organic compounds
2-Amino-5-chloropyridinium salicylate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the 5H6ClN2+·C7H5O3−, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxylate O atoms via a pair of N—H⋯O hydrogen bonds, forming R22(8) ring motifs. These motifs are centrosymmetrically paired via N—H⋯O hydrogen bonds, forming a complementary donor–donor–acceptor–acceptor (DDAA) array. A typical intramolecular O—H⋯O hydrogen bond is also observed in the salicylate anion. The is further stabilized by weak C—H⋯π interactions.
of the title salt, CRelated literature
For 2-aminopyridines, see: Gellert & Hsu (1988); Banerjee & Murugavel (2004); Bis & Zaworotko (2005); Bis et al. (2006) and for salicylic acid, see: Cochran (1953); Singh & Vijayan (1974); Varughese & Kartha (1982). For related structures, see: Hemamalini & Fun (2010a,b,c). Pourayoubi et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995) and for hydrogen-bonding patterns in organic salts, see: Baskar Raj et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810018210/sj5004sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810018210/sj5004Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and salicylic acid (69 mg, Merck) were mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
All hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O).
2-Aminopyridine is one of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Gellert & Hsu, 1988; Banerjee & Murugavel, 2004; Bis & Zaworotko, 2005; Bis et al., 2006). A series of similar complexes formed from 2-amino-5-chloropyridine and carboxylates has been reported previously (Hemamalini & Fun, 2010a,b,c). Salicylic acid (Cochran, 1953) and its derivatives are widely used as analgesic. They are also used for various gastric tympany and externally as antiseptic and antifungal agents for various skin conditions. The
of salicylic acid and its complexes, for example, antipyrine-salicylic acid (salipyrine) (Singh & Vijayan, 1974) and piperazinedione-salicylic acid (1:2) (Varughese & Kartha, 1982), have been reported in literature. In a continuation of our studies of pyridinium derivatives, the determination of the title compound has been undertaken.The
(Fig. 1) contains one 2-amino-5-chloropyridinium cation and one salicylate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-chloropyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.87 (8)°, compared to the corresponding angle of 118.11 (12)° in neutral 2-amino-5-chloropyridine (Pourayoubi et al., 2007). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.020 (1) Å for atom Cl. The bond lengths (Allen et al., 1987) and angles are normal.In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N1—H1···O2 and N2—H2A···O3 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N—H···O hydrogen bonds, forming a complementary DDAA array (Baskar Raj et al. 2003). There is an intramolecular O1—H1B···O2 hydrogen bond in the salicylate anion, which generates an S(6) ring motif. This motif is also observed in the π interactions (Table 1) involving the C7–C12 (centroid Cg1) ring.
of 2-aminopyridinium salicylate (Gellert & Hsu, 1988). The is further stabilized by weak C—H···For 2-aminopyridines, see: Gellert & Hsu (1988); Banerjee & Murugavel (2004); Bis & Zaworotko (2005); Bis et al. (2006) and for salicylic acid, see: Cochran (1953); Singh & Vijayan (1974); Varughese & Kartha (1982). For related structures, see: Hemamalini & Fun (2010a,b,c). Pourayoubi et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995) and for hydrogen-bonding patterns in organic salts, see: Baskar Raj et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6ClN2+·C7H5O3− | F(000) = 552 |
Mr = 266.68 | Dx = 1.506 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8071 reflections |
a = 6.7403 (6) Å | θ = 2.8–35.0° |
b = 14.5574 (12) Å | µ = 0.33 mm−1 |
c = 13.2857 (9) Å | T = 100 K |
β = 115.550 (4)° | Block, colourless |
V = 1176.13 (16) Å3 | 0.38 × 0.34 × 0.23 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 5144 independent reflections |
Radiation source: fine-focus sealed tube | 4405 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 35.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→9 |
Tmin = 0.887, Tmax = 0.929 | k = −23→23 |
19132 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0671P)2 + 0.2275P] where P = (Fo2 + 2Fc2)/3 |
5144 reflections | (Δ/σ)max = 0.001 |
164 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
C5H6ClN2+·C7H5O3− | V = 1176.13 (16) Å3 |
Mr = 266.68 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.7403 (6) Å | µ = 0.33 mm−1 |
b = 14.5574 (12) Å | T = 100 K |
c = 13.2857 (9) Å | 0.38 × 0.34 × 0.23 mm |
β = 115.550 (4)° |
Bruker APEXII DUO CCD area-detector diffractometer | 5144 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4405 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.929 | Rint = 0.026 |
19132 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.66 e Å−3 |
5144 reflections | Δρmin = −0.43 e Å−3 |
164 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.19050 (4) | 0.904645 (18) | 0.14133 (2) | 0.02103 (8) | |
N1 | 0.41620 (13) | 0.90963 (5) | 0.37992 (7) | 0.01402 (14) | |
H1 | 0.4827 | 0.8888 | 0.4469 | 0.017* | |
N2 | 0.74627 (14) | 0.97248 (6) | 0.40024 (7) | 0.01929 (16) | |
H2A | 0.8072 | 0.9514 | 0.4672 | 0.023* | |
H2B | 0.8229 | 1.0030 | 0.3741 | 0.023* | |
C1 | 0.19743 (15) | 0.89260 (6) | 0.32167 (8) | 0.01479 (15) | |
H1A | 0.1225 | 0.8595 | 0.3544 | 0.018* | |
C2 | 0.08837 (15) | 0.92433 (7) | 0.21489 (7) | 0.01471 (15) | |
C3 | 0.20331 (15) | 0.97455 (7) | 0.16657 (7) | 0.01588 (15) | |
H3 | 0.1298 | 0.9965 | 0.0940 | 0.019* | |
C4 | 0.42261 (15) | 0.99101 (7) | 0.22608 (7) | 0.01550 (15) | |
H4 | 0.4992 | 1.0238 | 0.1941 | 0.019* | |
C5 | 0.53371 (15) | 0.95784 (6) | 0.33713 (7) | 0.01379 (15) | |
O1 | 0.56169 (12) | 0.72179 (6) | 0.25181 (6) | 0.01955 (15) | |
H1B | 0.5299 | 0.7070 | 0.1871 | 0.029* | |
O2 | 0.62190 (11) | 0.65244 (5) | 0.09104 (6) | 0.01729 (14) | |
O3 | 0.95143 (13) | 0.59845 (5) | 0.11872 (6) | 0.01772 (14) | |
C7 | 0.77978 (15) | 0.70954 (6) | 0.31440 (7) | 0.01377 (15) | |
C8 | 0.86682 (17) | 0.73401 (7) | 0.42726 (8) | 0.01670 (16) | |
H8 | 0.7754 | 0.7583 | 0.4567 | 0.020* | |
C9 | 1.08961 (17) | 0.72202 (7) | 0.49541 (8) | 0.01810 (17) | |
H9 | 1.1464 | 0.7380 | 0.5704 | 0.022* | |
C10 | 1.22897 (16) | 0.68615 (7) | 0.45190 (8) | 0.01796 (17) | |
H10 | 1.3782 | 0.6787 | 0.4975 | 0.022* | |
C11 | 1.14261 (15) | 0.66179 (6) | 0.34034 (8) | 0.01524 (15) | |
H11 | 1.2353 | 0.6382 | 0.3113 | 0.018* | |
C12 | 0.91805 (14) | 0.67199 (6) | 0.27039 (7) | 0.01249 (14) | |
C13 | 0.82718 (15) | 0.63875 (6) | 0.15205 (7) | 0.01318 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01164 (11) | 0.02568 (13) | 0.02128 (12) | −0.00140 (7) | 0.00287 (8) | −0.00279 (8) |
N1 | 0.0125 (3) | 0.0153 (3) | 0.0128 (3) | −0.0010 (2) | 0.0041 (2) | 0.0018 (2) |
N2 | 0.0127 (3) | 0.0256 (4) | 0.0160 (3) | −0.0046 (3) | 0.0029 (3) | 0.0045 (3) |
C1 | 0.0129 (3) | 0.0144 (4) | 0.0164 (4) | −0.0011 (3) | 0.0057 (3) | −0.0001 (3) |
C2 | 0.0116 (3) | 0.0160 (4) | 0.0147 (3) | −0.0002 (3) | 0.0039 (3) | −0.0016 (3) |
C3 | 0.0148 (4) | 0.0178 (4) | 0.0127 (3) | 0.0013 (3) | 0.0038 (3) | 0.0009 (3) |
C4 | 0.0150 (4) | 0.0173 (4) | 0.0136 (3) | −0.0003 (3) | 0.0056 (3) | 0.0025 (3) |
C5 | 0.0122 (3) | 0.0149 (4) | 0.0131 (3) | −0.0006 (3) | 0.0044 (3) | 0.0007 (3) |
O1 | 0.0123 (3) | 0.0292 (4) | 0.0164 (3) | 0.0026 (2) | 0.0054 (2) | −0.0033 (3) |
O2 | 0.0128 (3) | 0.0237 (3) | 0.0128 (3) | 0.0018 (2) | 0.0031 (2) | −0.0024 (2) |
O3 | 0.0176 (3) | 0.0215 (3) | 0.0145 (3) | 0.0046 (2) | 0.0074 (3) | −0.0015 (2) |
C7 | 0.0133 (3) | 0.0146 (3) | 0.0134 (3) | −0.0001 (3) | 0.0057 (3) | −0.0004 (3) |
C8 | 0.0184 (4) | 0.0189 (4) | 0.0139 (3) | 0.0001 (3) | 0.0079 (3) | −0.0016 (3) |
C9 | 0.0209 (4) | 0.0187 (4) | 0.0117 (3) | −0.0012 (3) | 0.0042 (3) | −0.0008 (3) |
C10 | 0.0158 (4) | 0.0181 (4) | 0.0150 (4) | 0.0010 (3) | 0.0019 (3) | 0.0000 (3) |
C11 | 0.0133 (3) | 0.0153 (4) | 0.0155 (3) | 0.0012 (3) | 0.0047 (3) | −0.0005 (3) |
C12 | 0.0123 (3) | 0.0130 (3) | 0.0116 (3) | 0.0004 (3) | 0.0047 (3) | −0.0001 (3) |
C13 | 0.0138 (3) | 0.0135 (3) | 0.0118 (3) | 0.0004 (3) | 0.0052 (3) | 0.0004 (3) |
Cl1—C2 | 1.7280 (9) | O1—H1B | 0.8200 |
N1—C5 | 1.3534 (12) | O2—C13 | 1.2821 (11) |
N1—C1 | 1.3603 (12) | O3—C13 | 1.2496 (11) |
N1—H1 | 0.8600 | C7—C8 | 1.4002 (13) |
N2—C5 | 1.3285 (12) | C7—C12 | 1.4069 (12) |
N2—H2A | 0.8600 | C8—C9 | 1.3901 (14) |
N2—H2B | 0.8600 | C8—H8 | 0.9300 |
C1—C2 | 1.3662 (13) | C9—C10 | 1.3992 (14) |
C1—H1A | 0.9300 | C9—H9 | 0.9300 |
C2—C3 | 1.4057 (13) | C10—C11 | 1.3846 (13) |
C3—C4 | 1.3635 (13) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.4012 (13) |
C4—C5 | 1.4204 (12) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—C13 | 1.5001 (12) |
O1—C7 | 1.3527 (11) | ||
C5—N1—C1 | 122.87 (8) | O1—C7—C8 | 117.84 (8) |
C5—N1—H1 | 118.6 | O1—C7—C12 | 122.33 (8) |
C1—N1—H1 | 118.6 | C8—C7—C12 | 119.81 (8) |
C5—N2—H2A | 120.0 | C9—C8—C7 | 120.10 (8) |
C5—N2—H2B | 120.0 | C9—C8—H8 | 119.9 |
H2A—N2—H2B | 120.0 | C7—C8—H8 | 119.9 |
N1—C1—C2 | 119.66 (8) | C8—C9—C10 | 120.45 (8) |
N1—C1—H1A | 120.2 | C8—C9—H9 | 119.8 |
C2—C1—H1A | 120.2 | C10—C9—H9 | 119.8 |
C1—C2—C3 | 119.63 (8) | C11—C10—C9 | 119.39 (9) |
C1—C2—Cl1 | 119.87 (7) | C11—C10—H10 | 120.3 |
C3—C2—Cl1 | 120.48 (7) | C9—C10—H10 | 120.3 |
C4—C3—C2 | 119.98 (8) | C10—C11—C12 | 121.20 (8) |
C4—C3—H3 | 120.0 | C10—C11—H11 | 119.4 |
C2—C3—H3 | 120.0 | C12—C11—H11 | 119.4 |
C3—C4—C5 | 119.78 (8) | C11—C12—C7 | 119.03 (8) |
C3—C4—H4 | 120.1 | C11—C12—C13 | 119.80 (8) |
C5—C4—H4 | 120.1 | C7—C12—C13 | 121.11 (8) |
N2—C5—N1 | 119.03 (8) | O3—C13—O2 | 123.67 (8) |
N2—C5—C4 | 122.89 (8) | O3—C13—C12 | 119.32 (8) |
N1—C5—C4 | 118.08 (8) | O2—C13—C12 | 117.00 (7) |
C7—O1—H1B | 109.5 | ||
C5—N1—C1—C2 | 0.46 (14) | C8—C9—C10—C11 | −0.61 (15) |
N1—C1—C2—C3 | −0.25 (14) | C9—C10—C11—C12 | −0.31 (15) |
N1—C1—C2—Cl1 | −178.88 (7) | C10—C11—C12—C7 | 1.35 (14) |
C1—C2—C3—C4 | 0.27 (14) | C10—C11—C12—C13 | −175.67 (9) |
Cl1—C2—C3—C4 | 178.89 (7) | O1—C7—C12—C11 | 179.72 (8) |
C2—C3—C4—C5 | −0.47 (14) | C8—C7—C12—C11 | −1.48 (13) |
C1—N1—C5—N2 | 179.07 (9) | O1—C7—C12—C13 | −3.30 (14) |
C1—N1—C5—C4 | −0.64 (13) | C8—C7—C12—C13 | 175.51 (8) |
C3—C4—C5—N2 | −179.05 (9) | C11—C12—C13—O3 | 3.25 (13) |
C3—C4—C5—N1 | 0.64 (13) | C7—C12—C13—O3 | −173.71 (8) |
O1—C7—C8—C9 | 179.44 (9) | C11—C12—C13—O2 | −177.95 (8) |
C12—C7—C8—C9 | 0.58 (14) | C7—C12—C13—O2 | 5.09 (13) |
C7—C8—C9—C10 | 0.47 (15) |
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 1.83 | 2.6928 (10) | 178 |
O1—H1B···O2 | 0.82 | 1.82 | 2.5483 (11) | 147 |
N2—H2A···O3i | 0.86 | 1.96 | 2.8181 (11) | 178 |
N2—H2B···O3ii | 0.86 | 2.03 | 2.8321 (13) | 154 |
C1—H1A···Cg1iii | 0.93 | 2.57 | 3.3680 (11) | 144 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C5H6ClN2+·C7H5O3− |
Mr | 266.68 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.7403 (6), 14.5574 (12), 13.2857 (9) |
β (°) | 115.550 (4) |
V (Å3) | 1176.13 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.38 × 0.34 × 0.23 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.887, 0.929 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19132, 5144, 4405 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.808 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.124, 1.17 |
No. of reflections | 5144 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.43 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.8600 | 1.8300 | 2.6928 (10) | 178.30 |
O1—H1B···O2 | 0.8200 | 1.8200 | 2.5483 (11) | 147.00 |
N2—H2A···O3i | 0.8600 | 1.9600 | 2.8181 (11) | 178.00 |
N2—H2B···O3ii | 0.8600 | 2.0300 | 2.8321 (13) | 154.00 |
C1—H1A···Cg1iii | 0.9300 | 2.5700 | 3.3680 (11) | 144.00 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, y, z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552. Web of Science CSD CrossRef CAS Google Scholar
Baskar Raj, S., Stanley, N., Muthiah, P. T., Bocelli, G., Ollá, R. & Cantoni, A. (2003). Cryst. Growth Des. 3 567–571. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650. Web of Science CSD CrossRef CAS Google Scholar
Bis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des. 5, 1169–1179. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cochran, W. (1953). Acta Cryst. 6, 260–268. CSD CrossRef IUCr Journals Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gellert, R. W. & Hsu, I.-N. (1988). Acta Cryst. C44, 311–313. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o464–o465. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o557. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o783–o784. Web of Science CrossRef IUCr Journals Google Scholar
Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 557–562. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Varughese, K. I. & Kartha, G. (1982). Acta Cryst. B38, 301–302. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Aminopyridine is one of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Gellert & Hsu, 1988; Banerjee & Murugavel, 2004; Bis & Zaworotko, 2005; Bis et al., 2006). A series of similar complexes formed from 2-amino-5-chloropyridine and carboxylates has been reported previously (Hemamalini & Fun, 2010a,b,c). Salicylic acid (Cochran, 1953) and its derivatives are widely used as analgesic. They are also used for various gastric tympany and externally as antiseptic and antifungal agents for various skin conditions. The crystal structure of salicylic acid and its complexes, for example, antipyrine-salicylic acid (salipyrine) (Singh & Vijayan, 1974) and piperazinedione-salicylic acid (1:2) (Varughese & Kartha, 1982), have been reported in literature. In a continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.
The asymmetric unit (Fig. 1) contains one 2-amino-5-chloropyridinium cation and one salicylate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-chloropyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.87 (8)°, compared to the corresponding angle of 118.11 (12)° in neutral 2-amino-5-chloropyridine (Pourayoubi et al., 2007). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.020 (1) Å for atom Cl. The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N1—H1···O2 and N2—H2A···O3 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N—H···O hydrogen bonds, forming a complementary DDAA array (Baskar Raj et al. 2003). There is an intramolecular O1—H1B···O2 hydrogen bond in the salicylate anion, which generates an S(6) ring motif. This motif is also observed in the crystal structure of 2-aminopyridinium salicylate (Gellert & Hsu, 1988). The crystal structure is further stabilized by weak C—H···π interactions (Table 1) involving the C7–C12 (centroid Cg1) ring.