organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Benzyl­oxybenzyl­­idene)isonicotinohydrazide methanol solvate monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2010; accepted 10 May 2010; online 15 May 2010)

The title compound, C20H17N3O2·CH4O·H2O, was synthesized by the condensation reaction of 2-benzyl­oxybenzaldehyde with isoniazid (isonicotinic acid hydrazide). The tricyclic compound displays a trans configuration with respect to the C=N double bond. The central benzene ring makes dihedral angles of 8.83 (7) and 70.39 (8)° with the pyridine ring and the terminal benzene ring, respectively. The dihedral angle between the pyridine ring and the terminal benzene ring is 73.11 (8)°. In the crystal structure, mol­ecules are connected by inter­molecular N—H⋯O, O—H⋯O, O—H⋯(N,N) and C—H⋯O hydrogen bonds, forming a two-dimensional network perpendicular to the a axis.

Related literature

For applications of isoniazid derivatives, see: Janin, 2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]; Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]). For the biological activity of Schiff bases, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For related structures, see: Naveenkumar et al. (2010a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.], 2010b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o1235-o1236.], 2010c[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010c). Acta Cryst. E66, o1202-o1203.]). For the synthesis of isoniazid derivatives, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O2·CH4O·H2O

  • Mr = 381.42

  • Monoclinic, P 21 /c

  • a = 17.763 (3) Å

  • b = 12.3888 (18) Å

  • c = 8.7450 (13) Å

  • β = 98.672 (3)°

  • V = 1902.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.992

  • 24474 measured reflections

  • 6515 independent reflections

  • 4012 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.170

  • S = 1.00

  • 6515 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3 0.91 (2) 2.06 (2) 2.9549 (18) 169.9 (16)
O3—H1O3⋯O1W 0.87 (3) 1.85 (3) 2.7165 (19) 174 (3)
O1W—H1W1⋯O1i 0.80 (3) 2.11 (3) 2.8713 (18) 160 (2)
O1W—H1W1⋯N3i 0.80 (3) 2.62 (3) 3.2119 (19) 133 (2)
O1W—H2W1⋯N1ii 0.87 (3) 2.05 (3) 2.898 (2) 163 (2)
C1—H1A⋯O3 0.93 2.27 3.189 (2) 169
C2—H2A⋯O1iii 0.93 2.48 3.229 (2) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). We have recently reported the crystal structures of (E)-N'-[(E)-3-(4-hydroxy- 3-methoxyphenyl)allylidene]isonicotinohydrazide (Naveenkumar et al., 2010a), (E)-N'-(2,4,5-trimethoxybenzylidene)isonicotinohydrazide dihydrate (Naveenkumar et al., 2010b) and (E)-N'- (2,4,6-trihydroxybenzylidene)isonicotinohydrazide sesquihydrate (Naveenkumar et al., 2010c). As a part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound, (I), Fig.1.

In (I), the molecular structure of the compound displays a trans configuration with respect to the CN double bond. The central benzene (C8–C13) ring makes dihedral angles of 8.83 (7)° and 70.39 (8)° with the pyridine (N1/C1–C5) ring and the terminal benzene (C15–C20) ring, respectively. The dihedral angle between the pyridine (N1/C1–C5) ring and the terminal benzene (C15–C20) ring is 73.11 (8)°.

In the crystal packing (Fig. 2), molecules are connected by N2—H1N2···O3, O3—H1O3···O1W, O1W—H1W1···O1, O1W—H1W1···N3, O1W—H2W1···N1, C1—H1A···O3 and C2—H2A···O1 (Table 1) hydrogen bonds.

Related literature top

For applications of isoniazid derivatives, see: Janin, 2007; Maccari et al. (2005); Slayden & Barry (2000). For the biological activity of Schiff bases, see: Kahwa et al. (1986). For related structures, see: Naveenkumar et al. (2010a, 2010b, 2010c). For the synthesis of isoniazid derivatives, see: Lourenco et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

This isoniazid derivative was prepared by a literature procedure (Lourenco et al., 2008) involving the reaction between the 2-benzyloxybenzaldehyde (1.0 eq) and isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 hours at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and diethyl ether, afforded the pure derivative. Colorless single crystals suitable for X-ray analysis were obtained by recrystalization from methanol.

Refinement top

Atoms H1N2, H1O3, H1W1 and H2W1 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). We have recently reported the crystal structures of (E)-N'-[(E)-3-(4-hydroxy- 3-methoxyphenyl)allylidene]isonicotinohydrazide (Naveenkumar et al., 2010a), (E)-N'-(2,4,5-trimethoxybenzylidene)isonicotinohydrazide dihydrate (Naveenkumar et al., 2010b) and (E)-N'- (2,4,6-trihydroxybenzylidene)isonicotinohydrazide sesquihydrate (Naveenkumar et al., 2010c). As a part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound, (I), Fig.1.

In (I), the molecular structure of the compound displays a trans configuration with respect to the CN double bond. The central benzene (C8–C13) ring makes dihedral angles of 8.83 (7)° and 70.39 (8)° with the pyridine (N1/C1–C5) ring and the terminal benzene (C15–C20) ring, respectively. The dihedral angle between the pyridine (N1/C1–C5) ring and the terminal benzene (C15–C20) ring is 73.11 (8)°.

In the crystal packing (Fig. 2), molecules are connected by N2—H1N2···O3, O3—H1O3···O1W, O1W—H1W1···O1, O1W—H1W1···N3, O1W—H2W1···N1, C1—H1A···O3 and C2—H2A···O1 (Table 1) hydrogen bonds.

For applications of isoniazid derivatives, see: Janin, 2007; Maccari et al. (2005); Slayden & Barry (2000). For the biological activity of Schiff bases, see: Kahwa et al. (1986). For related structures, see: Naveenkumar et al. (2010a, 2010b, 2010c). For the synthesis of isoniazid derivatives, see: Lourenco et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonding (dashed lines) network.
(E)-N'-(2-Benzyloxybenzylidene)isonicotinohydrazide methanol solvate monohydrate top
Crystal data top
C20H17N3O2·CH4O·H2OF(000) = 808
Mr = 381.42Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3013 reflections
a = 17.763 (3) Åθ = 2.3–30.0°
b = 12.3888 (18) ŵ = 0.09 mm1
c = 8.7450 (13) ÅT = 100 K
β = 98.672 (3)°Plate, colourless
V = 1902.4 (5) Å30.35 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6515 independent reflections
Radiation source: fine-focus sealed tube4012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 32.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.968, Tmax = 0.992k = 1718
24474 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0887P)2]
where P = (Fo2 + 2Fc2)/3
6515 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H17N3O2·CH4O·H2OV = 1902.4 (5) Å3
Mr = 381.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.763 (3) ŵ = 0.09 mm1
b = 12.3888 (18) ÅT = 100 K
c = 8.7450 (13) Å0.35 × 0.18 × 0.09 mm
β = 98.672 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6515 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4012 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.992Rint = 0.069
24474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.37 e Å3
6515 reflectionsΔρmin = 0.35 e Å3
270 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12066 (6)0.05407 (9)0.36337 (14)0.0250 (3)
O20.36364 (6)0.37324 (8)0.80611 (13)0.0211 (2)
N10.05513 (8)0.28776 (12)0.00600 (16)0.0258 (3)
N20.17041 (7)0.21885 (11)0.43066 (15)0.0194 (3)
N30.22141 (7)0.17181 (10)0.54646 (15)0.0196 (3)
C10.04882 (9)0.31412 (13)0.2126 (2)0.0241 (3)
H1A0.07910.36220.27650.029*
C20.00980 (9)0.35168 (14)0.1031 (2)0.0270 (4)
H2A0.01810.42580.09660.032*
C30.04163 (10)0.18181 (14)0.0186 (2)0.0284 (4)
H3A0.07210.13560.04800.034*
C40.01531 (9)0.13683 (13)0.1257 (2)0.0256 (3)
H4A0.02230.06240.13040.031*
C50.06174 (8)0.20416 (12)0.22571 (17)0.0191 (3)
C60.12010 (8)0.15226 (12)0.34544 (18)0.0194 (3)
C70.26917 (8)0.23667 (12)0.62477 (18)0.0192 (3)
H7A0.26760.31010.60220.023*
C80.32580 (8)0.19465 (12)0.74905 (17)0.0176 (3)
C90.33274 (8)0.08431 (12)0.78078 (18)0.0200 (3)
H9A0.30040.03600.72180.024*
C100.38701 (9)0.04540 (12)0.89869 (19)0.0216 (3)
H10A0.39060.02820.91930.026*
C110.43586 (8)0.11734 (13)0.98564 (19)0.0216 (3)
H11A0.47240.09141.06440.026*
C120.43089 (8)0.22761 (12)0.95664 (18)0.0198 (3)
H12A0.46440.27511.01450.024*
C130.37506 (8)0.26656 (11)0.83943 (17)0.0179 (3)
C140.40996 (9)0.45051 (12)0.90037 (19)0.0212 (3)
H14A0.46240.44570.88250.025*
H14B0.40840.43691.00910.025*
C150.37824 (9)0.55991 (12)0.85576 (17)0.0201 (3)
C160.41662 (9)0.63173 (13)0.77156 (19)0.0240 (3)
H16A0.46380.61290.74550.029*
C170.38469 (10)0.73098 (13)0.7266 (2)0.0291 (4)
H17A0.41040.77840.67020.035*
C180.31456 (10)0.75978 (13)0.7654 (2)0.0287 (4)
H18A0.29320.82630.73490.034*
C190.27639 (10)0.68912 (14)0.8500 (2)0.0278 (4)
H19A0.22950.70860.87680.033*
C200.30781 (9)0.58952 (13)0.89466 (19)0.0245 (3)
H20A0.28180.54230.95080.029*
O30.17234 (7)0.45730 (9)0.42445 (15)0.0268 (3)
C210.21264 (10)0.52275 (14)0.5437 (2)0.0269 (3)
H21A0.26570.50390.55830.040*
H21B0.19260.51100.63830.040*
H21C0.20680.59740.51490.040*
O1W0.16524 (7)0.56017 (11)0.14832 (15)0.0261 (3)
H1N20.1707 (11)0.2913 (16)0.416 (2)0.027 (5)*
H1O30.1722 (13)0.4936 (19)0.339 (3)0.051 (7)*
H1W10.1606 (14)0.518 (2)0.079 (3)0.052 (7)*
H2W10.1375 (15)0.616 (2)0.115 (3)0.056 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (6)0.0175 (5)0.0262 (6)0.0017 (4)0.0046 (5)0.0026 (5)
O20.0244 (5)0.0139 (5)0.0223 (5)0.0010 (4)0.0054 (4)0.0011 (4)
N10.0228 (6)0.0274 (7)0.0257 (7)0.0022 (5)0.0009 (6)0.0010 (6)
N20.0213 (6)0.0161 (6)0.0187 (6)0.0002 (5)0.0032 (5)0.0025 (5)
N30.0188 (6)0.0188 (6)0.0199 (6)0.0012 (4)0.0016 (5)0.0024 (5)
C10.0232 (7)0.0209 (7)0.0259 (8)0.0017 (6)0.0038 (6)0.0008 (7)
C20.0259 (8)0.0224 (8)0.0309 (9)0.0036 (6)0.0012 (7)0.0024 (7)
C30.0274 (8)0.0283 (9)0.0259 (8)0.0019 (6)0.0078 (7)0.0013 (7)
C40.0275 (8)0.0196 (8)0.0269 (8)0.0007 (6)0.0045 (7)0.0009 (7)
C50.0181 (6)0.0209 (7)0.0179 (7)0.0005 (5)0.0012 (6)0.0020 (6)
C60.0203 (7)0.0200 (7)0.0173 (7)0.0019 (5)0.0011 (6)0.0000 (6)
C70.0207 (7)0.0156 (7)0.0202 (7)0.0008 (5)0.0008 (6)0.0008 (6)
C80.0181 (6)0.0165 (7)0.0177 (7)0.0006 (5)0.0005 (5)0.0012 (6)
C90.0205 (7)0.0174 (7)0.0213 (7)0.0007 (5)0.0006 (6)0.0015 (6)
C100.0231 (7)0.0163 (7)0.0249 (8)0.0022 (5)0.0020 (6)0.0035 (6)
C110.0195 (7)0.0233 (8)0.0208 (7)0.0039 (5)0.0006 (6)0.0025 (6)
C120.0178 (6)0.0209 (7)0.0195 (7)0.0003 (5)0.0010 (6)0.0012 (6)
C130.0197 (6)0.0152 (7)0.0190 (7)0.0011 (5)0.0032 (6)0.0001 (6)
C140.0225 (7)0.0170 (7)0.0222 (7)0.0024 (5)0.0032 (6)0.0014 (6)
C150.0252 (7)0.0170 (7)0.0165 (7)0.0015 (5)0.0022 (6)0.0019 (6)
C160.0245 (7)0.0228 (8)0.0234 (8)0.0026 (6)0.0003 (6)0.0005 (7)
C170.0339 (9)0.0220 (8)0.0294 (9)0.0054 (6)0.0013 (7)0.0039 (7)
C180.0361 (9)0.0174 (8)0.0294 (9)0.0018 (6)0.0053 (8)0.0013 (7)
C190.0300 (8)0.0251 (8)0.0270 (8)0.0051 (6)0.0003 (7)0.0035 (7)
C200.0291 (8)0.0222 (8)0.0220 (8)0.0002 (6)0.0032 (7)0.0003 (7)
O30.0307 (6)0.0224 (6)0.0244 (6)0.0056 (4)0.0052 (5)0.0018 (5)
C210.0288 (8)0.0243 (8)0.0262 (8)0.0023 (6)0.0000 (7)0.0033 (7)
O1W0.0298 (6)0.0224 (6)0.0231 (6)0.0033 (5)0.0058 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C61.2263 (18)C11—C121.390 (2)
O2—C131.3619 (17)C11—H11A0.9300
O2—C141.4382 (18)C12—C131.400 (2)
N1—C31.336 (2)C12—H12A0.9300
N1—C21.338 (2)C14—C151.497 (2)
N2—C61.3542 (19)C14—H14A0.9700
N2—N31.3817 (18)C14—H14B0.9700
N2—H1N20.91 (2)C15—C201.394 (2)
N3—C71.2881 (19)C15—C161.397 (2)
C1—C51.383 (2)C16—C171.386 (2)
C1—C21.385 (2)C16—H16A0.9300
C1—H1A0.9300C17—C181.386 (3)
C2—H2A0.9300C17—H17A0.9300
C3—C41.387 (2)C18—C191.387 (2)
C3—H3A0.9300C18—H18A0.9300
C4—C51.387 (2)C19—C201.386 (2)
C4—H4A0.9300C19—H19A0.9300
C5—C61.502 (2)C20—H20A0.9300
C7—C81.461 (2)O3—C211.426 (2)
C7—H7A0.9300O3—H1O30.88 (2)
C8—C91.397 (2)C21—H21A0.9600
C8—C131.406 (2)C21—H21B0.9600
C9—C101.388 (2)C21—H21C0.9600
C9—H9A0.9300O1W—H1W10.80 (3)
C10—C111.388 (2)O1W—H2W10.88 (3)
C10—H10A0.9300
C13—O2—C14117.99 (12)C11—C12—C13119.40 (14)
C3—N1—C2116.47 (15)C11—C12—H12A120.3
C6—N2—N3116.85 (13)C13—C12—H12A120.3
C6—N2—H1N2123.0 (12)O2—C13—C12123.87 (14)
N3—N2—H1N2120.1 (12)O2—C13—C8115.77 (13)
C7—N3—N2115.66 (13)C12—C13—C8120.35 (13)
C5—C1—C2119.11 (15)O2—C14—C15107.03 (12)
C5—C1—H1A120.4O2—C14—H14A110.3
C2—C1—H1A120.4C15—C14—H14A110.3
N1—C2—C1123.90 (15)O2—C14—H14B110.3
N1—C2—H2A118.0C15—C14—H14B110.3
C1—C2—H2A118.0H14A—C14—H14B108.6
N1—C3—C4123.64 (16)C20—C15—C16119.24 (14)
N1—C3—H3A118.2C20—C15—C14119.41 (14)
C4—C3—H3A118.2C16—C15—C14121.32 (14)
C5—C4—C3119.19 (15)C17—C16—C15120.22 (15)
C5—C4—H4A120.4C17—C16—H16A119.9
C3—C4—H4A120.4C15—C16—H16A119.9
C1—C5—C4117.68 (14)C16—C17—C18120.22 (16)
C1—C5—C6124.60 (14)C16—C17—H17A119.9
C4—C5—C6117.66 (14)C18—C17—H17A119.9
O1—C6—N2122.82 (14)C17—C18—C19119.84 (15)
O1—C6—C5120.34 (14)C17—C18—H18A120.1
N2—C6—C5116.84 (13)C19—C18—H18A120.1
N3—C7—C8119.84 (13)C20—C19—C18120.24 (16)
N3—C7—H7A120.1C20—C19—H19A119.9
C8—C7—H7A120.1C18—C19—H19A119.9
C9—C8—C13118.68 (13)C19—C20—C15120.24 (15)
C9—C8—C7121.79 (13)C19—C20—H20A119.9
C13—C8—C7119.53 (13)C15—C20—H20A119.9
C10—C9—C8121.22 (14)C21—O3—H1O3105.8 (16)
C10—C9—H9A119.4O3—C21—H21A109.5
C8—C9—H9A119.4O3—C21—H21B109.5
C9—C10—C11119.40 (14)H21A—C21—H21B109.5
C9—C10—H10A120.3O3—C21—H21C109.5
C11—C10—H10A120.3H21A—C21—H21C109.5
C10—C11—C12120.93 (14)H21B—C21—H21C109.5
C10—C11—H11A119.5H1W1—O1W—H2W1107 (2)
C12—C11—H11A119.5
C6—N2—N3—C7179.30 (13)C9—C10—C11—C120.3 (2)
C3—N1—C2—C10.1 (2)C10—C11—C12—C130.9 (2)
C5—C1—C2—N10.8 (3)C14—O2—C13—C122.2 (2)
C2—N1—C3—C40.5 (2)C14—O2—C13—C8176.90 (12)
N1—C3—C4—C50.4 (3)C11—C12—C13—O2177.34 (13)
C2—C1—C5—C40.9 (2)C11—C12—C13—C81.7 (2)
C2—C1—C5—C6176.15 (14)C9—C8—C13—O2177.83 (12)
C3—C4—C5—C10.3 (2)C7—C8—C13—O22.38 (19)
C3—C4—C5—C6176.90 (14)C9—C8—C13—C121.3 (2)
N3—N2—C6—O13.1 (2)C7—C8—C13—C12178.47 (13)
N3—N2—C6—C5176.55 (12)C13—O2—C14—C15171.52 (12)
C1—C5—C6—O1169.54 (15)O2—C14—C15—C2069.93 (18)
C4—C5—C6—O17.5 (2)O2—C14—C15—C16107.99 (16)
C1—C5—C6—N210.1 (2)C20—C15—C16—C170.4 (2)
C4—C5—C6—N2172.90 (14)C14—C15—C16—C17177.56 (15)
N2—N3—C7—C8179.56 (12)C15—C16—C17—C180.2 (3)
N3—C7—C8—C93.6 (2)C16—C17—C18—C190.2 (3)
N3—C7—C8—C13176.60 (13)C17—C18—C19—C200.5 (3)
C13—C8—C9—C100.1 (2)C18—C19—C20—C150.4 (3)
C7—C8—C9—C10179.69 (14)C16—C15—C20—C190.1 (2)
C8—C9—C10—C110.7 (2)C14—C15—C20—C19177.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O30.91 (2)2.06 (2)2.9549 (18)169.9 (16)
O3—H1O3···O1W0.87 (3)1.85 (3)2.7165 (19)174 (3)
O1W—H1W1···O1i0.80 (3)2.11 (3)2.8713 (18)160 (2)
O1W—H1W1···N3i0.80 (3)2.62 (3)3.2119 (19)133 (2)
O1W—H2W1···N1ii0.87 (3)2.05 (3)2.898 (2)163 (2)
C1—H1A···O30.932.273.189 (2)169
C2—H2A···O1iii0.932.483.229 (2)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H17N3O2·CH4O·H2O
Mr381.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.763 (3), 12.3888 (18), 8.7450 (13)
β (°) 98.672 (3)
V3)1902.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
24474, 6515, 4012
Rint0.069
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.170, 1.00
No. of reflections6515
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O30.91 (2)2.06 (2)2.9549 (18)169.9 (16)
O3—H1O3···O1W0.87 (3)1.85 (3)2.7165 (19)174 (3)
O1W—H1W1···O1i0.80 (3)2.11 (3)2.8713 (18)160 (2)
O1W—H1W1···N3i0.80 (3)2.62 (3)3.2119 (19)133 (2)
O1W—H2W1···N1ii0.87 (3)2.05 (3)2.898 (2)163 (2)
C1—H1A···O30.93002.27003.189 (2)169.00
C2—H2A···O1iii0.93002.48003.229 (2)137.00
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSNK is grateful to Universiti Sains Malaysia for a USM-fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010c). Acta Cryst. E66, o1202–o1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o1235–o1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds