organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(1H-indole-3-carboxamido)propionate hemihydrate

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 30 April 2010; accepted 15 May 2010; online 26 May 2010)

The title compound, C13H14N2O3·0.5H2O, was synthesized by the condensation of methyl 3-amino­propionate with 3-trichloro­acetyl­indole. The two organic mol­ecules in the asymmetric unit are both close to planar, with r.m.s. deviations from the best fit plane through all of the non-H atoms of 0.004 (2) Å for mol­ecule A and 0.006 (1) Å for mol­ecule B. Also, the five- and six-membered rings of the indole systems are inclined at 1.67 (8) and 1.50 (8)° in mol­ecules A and B, respectively. In the crystal structure, the organic molecules are connected by inter­molecular N—H⋯O hydrogen bonds, forming chains. O—H⋯O and N—H⋯O hydrogen-bond inter­actions involving the water molecules inter­link these chains, forming double chains approximately parallel to the a axis.

Related literature

For the bioactivity of indole derivatives, see: Fabio et al. (2007[Fabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254-2259.]); Sharma et al. (2004[Sharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319-4321.]). For related structures, see: Huang et al. (2009[Huang, G., Xu, X. Y., Zeng, X. C., Tang, G. H. & Li, D. D. (2009). Acta Cryst. E65, o2063.]); Siddiquee et al. (2009[Siddiquee, T., Islam, S., Bennett, D., Zeller, M. & Hossain, M. (2009). Acta Cryst. E65, o1802-o1803.]). For reference structural data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O3·0.5H2O

  • Mr = 255.27

  • Monoclinic, P 21 /n

  • a = 10.8220 (13) Å

  • b = 9.7668 (12) Å

  • c = 23.623 (3) Å

  • β = 92.422 (2)°

  • V = 2494.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.46 × 0.43 × 0.39 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.962

  • 13021 measured reflections

  • 5484 independent reflections

  • 4349 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.07

  • 5484 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.88 2.04 2.8219 (15) 148
N2—H2⋯O1Wii 0.88 2.09 2.9348 (17) 161
N3—H3⋯O1 0.88 1.88 2.7404 (16) 164
N4—H4A⋯O2 0.88 2.43 3.2952 (15) 167
O1W—H1B⋯O4 0.85 2.17 2.9890 (18) 161
O1W—H1C⋯O5iii 0.85 1.98 2.7970 (16) 160
Symmetry codes: (i) x+1, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x, -y+2, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many indole derivatives show important bioactivity, acting as metabotropic receptor antagonists (Fabio et al., 2007) and showing protein kinase inhibiting activity (Sharma et al., 2004). This is the reason they have attracted our interest and the title compound is related to our previous structural investigations of methyl 3-(1-Butyl-1H-indole-3-carbonyl)aminopropionate (Huang et al., 2009).

The asymmetric unit of the title compound comprises two substituted indole molecules, A & B and a solvent water molecule, Fig. 1. The organic molecules are each reasonably planar with rms deviations from the best fit plane through all of the non hydrogen atoms of 0.004 (2) Å for A and -0.006 (1) Å for B. Also the five and six-membered rings of the indole systems are inclined at 1.67 (8) ° and 1.50 (8) ° in A and B respectively. Bond lengths in both molecules are unexceptional (Allen et al., 1987) and are comparable to those found in similar structures (Huang et al., 2009; Siddiquee et al., 2009).

In the crystal structure, molecules of the organic compound are linked through N—H···O H-bonds to form dimers that are connected by another N—H···O H-bonds to generate chains, and the O—H(W)···O and N—H···O(W) H-bond interactions link these chains to form double-chains extending to the a axis (Table 1, Fig. 2).

Related literature top

For the bioactivity of indole derivatives, see: Fabio et al. (2007); Sharma et al. (2004). For related structures, see: Huang et al. (2009); Siddiquee et al. (2009). For reference structural data, see Allen et al. (1987).

Experimental top

The hydrochloride salt of methyl 3-aminopropionate (0.70 g, 5 mmol) and 3-trichloroacetylindole (1.32 g, 5 mmol) were added to acetonitrile (10 ml), followed by the dropwise addition of triethylamine (1.2 ml). The mixture was stirred at room temperature for 16 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in EtOH at room temperature. Light yellow monoclinic crystals suitable for X-ray analysis (m.p. 409 K, 86.2% yield) grew over a period of one week when the solution was exposed to the air.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms bound to C and N were positioned geometrically [C—H = 0.99Å for CH2, 0.98Å for CH3, 0.95Å for CH(aromatic) and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom. The water H atoms were located in a difference Fourier map and were constrained in these positions with O—H = 0.8497 and 0.8533, and with Uiso = 1.5Ueq(O).

Structure description top

Many indole derivatives show important bioactivity, acting as metabotropic receptor antagonists (Fabio et al., 2007) and showing protein kinase inhibiting activity (Sharma et al., 2004). This is the reason they have attracted our interest and the title compound is related to our previous structural investigations of methyl 3-(1-Butyl-1H-indole-3-carbonyl)aminopropionate (Huang et al., 2009).

The asymmetric unit of the title compound comprises two substituted indole molecules, A & B and a solvent water molecule, Fig. 1. The organic molecules are each reasonably planar with rms deviations from the best fit plane through all of the non hydrogen atoms of 0.004 (2) Å for A and -0.006 (1) Å for B. Also the five and six-membered rings of the indole systems are inclined at 1.67 (8) ° and 1.50 (8) ° in A and B respectively. Bond lengths in both molecules are unexceptional (Allen et al., 1987) and are comparable to those found in similar structures (Huang et al., 2009; Siddiquee et al., 2009).

In the crystal structure, molecules of the organic compound are linked through N—H···O H-bonds to form dimers that are connected by another N—H···O H-bonds to generate chains, and the O—H(W)···O and N—H···O(W) H-bond interactions link these chains to form double-chains extending to the a axis (Table 1, Fig. 2).

For the bioactivity of indole derivatives, see: Fabio et al. (2007); Sharma et al. (2004). For related structures, see: Huang et al. (2009); Siddiquee et al. (2009). For reference structural data, see Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the hydrate (viewed along the c axis). Dashed lines indicate hydrogen bonds.
Methyl 3-(1H-indole-3-carboxamido)propionate hemihydrate top
Crystal data top
C13H14N2O3·0.5H2OF(000) = 1080
Mr = 255.27Dx = 1.359 Mg m3
Monoclinic, P21/nMelting point: 409 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.8220 (13) ÅCell parameters from 7482 reflections
b = 9.7668 (12) Åθ = 2.3–27.1°
c = 23.623 (3) ŵ = 0.10 mm1
β = 92.422 (2)°T = 173 K
V = 2494.6 (5) Å3Block, yellow
Z = 80.46 × 0.43 × 0.39 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5484 independent reflections
Radiation source: fine-focus sealed tube4349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.955, Tmax = 0.962k = 812
13021 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.3718P]
where P = (Fo2 + 2Fc2)/3
5484 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H14N2O3·0.5H2OV = 2494.6 (5) Å3
Mr = 255.27Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.8220 (13) ŵ = 0.10 mm1
b = 9.7668 (12) ÅT = 173 K
c = 23.623 (3) Å0.46 × 0.43 × 0.39 mm
β = 92.422 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5484 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4349 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.962Rint = 0.036
13021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
5484 reflectionsΔρmin = 0.24 e Å3
336 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80813 (13)0.08599 (15)0.03833 (6)0.0318 (3)
H10.82690.06660.00020.038*
C20.71838 (12)0.02181 (14)0.06810 (6)0.0272 (3)
C30.72133 (12)0.08192 (14)0.12390 (6)0.0275 (3)
C40.65431 (14)0.06387 (16)0.17297 (6)0.0341 (3)
H40.59170.00410.17430.041*
C50.68093 (15)0.14651 (17)0.21922 (6)0.0398 (4)
H50.63520.13560.25240.048*
C60.77349 (16)0.24579 (17)0.21840 (7)0.0421 (4)
H60.78920.30120.25100.051*
C70.84253 (14)0.26528 (16)0.17145 (7)0.0373 (3)
H70.90610.33230.17100.045*
C80.81497 (12)0.18210 (14)0.12439 (6)0.0297 (3)
C90.62911 (13)0.08453 (15)0.04984 (6)0.0305 (3)
C100.53881 (13)0.24140 (15)0.01892 (6)0.0311 (3)
H10A0.55360.32260.00550.037*
H10B0.45440.20740.01250.037*
C110.54663 (13)0.28339 (15)0.08026 (6)0.0321 (3)
H11A0.63160.31500.08720.039*
H11B0.52860.20340.10500.039*
C120.45597 (13)0.39641 (15)0.09478 (6)0.0308 (3)
C130.39062 (16)0.55673 (18)0.16381 (7)0.0433 (4)
H13A0.39590.63070.13580.065*
H13B0.30560.52220.16700.065*
H13C0.41450.59170.20070.065*
C140.29377 (13)0.36840 (16)0.06182 (6)0.0341 (3)
H140.31020.36920.02260.041*
C150.21024 (12)0.45232 (14)0.08725 (6)0.0290 (3)
C160.21441 (12)0.41712 (14)0.14649 (6)0.0284 (3)
C170.15418 (14)0.46235 (16)0.19450 (6)0.0354 (3)
H170.09280.53170.19130.042*
C180.18574 (16)0.40417 (17)0.24654 (7)0.0432 (4)
H180.14460.43350.27910.052*
C190.27677 (16)0.30334 (18)0.25209 (7)0.0441 (4)
H190.29770.26690.28850.053*
C200.33663 (15)0.25580 (17)0.20592 (7)0.0399 (4)
H200.39810.18660.20970.048*
C210.30395 (13)0.31267 (15)0.15322 (6)0.0319 (3)
C220.13786 (12)0.56060 (14)0.05926 (6)0.0290 (3)
C230.08226 (13)0.69102 (15)0.02576 (6)0.0301 (3)
H23A0.10480.78070.00880.036*
H23B0.00720.67630.02110.036*
C240.10799 (13)0.69297 (15)0.08814 (6)0.0328 (3)
H24A0.19720.70950.09290.039*
H24B0.08660.60290.10510.039*
C250.03353 (13)0.80346 (15)0.11816 (6)0.0310 (3)
C260.01206 (18)0.91058 (19)0.20573 (7)0.0497 (4)
H26A0.10050.89920.19970.075*
H26B0.00330.89780.24600.075*
H26C0.01391.00280.19400.075*
N10.86589 (11)0.18166 (13)0.07191 (5)0.0333 (3)
H1A0.92650.23510.06170.040*
N20.62849 (11)0.13484 (13)0.00271 (5)0.0317 (3)
H20.68110.10440.02720.038*
N30.34897 (12)0.28454 (14)0.10095 (5)0.0375 (3)
H30.40480.22200.09400.045*
N40.15203 (11)0.58337 (12)0.00368 (5)0.0320 (3)
H4A0.20390.53270.01500.038*
O10.55464 (11)0.12826 (13)0.08443 (5)0.0466 (3)
O20.37724 (10)0.43840 (12)0.06434 (4)0.0405 (3)
O30.47321 (10)0.44687 (12)0.14607 (4)0.0393 (3)
O40.06489 (10)0.63299 (11)0.08581 (4)0.0396 (3)
O50.03955 (10)0.87601 (12)0.09532 (4)0.0402 (3)
O60.05767 (10)0.80986 (12)0.17246 (4)0.0413 (3)
O1W0.20002 (11)0.89955 (13)0.09463 (5)0.0507 (3)
H1B0.15370.83010.09940.076*
H1C0.15920.97040.10310.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (7)0.0312 (7)0.0330 (7)0.0062 (6)0.0043 (5)0.0008 (6)
C20.0245 (6)0.0256 (6)0.0314 (7)0.0024 (5)0.0014 (5)0.0018 (5)
C30.0257 (6)0.0249 (6)0.0317 (7)0.0006 (5)0.0005 (5)0.0032 (5)
C40.0347 (7)0.0341 (8)0.0338 (7)0.0017 (6)0.0035 (6)0.0060 (6)
C50.0477 (9)0.0418 (9)0.0303 (7)0.0043 (7)0.0050 (6)0.0012 (6)
C60.0537 (10)0.0372 (8)0.0349 (8)0.0022 (7)0.0066 (7)0.0058 (7)
C70.0395 (8)0.0307 (7)0.0411 (8)0.0050 (6)0.0056 (6)0.0029 (6)
C80.0279 (7)0.0270 (7)0.0341 (7)0.0006 (5)0.0005 (5)0.0024 (6)
C90.0288 (7)0.0297 (7)0.0331 (7)0.0048 (6)0.0001 (5)0.0024 (6)
C100.0319 (7)0.0298 (7)0.0315 (7)0.0067 (6)0.0002 (5)0.0002 (6)
C110.0298 (7)0.0335 (7)0.0329 (7)0.0029 (6)0.0000 (6)0.0017 (6)
C120.0311 (7)0.0322 (7)0.0289 (7)0.0009 (6)0.0006 (5)0.0002 (6)
C130.0491 (9)0.0457 (9)0.0353 (8)0.0135 (8)0.0020 (7)0.0086 (7)
C140.0337 (7)0.0351 (8)0.0337 (7)0.0100 (6)0.0053 (6)0.0028 (6)
C150.0259 (6)0.0268 (7)0.0345 (7)0.0041 (5)0.0027 (5)0.0002 (6)
C160.0268 (6)0.0243 (6)0.0341 (7)0.0008 (5)0.0004 (5)0.0001 (5)
C170.0389 (8)0.0294 (7)0.0381 (8)0.0072 (6)0.0045 (6)0.0022 (6)
C180.0561 (10)0.0393 (9)0.0347 (8)0.0068 (7)0.0078 (7)0.0024 (7)
C190.0588 (10)0.0387 (9)0.0344 (8)0.0063 (8)0.0015 (7)0.0052 (7)
C200.0431 (8)0.0356 (8)0.0409 (8)0.0106 (7)0.0001 (7)0.0071 (7)
C210.0304 (7)0.0303 (7)0.0352 (7)0.0044 (6)0.0033 (6)0.0009 (6)
C220.0263 (6)0.0261 (7)0.0348 (7)0.0031 (5)0.0018 (5)0.0007 (6)
C230.0299 (7)0.0281 (7)0.0324 (7)0.0049 (6)0.0010 (5)0.0012 (6)
C240.0331 (7)0.0315 (7)0.0341 (7)0.0051 (6)0.0048 (6)0.0007 (6)
C250.0335 (7)0.0303 (7)0.0293 (7)0.0022 (6)0.0032 (5)0.0012 (6)
C260.0705 (12)0.0463 (10)0.0321 (8)0.0024 (9)0.0013 (8)0.0089 (7)
N10.0307 (6)0.0316 (6)0.0378 (7)0.0109 (5)0.0052 (5)0.0001 (5)
N20.0305 (6)0.0324 (6)0.0323 (6)0.0086 (5)0.0027 (5)0.0000 (5)
N30.0371 (7)0.0375 (7)0.0381 (7)0.0170 (6)0.0061 (5)0.0035 (5)
N40.0322 (6)0.0307 (6)0.0333 (6)0.0102 (5)0.0046 (5)0.0017 (5)
O10.0473 (6)0.0551 (7)0.0382 (6)0.0289 (6)0.0098 (5)0.0055 (5)
O20.0419 (6)0.0452 (6)0.0348 (5)0.0147 (5)0.0070 (4)0.0054 (5)
O30.0441 (6)0.0426 (6)0.0314 (5)0.0128 (5)0.0050 (4)0.0057 (5)
O40.0419 (6)0.0392 (6)0.0381 (6)0.0197 (5)0.0084 (4)0.0045 (5)
O50.0467 (6)0.0393 (6)0.0350 (5)0.0148 (5)0.0056 (5)0.0025 (5)
O60.0523 (7)0.0422 (6)0.0298 (5)0.0042 (5)0.0061 (5)0.0037 (5)
O1W0.0556 (7)0.0471 (7)0.0506 (7)0.0176 (6)0.0152 (6)0.0011 (6)
Geometric parameters (Å, º) top
C1—N11.3606 (18)C15—C161.4399 (19)
C1—C21.3744 (19)C15—C221.4579 (19)
C1—H10.9500C16—C171.403 (2)
C2—C31.4421 (19)C16—C211.4114 (19)
C2—C91.4706 (19)C17—C181.384 (2)
C3—C41.404 (2)C17—H170.9500
C3—C81.4083 (19)C18—C191.395 (2)
C4—C51.379 (2)C18—H180.9500
C4—H40.9500C19—C201.373 (2)
C5—C61.395 (2)C19—H190.9500
C5—H50.9500C20—C211.395 (2)
C6—C71.376 (2)C20—H200.9500
C6—H60.9500C21—N31.3743 (19)
C7—C81.399 (2)C22—O41.2485 (17)
C7—H70.9500C22—N41.3467 (18)
C8—N11.3779 (19)C23—N41.4543 (17)
C9—O11.2470 (17)C23—C241.511 (2)
C9—N21.3348 (18)C23—H23A0.9900
C10—N21.4630 (17)C23—H23B0.9900
C10—C111.512 (2)C24—C251.506 (2)
C10—H10A0.9900C24—H24A0.9900
C10—H10B0.9900C24—H24B0.9900
C11—C121.507 (2)C25—O51.2062 (18)
C11—H11A0.9900C25—O61.3212 (17)
C11—H11B0.9900C26—O61.451 (2)
C12—O21.2095 (17)C26—H26A0.9800
C12—O31.3285 (17)C26—H26B0.9800
C13—O31.4470 (19)C26—H26C0.9800
C13—H13A0.9800N1—H1A0.8800
C13—H13B0.9800N2—H20.8800
C13—H13C0.9800N3—H30.8800
C14—N31.3548 (19)N4—H4A0.8800
C14—C151.377 (2)O1W—H1B0.8533
C14—H140.9500O1W—H1C0.8497
N1—C1—C2109.39 (12)C21—C16—C15105.98 (12)
N1—C1—H1125.3C18—C17—C16118.89 (14)
C2—C1—H1125.3C18—C17—H17120.6
C1—C2—C3107.05 (12)C16—C17—H17120.6
C1—C2—C9129.92 (13)C17—C18—C19121.33 (15)
C3—C2—C9122.99 (12)C17—C18—H18119.3
C4—C3—C8118.49 (13)C19—C18—H18119.3
C4—C3—C2135.33 (13)C20—C19—C18121.28 (15)
C8—C3—C2106.17 (12)C20—C19—H19119.4
C5—C4—C3118.86 (14)C18—C19—H19119.4
C5—C4—H4120.6C19—C20—C21117.64 (14)
C3—C4—H4120.6C19—C20—H20121.2
C4—C5—C6121.47 (15)C21—C20—H20121.2
C4—C5—H5119.3N3—C21—C20129.50 (13)
C6—C5—H5119.3N3—C21—C16108.12 (12)
C7—C6—C5121.46 (15)C20—C21—C16122.37 (14)
C7—C6—H6119.3O4—C22—N4119.79 (12)
C5—C6—H6119.3O4—C22—C15121.47 (13)
C6—C7—C8117.08 (14)N4—C22—C15118.73 (12)
C6—C7—H7121.5N4—C23—C24111.22 (11)
C8—C7—H7121.5N4—C23—H23A109.4
N1—C8—C7129.56 (13)C24—C23—H23A109.4
N1—C8—C3107.79 (12)N4—C23—H23B109.4
C7—C8—C3122.63 (14)C24—C23—H23B109.4
O1—C9—N2120.34 (13)H23A—C23—H23B108.0
O1—C9—C2118.97 (13)C25—C24—C23110.56 (11)
N2—C9—C2120.68 (12)C25—C24—H24A109.5
N2—C10—C11112.37 (11)C23—C24—H24A109.5
N2—C10—H10A109.1C25—C24—H24B109.5
C11—C10—H10A109.1C23—C24—H24B109.5
N2—C10—H10B109.1H24A—C24—H24B108.1
C11—C10—H10B109.1O5—C25—O6124.53 (13)
H10A—C10—H10B107.9O5—C25—C24123.92 (13)
C12—C11—C10110.78 (12)O6—C25—C24111.54 (12)
C12—C11—H11A109.5O6—C26—H26A109.5
C10—C11—H11A109.5O6—C26—H26B109.5
C12—C11—H11B109.5H26A—C26—H26B109.5
C10—C11—H11B109.5O6—C26—H26C109.5
H11A—C11—H11B108.1H26A—C26—H26C109.5
O2—C12—O3123.10 (13)H26B—C26—H26C109.5
O2—C12—C11125.54 (13)C1—N1—C8109.60 (11)
O3—C12—C11111.36 (12)C1—N1—H1A125.2
O3—C13—H13A109.5C8—N1—H1A125.2
O3—C13—H13B109.5C9—N2—C10118.86 (11)
H13A—C13—H13B109.5C9—N2—H2120.6
O3—C13—H13C109.5C10—N2—H2120.6
H13A—C13—H13C109.5C14—N3—C21109.23 (12)
H13B—C13—H13C109.5C14—N3—H3125.4
N3—C14—C15109.93 (13)C21—N3—H3125.4
N3—C14—H14125.0C22—N4—C23120.49 (11)
C15—C14—H14125.0C22—N4—H4A119.8
C14—C15—C16106.73 (12)C23—N4—H4A119.8
C14—C15—C22125.74 (13)C12—O3—C13115.49 (12)
C16—C15—C22127.45 (12)C25—O6—C26116.00 (12)
C17—C16—C21118.46 (13)H1B—O1W—H1C107.6
C17—C16—C15135.56 (13)
N1—C1—C2—C30.15 (16)C16—C17—C18—C190.8 (3)
N1—C1—C2—C9177.67 (14)C17—C18—C19—C201.5 (3)
C1—C2—C3—C4179.04 (15)C18—C19—C20—C210.5 (3)
C9—C2—C3—C41.0 (2)C19—C20—C21—N3179.75 (16)
C1—C2—C3—C80.29 (15)C19—C20—C21—C161.1 (2)
C9—C2—C3—C8177.72 (12)C17—C16—C21—N3179.37 (13)
C8—C3—C4—C51.3 (2)C15—C16—C21—N31.26 (16)
C2—C3—C4—C5177.35 (15)C17—C16—C21—C201.7 (2)
C3—C4—C5—C60.8 (2)C15—C16—C21—C20177.67 (14)
C4—C5—C6—C70.2 (2)C14—C15—C22—O4179.26 (14)
C5—C6—C7—C80.6 (2)C16—C15—C22—O43.1 (2)
C6—C7—C8—N1177.99 (14)C14—C15—C22—N40.2 (2)
C6—C7—C8—C30.1 (2)C16—C15—C22—N4175.97 (13)
C4—C3—C8—N1179.32 (12)N4—C23—C24—C25179.09 (12)
C2—C3—C8—N10.31 (15)C23—C24—C25—O52.6 (2)
C4—C3—C8—C70.9 (2)C23—C24—C25—O6177.96 (12)
C2—C3—C8—C7178.12 (13)C2—C1—N1—C80.05 (16)
C1—C2—C9—O1179.73 (15)C7—C8—N1—C1178.05 (15)
C3—C2—C9—O12.2 (2)C3—C8—N1—C10.23 (16)
C1—C2—C9—N21.0 (2)O1—C9—N2—C100.2 (2)
C3—C2—C9—N2178.56 (12)C2—C9—N2—C10179.46 (12)
N2—C10—C11—C12178.09 (12)C11—C10—N2—C9177.74 (12)
C10—C11—C12—O28.0 (2)C15—C14—N3—C210.72 (18)
C10—C11—C12—O3171.58 (12)C20—C21—N3—C14177.58 (16)
N3—C14—C15—C160.08 (17)C16—C21—N3—C141.25 (17)
N3—C14—C15—C22176.72 (13)O4—C22—N4—C230.5 (2)
C14—C15—C16—C17179.97 (16)C15—C22—N4—C23179.56 (13)
C22—C15—C16—C173.3 (3)C24—C23—N4—C22177.04 (12)
C14—C15—C16—C210.82 (16)O2—C12—O3—C130.2 (2)
C22—C15—C16—C21175.91 (14)C11—C12—O3—C13179.74 (13)
C21—C16—C17—C180.7 (2)O5—C25—O6—C261.2 (2)
C15—C16—C17—C18178.40 (16)C24—C25—O6—C26178.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.882.042.8219 (15)148
N2—H2···O1Wii0.882.092.9348 (17)161
N3—H3···O10.881.882.7404 (16)164
N4—H4A···O20.882.433.2952 (15)167
O1W—H1B···O40.852.172.9890 (18)161
O1W—H1C···O5iii0.851.982.7970 (16)160
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1, z; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC13H14N2O3·0.5H2O
Mr255.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.8220 (13), 9.7668 (12), 23.623 (3)
β (°) 92.422 (2)
V3)2494.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.43 × 0.39
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
13021, 5484, 4349
Rint0.036
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.07
No. of reflections5484
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.882.042.8219 (15)147.7
N2—H2···O1Wii0.882.092.9348 (17)160.6
N3—H3···O10.881.882.7404 (16)164.0
N4—H4A···O20.882.433.2952 (15)167.0
O1W—H1B···O40.852.172.9890 (18)160.9
O1W—H1C···O5iii0.851.982.7970 (16)159.6
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1, z; (iii) x, y+2, z.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259.  Web of Science CrossRef PubMed Google Scholar
First citationHuang, G., Xu, X. Y., Zeng, X. C., Tang, G. H. & Li, D. D. (2009). Acta Cryst. E65, o2063.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319–4321.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiquee, T., Islam, S., Bennett, D., Zeller, M. & Hossain, M. (2009). Acta Cryst. E65, o1802–o1803.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds