organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4,6-tri­amino-1,3,5-triazin-1-ium) pyrazine-2,3-di­carboxyl­ate tetra­hydrate: a synchrotron radiation study

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and bInstituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, E-50009 Zaragoza, Spain
*Correspondence e-mail: heshtiagh@ferdowsi.um.ac.ir

(Received 26 April 2010; accepted 11 May 2010; online 15 May 2010)

The title compound, 2C3H7N6+·C6H2N2O42−·4H2O or (tataH)2(pzdc)·4H2O, was synthesised by a reaction between pyrazine-2,3-dicarboxylic acid (H2pzdc) as a proton donor and 2,4,6-triamino-1,3,5-triazin (tata) as a proton acceptor. In the crystal structure, an extensive series of O—H⋯O, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds generates a three-dimensional framework with the hydrogen bonding involving most donor and acceptor centers. ππ stacking inter­actions are also observed between adjacent triazine rings, with centroid–centroid distances of 3.4994 (8) and 3.5922 (7) Å.

Related literature

For related structures, see Xu et al. (1999[Xu, Z., Zou, J. Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507-1512.]); Wang et al. (2008[Wang, X., Li, X.-Y., Wang, Q.-W. & Che, G.-B. (2008). Acta Cryst. E64, m1078-m1079.]); Liu et al. (2008[Liu, S. X. & Yin, H. (2008). J. Mol. Struct. 918, 165-173.]); Moghimi et al. (2007[Moghimi, A., Khavasi, H. R., Dashtestani, F., Maddah, B. & Moradi, S. (2007). J. Iran. Chem. Soc. 4, 418-430.]); Smith et al. (2006a[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089-o5091.],b[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912-o3914.]); Zafar et al. (2000[Zafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419-8427.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H7N6+·C6H2N2O42−·4H2O

  • Mr = 492.45

  • Triclinic, [P \overline 1]

  • a = 7.0200 (14) Å

  • b = 9.763 (2) Å

  • c = 15.397 (3) Å

  • α = 101.06 (3)°

  • β = 99.82 (3)°

  • γ = 96.98 (3)°

  • V = 1007.4 (4) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.73800 Å

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.15 × 0.04 × 0.03 mm

Data collection
  • Huber single-axis diffractometer

  • 34176 measured reflections

  • 4609 independent reflections

  • 4314 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.07

  • 4609 reflections

  • 339 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2 0.86 1.98 2.7726 (16) 153
N6—H6A⋯N5i 0.86 2.10 2.9449 (17) 169
N6—H6B⋯O3 0.86 2.19 2.8206 (17) 130
N6—H6B⋯O2 0.86 2.32 3.0378 (15) 141
N7—H7A⋯O2Wii 0.86 2.17 3.0080 (16) 164
N7—H7B⋯O4W 0.86 2.04 2.8407 (19) 156
N8—H8A⋯N9iii 0.86 2.39 3.2495 (17) 180
N8—H8B⋯O3i 0.86 2.03 2.8842 (16) 170
N11—H11⋯O1 0.86 1.98 2.7883 (17) 155
N12—H12A⋯O4iv 0.86 1.92 2.7557 (15) 162
N12—H12B⋯O3Wiv 0.86 2.46 2.9981 (18) 121
N12—H12B⋯O1 0.86 2.47 3.1643 (17) 139
N13—H13A⋯N4iii 0.86 2.08 2.9275 (16) 167
N13—H13B⋯O2Wv 0.86 2.10 2.8713 (16) 148
N14—H14B⋯O1Wvi 0.86 2.21 2.9756 (16) 148
O1W—H1WA⋯O2 0.89 (3) 1.87 (2) 2.7263 (16) 163 (2)
O1W—H1WB⋯O1vii 0.93 (3) 1.95 (3) 2.8342 (16) 159 (2)
O2W—H2WA⋯O1Wvi 0.85 (3) 2.07 (3) 2.8623 (16) 154 (3)
O2W—H2WB⋯O4 0.93 (3) 1.83 (3) 2.7533 (17) 171 (3)
O3W—H3WA⋯N2 0.99 (3) 1.97 (3) 2.9589 (16) 170 (2)
O3W—H3WB⋯O1viii 0.92 (3) 2.07 (3) 2.9810 (15) 176 (2)
O4W—H4WA⋯O3Wiv 0.93 (3) 1.88 (3) 2.7846 (17) 164 (2)
O4W—H4WB⋯N1ix 0.89 (3) 2.08 (3) 2.9219 (17) 156 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y-1, z; (iii) -x, -y, -z+1; (iv) x, y-1, z; (v) -x-1, -y+1, -z+1; (vi) x-1, y, z; (vii) x+1, y, z; (viii) -x, -y+2, -z+2; (ix) -x+1, -y+1, -z+2.

Data collection: MXCUBE (Gabadinho & McSweeney, 2010[Gabadinho, J. & McSweeney, S. (2010). MXCUBE. In preparation]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, proton transfer from appropriate H-donors to H-acceptors has emerged as a method for preparing self-assembling systems (Zafar et al., 2000). In such systems there are a variety of non-covalent interactions such as H-bonding and aromatic π···π stacking (Moghimi et al., 2007). There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines. For example ion pairs have been reported between H2pzdc and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a) and guanidine (Smith et al., 2006b). In this work, we report a new proton transfer compound obtained from H2pzdc as a proton donor and tata as an acceptor. The molecular structure of the title compound is shown in Fig. 1. The structure of this compound contains two monocationic (tataH)+, one (pzdc)2- species and four water molecules.

In the crystal structure, there are several π···π interactions between adjacent triazine rings with centroid···centroid distances of 3.4994 (8) and 3.5922 (7)Å. Extensive H-bonding interactions also occur with H···A distances ranging from 1.86 to 2.47Å. These together with the π-π stacking, connect the different components giving rise the final three-dimensional supramolecular structure (Fig. 2).

Related literature top

For related structures, see Xu et al. (1999); Wang et al. (2008); Liu et al. (2008); Moghimi et al. (2007); Smith et al. (2006a,b); Zafar et al. (2000)

Experimental top

By refluxing 0.118 mmol (0.02 g) H2pzdc and 0.237 mmol (0.03 g) tata in 15 ml water for 6 h at 70 C°, a colorless solution was obtained. This solution gave colorless needle-like crystals of the title compound after slow evaporation of the solvent at RT.

Refinement top

The H atoms of the ligands were treated as riding with distances 0.86 (N—H), 0.93 (C—H), and Uiso(H) = 1.2 Ueq(C). The H atoms of the water molecules were located from difference maps and refined isotropically.

Structure description top

In recent years, proton transfer from appropriate H-donors to H-acceptors has emerged as a method for preparing self-assembling systems (Zafar et al., 2000). In such systems there are a variety of non-covalent interactions such as H-bonding and aromatic π···π stacking (Moghimi et al., 2007). There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines. For example ion pairs have been reported between H2pzdc and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a) and guanidine (Smith et al., 2006b). In this work, we report a new proton transfer compound obtained from H2pzdc as a proton donor and tata as an acceptor. The molecular structure of the title compound is shown in Fig. 1. The structure of this compound contains two monocationic (tataH)+, one (pzdc)2- species and four water molecules.

In the crystal structure, there are several π···π interactions between adjacent triazine rings with centroid···centroid distances of 3.4994 (8) and 3.5922 (7)Å. Extensive H-bonding interactions also occur with H···A distances ranging from 1.86 to 2.47Å. These together with the π-π stacking, connect the different components giving rise the final three-dimensional supramolecular structure (Fig. 2).

For related structures, see Xu et al. (1999); Wang et al. (2008); Liu et al. (2008); Moghimi et al. (2007); Smith et al. (2006a,b); Zafar et al. (2000)

Computing details top

Data collection: MXCUBE (Gabadinho & McSweeney, 2010); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with ellipsoids drawn at the 80% probability level.
[Figure 2] Fig. 2. Crystal packing of 1 with hydrogen bonds drawn as dashed lines.
Bis(2,4,6-triamino-1,3,5-triazin-1-ium) pyrazine-2,3-dicarboxylate tetrahydrate top
Crystal data top
2C3H7N6+·C6H2N2O42·4H2OZ = 2
Mr = 492.45F(000) = 516
Triclinic, P1Dx = 1.623 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.73800 Å
a = 7.0200 (14) ÅCell parameters from 130 reflections
b = 9.763 (2) Åθ = 2.4–26.4°
c = 15.397 (3) ŵ = 0.14 mm1
α = 101.06 (3)°T = 100 K
β = 99.82 (3)°Needle, colourless
γ = 96.98 (3)°0.15 × 0.04 × 0.03 mm
V = 1007.4 (4) Å3
Data collection top
Huber single-axis
diffractometer
4314 reflections with I > 2σ(I)
Radiation source: synchrotron, ESRF-CRG BM16Rint = 0.086
Si 111 monochromatorθmax = 29.1°, θmin = 3.5°
Detector resolution: 9.6 pixels mm-1h = 99
CCD rotation images, thick slices scansk = 1212
34176 measured reflectionsl = 2020
4609 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.6264P]
where P = (Fo2 + 2Fc2)/3
4609 reflections(Δ/σ)max = 0.007
339 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
2C3H7N6+·C6H2N2O42·4H2Oγ = 96.98 (3)°
Mr = 492.45V = 1007.4 (4) Å3
Triclinic, P1Z = 2
a = 7.0200 (14) ÅSynchrotron radiation, λ = 0.73800 Å
b = 9.763 (2) ŵ = 0.14 mm1
c = 15.397 (3) ÅT = 100 K
α = 101.06 (3)°0.15 × 0.04 × 0.03 mm
β = 99.82 (3)°
Data collection top
Huber single-axis
diffractometer
4314 reflections with I > 2σ(I)
34176 measured reflectionsRint = 0.086
4609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.36 e Å3
4609 reflectionsΔρmin = 0.39 e Å3
339 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08476 (18)0.61767 (13)0.86568 (7)0.0064 (2)
C20.16442 (17)0.76548 (13)0.92207 (8)0.0062 (2)
C30.32806 (19)0.89895 (14)1.05809 (8)0.0108 (2)
H30.39990.90711.11600.013*
C40.28663 (19)1.02060 (14)1.02974 (8)0.0104 (2)
H40.33101.10791.06930.012*
C50.12373 (17)0.88757 (13)0.89268 (8)0.0071 (2)
C60.00697 (19)0.87874 (14)0.79864 (8)0.0090 (2)
C70.14712 (17)0.41260 (13)0.60348 (8)0.0060 (2)
C80.26659 (17)0.22077 (13)0.65562 (8)0.0062 (2)
C90.16042 (17)0.20889 (13)0.50575 (8)0.0062 (2)
C100.21253 (17)0.27644 (13)0.69392 (8)0.0062 (2)
C110.32874 (17)0.22388 (13)0.54233 (8)0.0065 (2)
C120.35228 (17)0.44240 (13)0.62008 (8)0.0058 (2)
N10.26800 (16)0.77076 (12)1.00488 (7)0.0090 (2)
N20.18487 (16)1.01601 (11)0.94733 (7)0.0090 (2)
N30.22544 (15)0.35575 (11)0.67361 (6)0.0062 (2)
H3A0.24850.40420.72820.007*
N40.23486 (15)0.14484 (11)0.57220 (7)0.0065 (2)
N50.11417 (15)0.34110 (11)0.51846 (7)0.0066 (2)
N60.10542 (16)0.54193 (11)0.62315 (7)0.0083 (2)
H6A0.05640.58070.58060.010*
H6B0.12730.58740.67850.010*
N70.34237 (16)0.17081 (12)0.72576 (7)0.0097 (2)
H7A0.37220.08700.71760.012*
H7B0.36170.22220.77950.012*
N80.13301 (16)0.13572 (11)0.42175 (7)0.0093 (2)
H8A0.16190.05180.41120.011*
H8B0.08630.17200.37760.011*
N90.24368 (15)0.18109 (11)0.61670 (7)0.0071 (2)
N100.38609 (15)0.35169 (11)0.54089 (7)0.0065 (2)
N110.26557 (15)0.40727 (11)0.69764 (7)0.0068 (2)
H110.24460.46720.74840.008*
N120.12818 (16)0.24938 (11)0.77090 (7)0.0090 (2)
H12A0.09200.16850.77180.011*
H12B0.10940.31260.82010.011*
N130.35804 (16)0.13295 (11)0.46429 (7)0.0098 (2)
H13A0.32380.05090.46200.012*
H13B0.41140.15570.41560.012*
N140.40337 (16)0.56927 (11)0.62636 (7)0.0082 (2)
H14A0.45920.59390.57880.010*
H14B0.38080.62720.67800.010*
O10.08939 (13)0.57080 (10)0.86815 (6)0.0115 (2)
O20.19694 (13)0.55284 (10)0.82467 (6)0.00925 (19)
O30.00778 (18)0.77035 (11)0.74052 (6)0.0206 (3)
O40.08449 (14)0.97813 (10)0.78707 (6)0.0132 (2)
O1W0.56057 (15)0.67742 (10)0.81619 (6)0.0126 (2)
O2W0.48261 (15)0.90431 (11)0.72480 (6)0.0137 (2)
O3W0.15750 (16)1.31613 (11)0.94758 (7)0.0163 (2)
O4W0.49780 (15)0.38403 (11)0.88426 (6)0.0142 (2)
H1WA0.454 (4)0.635 (3)0.8298 (16)0.033 (6)*
H1WB0.665 (4)0.644 (3)0.8469 (18)0.047 (7)*
H2WA0.503 (4)0.845 (3)0.7578 (19)0.051 (8)*
H2WB0.348 (4)0.933 (3)0.7402 (19)0.054 (8)*
H3WA0.151 (4)1.213 (3)0.9435 (17)0.042 (6)*
H3WB0.144 (3)1.353 (3)1.0051 (17)0.037 (6)*
H4WA0.390 (4)0.379 (3)0.9119 (18)0.046 (7)*
H4WB0.589 (4)0.362 (3)0.9250 (18)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0111 (5)0.0052 (5)0.0026 (5)0.0015 (4)0.0003 (4)0.0015 (4)
C20.0071 (5)0.0074 (6)0.0038 (5)0.0015 (4)0.0012 (4)0.0002 (4)
C30.0126 (6)0.0121 (6)0.0051 (5)0.0011 (5)0.0011 (4)0.0011 (4)
C40.0122 (5)0.0086 (6)0.0070 (5)0.0006 (5)0.0002 (4)0.0036 (4)
C50.0086 (5)0.0073 (6)0.0051 (5)0.0017 (4)0.0016 (4)0.0001 (4)
C60.0142 (6)0.0076 (6)0.0055 (5)0.0032 (5)0.0008 (4)0.0018 (4)
C70.0058 (5)0.0065 (6)0.0055 (5)0.0009 (4)0.0013 (4)0.0012 (4)
C80.0062 (5)0.0064 (6)0.0063 (5)0.0004 (4)0.0018 (4)0.0014 (4)
C90.0067 (5)0.0057 (6)0.0061 (5)0.0007 (4)0.0016 (4)0.0014 (4)
C100.0061 (5)0.0053 (6)0.0073 (5)0.0001 (4)0.0017 (4)0.0022 (4)
C110.0065 (5)0.0060 (6)0.0067 (5)0.0007 (4)0.0009 (4)0.0012 (4)
C120.0058 (5)0.0053 (6)0.0060 (5)0.0005 (4)0.0012 (4)0.0014 (4)
N10.0113 (5)0.0098 (5)0.0046 (4)0.0020 (4)0.0007 (4)0.0004 (4)
N20.0118 (5)0.0066 (5)0.0077 (5)0.0009 (4)0.0020 (4)0.0007 (4)
N30.0106 (5)0.0044 (5)0.0027 (4)0.0013 (4)0.0004 (3)0.0009 (3)
N40.0102 (5)0.0047 (5)0.0047 (4)0.0015 (4)0.0009 (4)0.0012 (4)
N50.0102 (5)0.0054 (5)0.0043 (4)0.0026 (4)0.0013 (3)0.0007 (4)
N60.0148 (5)0.0060 (5)0.0042 (4)0.0048 (4)0.0012 (4)0.0001 (4)
N70.0171 (5)0.0074 (5)0.0045 (4)0.0045 (4)0.0000 (4)0.0011 (4)
N80.0165 (5)0.0070 (5)0.0042 (5)0.0052 (4)0.0001 (4)0.0002 (4)
N90.0097 (5)0.0060 (5)0.0050 (5)0.0021 (4)0.0001 (4)0.0004 (4)
N100.0095 (5)0.0047 (5)0.0047 (4)0.0015 (4)0.0000 (3)0.0008 (4)
N110.0112 (5)0.0046 (5)0.0034 (4)0.0014 (4)0.0002 (4)0.0007 (3)
N120.0141 (5)0.0067 (5)0.0050 (5)0.0025 (4)0.0011 (4)0.0009 (4)
N130.0169 (5)0.0068 (5)0.0049 (5)0.0055 (4)0.0013 (4)0.0003 (4)
N140.0139 (5)0.0050 (5)0.0050 (4)0.0030 (4)0.0001 (4)0.0001 (4)
O10.0109 (4)0.0108 (5)0.0097 (4)0.0016 (3)0.0017 (3)0.0026 (3)
O20.0132 (4)0.0073 (4)0.0069 (4)0.0035 (3)0.0018 (3)0.0003 (3)
O30.0402 (6)0.0143 (5)0.0055 (4)0.0160 (5)0.0039 (4)0.0020 (4)
O40.0189 (5)0.0086 (5)0.0116 (4)0.0065 (4)0.0011 (4)0.0023 (3)
O1W0.0148 (5)0.0107 (5)0.0116 (4)0.0004 (4)0.0025 (3)0.0020 (3)
O2W0.0181 (5)0.0127 (5)0.0093 (4)0.0024 (4)0.0007 (4)0.0034 (4)
O3W0.0225 (5)0.0155 (5)0.0119 (5)0.0038 (4)0.0052 (4)0.0040 (4)
O4W0.0160 (5)0.0172 (5)0.0102 (4)0.0060 (4)0.0013 (4)0.0038 (4)
Geometric parameters (Å, º) top
C1—O21.2477 (15)C11—N91.3613 (15)
C1—O11.2618 (16)C11—N101.3599 (15)
C1—C21.5187 (17)C12—N141.3214 (16)
C2—N11.3441 (15)C12—N101.3278 (15)
C2—C51.3975 (17)C12—N111.3691 (15)
C3—N11.3325 (17)N3—H3A0.8600
C3—C41.3876 (19)N6—H6A0.8600
C3—H30.9300N6—H6B0.8600
C4—N21.3354 (16)N7—H7A0.8600
C4—H40.9300N7—H7B0.8600
C5—N21.3438 (16)N8—H8A0.8600
C5—C61.5186 (17)N8—H8B0.8600
C6—O31.2491 (16)N11—H110.8600
C6—O41.2507 (16)N12—H12A0.8600
C7—N61.3210 (16)N12—H12B0.8600
C7—N51.3271 (15)N13—H13A0.8600
C7—N31.3703 (15)N13—H13B0.8600
C8—N71.3253 (16)N14—H14A0.8600
C8—N41.3213 (16)N14—H14B0.8600
C8—N31.3699 (16)O1W—H1WA0.89 (3)
C9—N81.3217 (16)O1W—H1WB0.93 (3)
C9—N41.3615 (15)O2W—H2WA0.85 (3)
C9—N51.3551 (16)O2W—H2WB0.93 (3)
C10—N121.3205 (16)O3W—H3WA0.99 (3)
C10—N91.3286 (16)O3W—H3WB0.92 (3)
C10—N111.3669 (15)O4W—H4WA0.93 (3)
C11—N131.3176 (16)O4W—H4WB0.89 (3)
O2—C1—O1126.43 (11)N10—C12—N11121.27 (11)
O2—C1—C2118.10 (11)C3—N1—C2116.34 (11)
O1—C1—C2115.41 (11)C4—N2—C5116.88 (11)
N1—C2—C5122.02 (11)C7—N3—C8119.18 (10)
N1—C2—C1115.11 (11)C7—N3—H3A120.4
C5—C2—C1122.77 (10)C8—N3—H3A120.4
N1—C3—C4122.00 (11)C8—N4—C9116.13 (11)
N1—C3—H3119.0C7—N5—C9115.98 (11)
C4—C3—H3119.0C7—N6—H6A120.0
N2—C4—C3121.90 (12)C7—N6—H6B120.0
N2—C4—H4119.0H6A—N6—H6B120.0
C3—C4—H4119.0C8—N7—H7A120.0
N2—C5—C2120.86 (11)C8—N7—H7B120.0
N2—C5—C6118.16 (11)H7A—N7—H7B120.0
C2—C5—C6120.98 (11)C9—N8—H8A120.0
O3—C6—O4126.16 (12)C9—N8—H8B120.0
O3—C6—C5116.43 (11)H8A—N8—H8B120.0
O4—C6—C5117.39 (11)C10—N9—C11115.33 (11)
N6—C7—N5120.70 (11)C12—N10—C11115.81 (10)
N6—C7—N3117.75 (11)C12—N11—C10119.65 (10)
N5—C7—N3121.55 (11)C12—N11—H11120.2
N7—C8—N4121.63 (11)C10—N11—H11120.2
N7—C8—N3116.81 (11)C10—N12—H12A120.0
N4—C8—N3121.55 (11)C10—N12—H12B120.0
N8—C9—N4116.83 (11)H12A—N12—H12B120.0
N8—C9—N5117.57 (11)C11—N13—H13A120.0
N4—C9—N5125.60 (11)C11—N13—H13B120.0
N12—C10—N9121.52 (11)H13A—N13—H13B120.0
N12—C10—N11116.74 (11)C12—N14—H14A120.0
N9—C10—N11121.74 (11)C12—N14—H14B120.0
N13—C11—N9116.94 (11)H14A—N14—H14B120.0
N13—C11—N10116.87 (11)H1WA—O1W—H1WB105 (2)
N9—C11—N10126.20 (11)H2WA—O2W—H2WB103 (2)
N14—C12—N10120.75 (11)H3WA—O3W—H3WB105 (2)
N14—C12—N11117.99 (11)H4WA—O4W—H4WB101 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.861.982.7726 (16)153
N6—H6A···N5i0.862.102.9449 (17)169
N6—H6B···O30.862.192.8206 (17)130
N6—H6B···O20.862.323.0378 (15)141
N7—H7A···O2Wii0.862.173.0080 (16)164
N7—H7B···O4W0.862.042.8407 (19)156
N8—H8A···N9iii0.862.393.2495 (17)180
N8—H8B···O3i0.862.032.8842 (16)170
N11—H11···O10.861.982.7883 (17)155
N12—H12A···O4iv0.861.922.7557 (15)162
N12—H12B···O3Wiv0.862.462.9981 (18)121
N12—H12B···O10.862.473.1643 (17)139
N13—H13A···N4iii0.862.082.9275 (16)167
N13—H13B···O2Wv0.862.102.8713 (16)148
N14—H14B···O1Wvi0.862.212.9756 (16)148
O1W—H1WA···O20.89 (3)1.87 (2)2.7263 (16)163 (2)
O1W—H1WB···O1vii0.93 (3)1.95 (3)2.8342 (16)159 (2)
O2W—H2WA···O1Wvi0.85 (3)2.07 (3)2.8623 (16)154 (3)
O2W—H2WB···O40.93 (3)1.83 (3)2.7533 (17)171 (3)
O3W—H3WA···N20.99 (3)1.97 (3)2.9589 (16)170 (2)
O3W—H3WB···O1viii0.92 (3)2.07 (3)2.9810 (15)176 (2)
O4W—H4WA···O3Wiv0.93 (3)1.88 (3)2.7846 (17)164 (2)
O4W—H4WB···N1ix0.89 (3)2.08 (3)2.9219 (17)156 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1, z; (iii) x, y, z+1; (iv) x, y1, z; (v) x1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y, z; (viii) x, y+2, z+2; (ix) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula2C3H7N6+·C6H2N2O42·4H2O
Mr492.45
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0200 (14), 9.763 (2), 15.397 (3)
α, β, γ (°)101.06 (3), 99.82 (3), 96.98 (3)
V3)1007.4 (4)
Z2
Radiation typeSynchrotron, λ = 0.73800 Å
µ (mm1)0.14
Crystal size (mm)0.15 × 0.04 × 0.03
Data collection
DiffractometerHuber single-axis
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34176, 4609, 4314
Rint0.086
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.07
No. of reflections4609
No. of parameters339
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: MXCUBE (Gabadinho & McSweeney, 2010), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O20.861.982.7726 (16)152.5
N6—H6A···N5i0.862.102.9449 (17)169.2
N6—H6B···O30.862.192.8206 (17)130.1
N6—H6B···O20.862.323.0378 (15)141.3
N7—H7A···O2Wii0.862.173.0080 (16)164.3
N7—H7B···O4W0.862.042.8407 (19)155.6
N8—H8A···N9iii0.862.393.2495 (17)179.5
N8—H8B···O3i0.862.032.8842 (16)169.9
N11—H11···O10.861.982.7883 (17)155.1
N12—H12A···O4iv0.861.922.7557 (15)162.4
N12—H12B···O3Wiv0.862.462.9981 (18)121.0
N12—H12B···O10.862.473.1643 (17)138.8
N13—H13A···N4iii0.862.082.9275 (16)167.4
N13—H13B···O2Wv0.862.102.8713 (16)148.2
N14—H14B···O1Wvi0.862.212.9756 (16)148.2
O1W—H1WA···O20.89 (3)1.87 (2)2.7263 (16)163 (2)
O1W—H1WB···O1vii0.93 (3)1.95 (3)2.8342 (16)159 (2)
O2W—H2WA···O1Wvi0.85 (3)2.07 (3)2.8623 (16)154 (3)
O2W—H2WB···O40.93 (3)1.83 (3)2.7533 (17)171 (3)
O3W—H3WA···N20.99 (3)1.97 (3)2.9589 (16)170 (2)
O3W—H3WB···O1viii0.92 (3)2.07 (3)2.9810 (15)176 (2)
O4W—H4WA···O3Wiv0.93 (3)1.88 (3)2.7846 (17)164 (2)
O4W—H4WB···N1ix0.89 (3)2.08 (3)2.9219 (17)156 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1, z; (iii) x, y, z+1; (iv) x, y1, z; (v) x1, y+1, z+1; (vi) x1, y, z; (vii) x+1, y, z; (viii) x, y+2, z+2; (ix) x+1, y+1, z+2.
 

Acknowledgements

The financial support of Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabadinho, J. & McSweeney, S. (2010). MXCUBE. In preparation  Google Scholar
First citationLiu, S. X. & Yin, H. (2008). J. Mol. Struct. 918, 165–173.  Google Scholar
First citationMoghimi, A., Khavasi, H. R., Dashtestani, F., Maddah, B. & Moradi, S. (2007). J. Iran. Chem. Soc. 4, 418–430.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089–o5091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Li, X.-Y., Wang, Q.-W. & Che, G.-B. (2008). Acta Cryst. E64, m1078–m1079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z., Zou, J. Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507–1512.  Web of Science CSD CrossRef Google Scholar
First citationZafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419–8427.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds