3···O1xii | 2.5800 |
C4···C13x | 3.598 (3) | H6···N1 | 2.6200 |
C4···C10ix | 3.582 (3) | H7···H1Bvii | 2.5100 |
C5···C8ix | 3.473 (3) | H7···H2 | 2.4300 |
C5···C9ix | 3.569 (3) | H9···N1 | 2.4700 |
C6···C9ix | 3.464 (3) | H10···H13A | 2.4800 |
C6···C8ix | 3.561 (3) | H10···Cl1ii | 2.9800 |
C7···Cl1viii | 3.572 (2) | H11···H13B | 2.3200 |
C8···C11iv | 3.516 (3) | H11···O1iv | 2.4900 |
C8···C6ix | 3.561 (3) | H12···H1Bvii | 2.5700 |
C8···C5ix | 3.473 (3) | H13A···H10 | 2.4800 |
C9···C5ix | 3.569 (3) | H13A···C3xi | 2.9800 |
C9···C6ix | 3.464 (3) | H13A···O1vi | 2.8100 |
C10···C4ix | 3.582 (3) | H13B···H11 | 2.3200 |
C10···C3ix | 3.576 (3) | H13B···O1iv | 2.9100 |
H1A—O1—H1B | 106 (3) | C1—C2—H2 | 120.00 |
N2—N1—C7 | 113.95 (19) | C3—C2—H2 | 120.00 |
N1—N2—C8 | 112.75 (18) | C4—C3—H3 | 120.00 |
C10—N3—C13 | 120.1 (2) | C2—C3—H3 | 120.00 |
C11—N3—C13 | 121.1 (2) | C4—C5—H5 | 120.00 |
C10—N3—C11 | 118.73 (19) | C6—C5—H5 | 120.00 |
C2—C1—C6 | 118.52 (19) | C5—C6—H6 | 120.00 |
C6—C1—C7 | 122.5 (2) | C1—C6—H6 | 120.00 |
C2—C1—C7 | 119.0 (2) | N1—C7—H7 | 119.00 |
C1—C2—C3 | 121.0 (2) | C1—C7—H7 | 119.00 |
C2—C3—C4 | 119.0 (2) | C10—C9—H9 | 120.00 |
Cl1—C4—C5 | 119.88 (18) | C8—C9—H9 | 120.00 |
C3—C4—C5 | 121.1 (2) | N3—C10—H10 | 119.00 |
Cl1—C4—C3 | 119.03 (17) | C9—C10—H10 | 119.00 |
C4—C5—C6 | 119.7 (2) | C12—C11—H11 | 119.00 |
C1—C6—C5 | 120.7 (2) | N3—C11—H11 | 119.00 |
N1—C7—C1 | 121.9 (2) | C8—C12—H12 | 119.00 |
N2—C8—C12 | 118.3 (2) | C11—C12—H12 | 119.00 |
C9—C8—C12 | 114.43 (19) | N3—C13—H13B | 109.00 |
N2—C8—C9 | 127.27 (19) | N3—C13—H13C | 109.00 |
C8—C9—C10 | 120.8 (2) | N3—C13—H13A | 109.00 |
N3—C10—C9 | 122.7 (2) | H13A—C13—H13C | 110.00 |
N3—C11—C12 | 121.5 (2) | H13B—C13—H13C | 110.00 |
C8—C12—C11 | 122.0 (2) | H13A—C13—H13B | 109.00 |
C7—N1—N2—C8 | −174.99 (18) | C6—C1—C7—N1 | −10.1 (3) |
N2—N1—C7—C1 | −179.43 (18) | C1—C2—C3—C4 | −0.4 (3) |
N1—N2—C8—C12 | −178.00 (18) | C2—C3—C4—C5 | 0.0 (3) |
N1—N2—C8—C9 | 2.6 (3) | C2—C3—C4—Cl1 | 179.29 (17) |
C13—N3—C11—C12 | 179.2 (2) | C3—C4—C5—C6 | 0.2 (3) |
C10—N3—C11—C12 | −0.6 (3) | Cl1—C4—C5—C6 | −179.11 (17) |
C11—N3—C10—C9 | 0.3 (3) | C4—C5—C6—C1 | 0.1 (3) |
C13—N3—C10—C9 | −179.5 (2) | N2—C8—C9—C10 | 179.3 (2) |
C2—C1—C6—C5 | −0.5 (3) | N2—C8—C12—C11 | −179.7 (2) |
C7—C1—C2—C3 | 180.0 (2) | C9—C8—C12—C11 | −0.2 (3) |
C7—C1—C6—C5 | −179.8 (2) | C12—C8—C9—C10 | −0.2 (3) |
C2—C1—C7—N1 | 170.6 (2) | C8—C9—C10—N3 | 0.1 (3) |
C6—C1—C2—C3 | 0.7 (3) | N3—C11—C12—C8 | 0.5 (3) |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) −x, −y+1, −z; (v) x, −y+3/2, z−1/2; (vi) −x+1, −y+1, −z; (vii) x−1, y, z; (viii) x−1, −y+3/2, z−1/2; (ix) −x+1, −y+1, −z+1; (x) −x+1, y+1/2, −z+1/2; (xi) −x+1, y−1/2, −z+1/2; (xii) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.84 (3) | 2.26 (3) | 3.089 (3) | 173 (3) |
O1—H1B···N2iii | 0.91 (4) | 1.95 (4) | 2.859 (3) | 174 (2) |
C3—H3···O1xii | 0.93 | 2.58 | 3.421 (3) | 150 |
C11—H11···O1iv | 0.93 | 2.49 | 3.378 (3) | 159 |
Symmetry codes: (iii) x+1, y, z; (iv) −x, −y+1, −z; (xii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H12ClN3·H2O |
Mr | 263.72 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 5.8492 (4), 20.3101 (10), 12.2035 (7) |
β (°) | 113.855 (4) |
V (Å3) | 1325.90 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.60 × 0.30 × 0.04 |
Data collection | |
Diffractometer | Stoe IPDS 2 |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.905, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14028, 2759, 1746 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.095, 0.95 |
No. of reflections | 2759 |
No. of parameters | 170 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.18 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.84 (3) | 2.26 (3) | 3.089 (3) | 173 (3) |
O1—H1B···N2i | 0.91 (4) | 1.95 (4) | 2.859 (3) | 174 (2) |
C3—H3···O1ii | 0.93 | 2.58 | 3.421 (3) | 150 |
C11—H11···O1iii | 0.93 | 2.49 | 3.378 (3) | 159 |
Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Alptüzün, V., Prinz, M., Hörr, V., Scheiber, J., Radacki, K., Fallarero, A., Vuorela, P., Engels, B., Braunschweig, H., Erciyas, E. & Holzgrabe, U. (2010). Bioorg. Med. Chem. 18, 2049–2059. Web of Science PubMed Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Diao, Y.-P., Huang, S.-S., Kong, Y., Xia, M.-Y. & Meng, D.-L. (2008). Z. Kristallogr. New Cryst. Struct. 223, 285–286. CAS Google Scholar
Douglas, W. A., Fishinger, J. J., Gund, P., Haris, E. E., Olson, G., Patchett, A. A. & Ruyle, V. W. (1977). J. Med. Chem. 20, 939–943. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234–o236. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pandey, J., Pal, R., Dwivedi, A. & Hajela, K. (2002). Arzneimittelforschung, 52, 39–44. Web of Science PubMed CAS Google Scholar
Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw–Hill. Google Scholar
Salgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç, E., İşık, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738–5751. Web of Science PubMed Google Scholar
Savini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, G. A., Costa, L. M. M., Brito, F. C. F., Miranda, A. L. P., Barreiro, E. J. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. 12, 3149–3158. Web of Science CrossRef PubMed CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Vicini, P., Incerti, M., La Colla, P. & Loddo, R. (2009). Eur. J. Med. Chem. 44, 1801–1807. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones, a special group of compounds in the class of the schiff bases, are known to show significant biological activities including antimicrobial, antitubercular, anticancer, analgesic, anti-inflammatory, antiplatelet and antiviral activities (Savini et al., 2002; Pandey et al., 2002; Salgın-Gökşen et al., 2007; Silva et al., 2004; Vicini et al., 2009). In addition, (benzylidene-hydrazono)-1,4-dihydropyridine derivatives have anticoccidial activity (Douglas et al., 1977) and also display anti-Alzheimer's activity by inhibiting ABeta fibril formation and acetylcholinesterase (Alptüzün et al., 2010).
The title molecule (I), Fig. 1, crystallized as a monohydrate in the monoclinic space group P21/c. All bond lengths are as expected (Allen et al., 1987). The Cl1—C4, and N1—N2 bond lengths are 1.742 (2) Å, and 1.388 (2) Å, respectively. The Cl1—C4—C5 and N2—N1—C7 bond angles are 119.88 (18) ° and 113.95 (19) °, respectively. The bond lengths and the bond angles of (I) are comparable to those observed in related structures (Diao et al., 2008; Odabaşoğlu et al., 2003).
The main molecule is almost planar, except the methyl H atoms, forming a dihedral angle of 3.22 (10)° between the benzene (C1–C6) and dihydropyridine (N3/C8–C12) rings.
The crystal structure is stabilized by O—H···N and C—H···O hydrogen bonding (Table 1, Fig. 2) and π-π stacking interactions [Cg1···Cg1(-x, 1-y, -z) = 3.630 (1) Å and Cg1···Cg2(1-x, 1-y, 1-z) = 3.701 (1) Å, Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively].
We have also carried out the quantum mechanical calculations using the CNDO (Pople et al., 1970) approximation. The spatial view of the single molecule considered in a vacuum, is shown in Fig.3. According to the theoretical CNDO and experimental X-rays results, the values of the geometric parameters of (I) are closely comparable within the observed experimental errors. The calculated dipole moment of (I) is about 11.481 Debye. The HOMO and LUMO energy levels are -8.3484 and 1.3565 eV, respectively.