organic compounds
2-Amino-5-methylpyridinium picolinate 0.63-hydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The 6H9N2+·C6H4NO2−·0.63H2O, contains two crystallographically independent 2-amino-5-methylpyridinium cations, a pair of picolinate anions and two water molecules, one with an occupancy of 0.25. Both the 2-amino-5-methylpyridine molecules are protonated at the pyridine N atoms. In the the cations, anions and water molecules are linked via N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, as well as by C—H⋯O contacts, forming a chain along the b axis. In addition, weak π–π interactions are observed between pyridinium rings, with centroid–centroid distances of 3.5306 (13) Å.
of the title compound, CRelated literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Ren et al. (2002); Rivas et al. (2003); Jin et al. (2001); Albrecht et al. (2003); Nahringbauer & Kvick (1977). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For details of picolinic acid, see: Mahler & Cordes (1971); Ogata et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810018180/sj5005sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810018180/sj5005Isup2.hkl
Hot methanol solutions (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and picolinic acid (62 mg, Merck) were mixed and warmed over a a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
Atoms H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located from a difference Fourier map and freely refined. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.82 (3)–0.97 (4) Å and O–H = 0.8098–0.8226 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The occupancy of the (O1W) water molecule was initially refined and then fixed at 25% occupancy in the final
In the absence of significant effects, 3139 Friedel pairs were merged.Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). Since our aim is to study some interesting hydrogen bonding interactions, the
of the title compound is presented here.The
of the title compound consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A and B), two picolinate anions (A and B) and two water molecules, O1W and O2W (with occupancies 0.25 and 1.0, respectively), (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (2) Å for atom C6A in cation A and 0.005 (2) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.2 (2)°] and C1B—N1B—C5B [123.0 (2)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.In the π–π interactions involving the pyridinium (N1A/C1A–C5A) and pyridinium (N1B/C1B–C5B) rings, with centroid-to-centroid distance of 3.5306 (13) Å [symmetry code: 1-x, 1/2+y, 1/2-z].
(Fig. 2), the carboxylate groups of each picolinate anion interact with the corresponding 2-amino-5-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···N, N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a one-dimensional chain along the b-axis. The is further stabilized byFor background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Ren et al. (2002); Rivas et al. (2003)); Luque et al. (1997); Jin et al. (2001); Albrecht et al. (2003); Nahringbauer & Kvick (1977). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For details of picolinic acid, see: Mahler & Cordes (1971); Ogata et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity. |
C6H9N2+·C6H4NO2−·0.63H2O | F(000) = 1026 |
Mr = 242.51 | Dx = 1.340 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7433 reflections |
a = 12.126 (3) Å | θ = 2.2–29.8° |
b = 13.842 (3) Å | µ = 0.10 mm−1 |
c = 14.318 (3) Å | T = 100 K |
V = 2403.4 (10) Å3 | Block, colourless |
Z = 8 | 0.28 × 0.20 × 0.09 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 3955 independent reflections |
Radiation source: fine-focus sealed tube | 3119 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.068 |
φ and ω scans | θmax = 30.2°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −17→17 |
Tmin = 0.973, Tmax = 0.991 | k = −19→19 |
50363 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0779P)2 + 0.4137P] where P = (Fo2 + 2Fc2)/3 |
3955 reflections | (Δ/σ)max = 0.001 |
353 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C6H9N2+·C6H4NO2−·0.63H2O | V = 2403.4 (10) Å3 |
Mr = 242.51 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 12.126 (3) Å | µ = 0.10 mm−1 |
b = 13.842 (3) Å | T = 100 K |
c = 14.318 (3) Å | 0.28 × 0.20 × 0.09 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 3955 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3119 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.991 | Rint = 0.068 |
50363 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.33 e Å−3 |
3955 reflections | Δρmin = −0.35 e Å−3 |
353 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1A | 0.97657 (16) | 0.86544 (15) | 0.09594 (13) | 0.0235 (4) | |
N2A | 0.98590 (18) | 0.69933 (17) | 0.08274 (15) | 0.0291 (5) | |
C1A | 0.93479 (19) | 0.78196 (18) | 0.06311 (15) | 0.0231 (4) | |
C2A | 0.83756 (19) | 0.78782 (18) | 0.00781 (17) | 0.0253 (5) | |
H2AA | 0.8060 | 0.7319 | −0.0162 | 0.030* | |
C3A | 0.79046 (19) | 0.87571 (18) | −0.01001 (17) | 0.0257 (5) | |
H3AA | 0.7273 | 0.8789 | −0.0467 | 0.031* | |
C4A | 0.83615 (19) | 0.96169 (17) | 0.02636 (17) | 0.0247 (5) | |
C5A | 0.92944 (19) | 0.95332 (17) | 0.07947 (16) | 0.0238 (5) | |
H5AA | 0.9613 | 1.0085 | 0.1048 | 0.029* | |
C6A | 0.7824 (2) | 1.05808 (19) | 0.01044 (19) | 0.0306 (5) | |
H6AA | 0.8170 | 1.1058 | 0.0493 | 0.046* | |
H6AB | 0.7055 | 1.0539 | 0.0258 | 0.046* | |
H6AC | 0.7904 | 1.0761 | −0.0539 | 0.046* | |
O1A | 1.0576 (2) | 0.51193 (14) | 0.1466 (2) | 0.0585 (8) | |
O2A | 1.06051 (16) | 0.35162 (13) | 0.15326 (14) | 0.0349 (4) | |
N3A | 0.8965 (2) | 0.50822 (17) | 0.01507 (19) | 0.0407 (6) | |
C7A | 0.8132 (2) | 0.5040 (2) | −0.0465 (2) | 0.0425 (7) | |
H7AA | 0.7946 | 0.5602 | −0.0785 | 0.051* | |
C8A | 0.7533 (2) | 0.4213 (2) | −0.0653 (2) | 0.0373 (6) | |
H8AA | 0.6959 | 0.4219 | −0.1084 | 0.045* | |
C9A | 0.7809 (2) | 0.3379 (2) | −0.0184 (2) | 0.0332 (6) | |
H9AA | 0.7420 | 0.2811 | −0.0288 | 0.040* | |
C10A | 0.8683 (2) | 0.34009 (19) | 0.04496 (18) | 0.0280 (5) | |
H10A | 0.8890 | 0.2846 | 0.0771 | 0.034* | |
C11A | 0.9239 (2) | 0.42690 (18) | 0.05917 (18) | 0.0282 (5) | |
C12A | 1.0218 (2) | 0.43223 (19) | 0.1257 (2) | 0.0319 (5) | |
N1B | 0.24603 (16) | 0.35896 (15) | 0.24965 (14) | 0.0233 (4) | |
N2B | 0.25938 (19) | 0.52545 (16) | 0.24544 (15) | 0.0271 (4) | |
C1B | 0.29982 (19) | 0.44099 (17) | 0.27328 (16) | 0.0230 (4) | |
C2B | 0.39853 (18) | 0.43069 (17) | 0.32614 (17) | 0.0251 (5) | |
H2BA | 0.4384 | 0.4851 | 0.3438 | 0.030* | |
C3B | 0.4344 (2) | 0.34168 (19) | 0.35063 (18) | 0.0280 (5) | |
H3BA | 0.4989 | 0.3362 | 0.3853 | 0.034* | |
C4B | 0.3767 (2) | 0.25626 (18) | 0.32509 (17) | 0.0276 (5) | |
C5B | 0.2821 (2) | 0.26944 (17) | 0.27415 (17) | 0.0251 (5) | |
H5BA | 0.2415 | 0.2157 | 0.2559 | 0.030* | |
C6B | 0.4152 (3) | 0.15790 (19) | 0.3523 (2) | 0.0392 (7) | |
H6BA | 0.3732 | 0.1102 | 0.3191 | 0.059* | |
H6BB | 0.4052 | 0.1491 | 0.4182 | 0.059* | |
H6BC | 0.4919 | 0.1511 | 0.3371 | 0.059* | |
O1B | 0.16897 (15) | 0.71003 (12) | 0.20473 (13) | 0.0300 (4) | |
O2B | 0.16686 (15) | 0.87068 (13) | 0.18961 (13) | 0.0310 (4) | |
N3B | 0.35568 (17) | 0.71727 (15) | 0.30874 (15) | 0.0279 (4) | |
C7B | 0.4429 (2) | 0.72461 (19) | 0.3658 (2) | 0.0358 (6) | |
H7BA | 0.4767 | 0.6679 | 0.3857 | 0.043* | |
C8B | 0.4858 (2) | 0.8121 (2) | 0.3969 (2) | 0.0373 (6) | |
H8BA | 0.5458 | 0.8134 | 0.4373 | 0.045* | |
C9B | 0.4378 (2) | 0.89624 (19) | 0.36688 (19) | 0.0332 (6) | |
H9BA | 0.4650 | 0.9558 | 0.3860 | 0.040* | |
C10B | 0.3477 (2) | 0.89054 (18) | 0.30724 (17) | 0.0271 (5) | |
H10B | 0.3142 | 0.9465 | 0.2851 | 0.033* | |
C11B | 0.30822 (18) | 0.80070 (17) | 0.28102 (16) | 0.0227 (4) | |
C12B | 0.20592 (18) | 0.79216 (17) | 0.21971 (16) | 0.0222 (4) | |
O1W | 0.1654 (5) | 0.0578 (4) | 0.2767 (5) | 0.0227 (12) | 0.25 |
H1W1 | 0.1196 | 0.0966 | 0.2937 | 0.034* | 0.25 |
H2W1 | 0.1398 | 0.0069 | 0.2582 | 0.034* | 0.25 |
O2W | 0.0279 (3) | 0.15220 (18) | 0.17835 (19) | 0.0758 (10) | |
H1W2 | −0.0219 | 0.1402 | 0.2150 | 0.114* | |
H2W2 | 0.0312 | 0.2103 | 0.1667 | 0.114* | |
H1NA | 1.044 (3) | 0.858 (3) | 0.131 (3) | 0.050 (10)* | |
H2NA | 1.049 (3) | 0.702 (3) | 0.124 (3) | 0.060 (11)* | |
H3NA | 0.959 (3) | 0.638 (2) | 0.064 (2) | 0.034 (8)* | |
H1NB | 0.177 (3) | 0.359 (3) | 0.219 (3) | 0.061 (11)* | |
H2NB | 0.292 (3) | 0.574 (2) | 0.263 (2) | 0.037 (9)* | |
H3NB | 0.193 (3) | 0.525 (3) | 0.212 (2) | 0.045 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0208 (9) | 0.0264 (10) | 0.0232 (9) | 0.0005 (8) | −0.0022 (8) | 0.0015 (8) |
N2A | 0.0295 (10) | 0.0258 (11) | 0.0318 (11) | 0.0013 (9) | −0.0059 (9) | 0.0014 (9) |
C1A | 0.0233 (10) | 0.0254 (11) | 0.0206 (10) | 0.0000 (9) | 0.0007 (9) | 0.0010 (9) |
C2A | 0.0242 (10) | 0.0245 (11) | 0.0274 (11) | −0.0028 (9) | −0.0029 (9) | −0.0013 (9) |
C3A | 0.0205 (10) | 0.0314 (12) | 0.0253 (11) | −0.0022 (9) | −0.0019 (9) | 0.0026 (9) |
C4A | 0.0231 (10) | 0.0248 (11) | 0.0263 (11) | 0.0013 (9) | 0.0032 (9) | 0.0031 (9) |
C5A | 0.0240 (10) | 0.0217 (11) | 0.0257 (11) | −0.0007 (9) | 0.0002 (9) | −0.0008 (9) |
C6A | 0.0275 (11) | 0.0281 (12) | 0.0361 (13) | 0.0001 (10) | −0.0007 (10) | 0.0047 (11) |
O1A | 0.0586 (14) | 0.0248 (10) | 0.0922 (19) | −0.0069 (10) | −0.0532 (14) | 0.0083 (11) |
O2A | 0.0308 (9) | 0.0263 (9) | 0.0475 (11) | −0.0005 (7) | −0.0147 (8) | 0.0024 (8) |
N3A | 0.0420 (13) | 0.0305 (12) | 0.0495 (14) | −0.0023 (10) | −0.0252 (12) | 0.0033 (11) |
C7A | 0.0435 (16) | 0.0355 (15) | 0.0483 (16) | 0.0052 (13) | −0.0225 (14) | 0.0034 (13) |
C8A | 0.0311 (13) | 0.0435 (16) | 0.0373 (14) | 0.0067 (12) | −0.0122 (11) | −0.0120 (12) |
C9A | 0.0267 (12) | 0.0338 (14) | 0.0392 (14) | −0.0009 (10) | −0.0045 (11) | −0.0136 (11) |
C10A | 0.0242 (11) | 0.0293 (12) | 0.0305 (12) | 0.0010 (10) | 0.0006 (9) | −0.0032 (10) |
C11A | 0.0265 (11) | 0.0263 (12) | 0.0318 (12) | −0.0001 (10) | −0.0057 (10) | −0.0009 (10) |
C12A | 0.0298 (12) | 0.0253 (12) | 0.0407 (14) | −0.0018 (10) | −0.0125 (11) | 0.0017 (11) |
N1B | 0.0228 (9) | 0.0216 (10) | 0.0255 (9) | 0.0017 (8) | −0.0028 (8) | −0.0009 (8) |
N2B | 0.0292 (10) | 0.0215 (10) | 0.0305 (11) | 0.0005 (9) | −0.0057 (9) | 0.0004 (8) |
C1B | 0.0225 (10) | 0.0235 (11) | 0.0230 (10) | 0.0006 (9) | 0.0019 (8) | 0.0003 (9) |
C2B | 0.0209 (10) | 0.0249 (11) | 0.0294 (12) | −0.0010 (9) | −0.0036 (9) | −0.0018 (9) |
C3B | 0.0246 (11) | 0.0298 (13) | 0.0295 (12) | 0.0024 (9) | −0.0051 (9) | 0.0019 (10) |
C4B | 0.0300 (12) | 0.0246 (11) | 0.0281 (11) | 0.0028 (10) | −0.0030 (10) | 0.0016 (9) |
C5B | 0.0277 (11) | 0.0208 (11) | 0.0268 (11) | −0.0004 (9) | −0.0017 (9) | −0.0001 (9) |
C6B | 0.0436 (15) | 0.0250 (12) | 0.0490 (16) | 0.0054 (12) | −0.0147 (13) | 0.0054 (12) |
O1B | 0.0288 (8) | 0.0233 (8) | 0.0378 (10) | 0.0010 (7) | −0.0088 (8) | −0.0037 (7) |
O2B | 0.0280 (8) | 0.0267 (9) | 0.0382 (10) | −0.0038 (7) | −0.0098 (8) | 0.0084 (8) |
N3B | 0.0256 (10) | 0.0254 (10) | 0.0327 (10) | −0.0018 (8) | −0.0074 (8) | 0.0038 (8) |
C7B | 0.0348 (13) | 0.0256 (13) | 0.0470 (15) | −0.0031 (11) | −0.0183 (12) | 0.0069 (11) |
C8B | 0.0367 (13) | 0.0322 (14) | 0.0432 (15) | −0.0102 (12) | −0.0176 (12) | 0.0065 (12) |
C9B | 0.0376 (14) | 0.0236 (12) | 0.0385 (14) | −0.0115 (10) | −0.0126 (12) | 0.0055 (11) |
C10B | 0.0294 (12) | 0.0200 (11) | 0.0320 (12) | −0.0043 (9) | −0.0048 (10) | 0.0048 (9) |
C11B | 0.0207 (10) | 0.0246 (11) | 0.0227 (10) | −0.0032 (9) | 0.0004 (8) | 0.0026 (9) |
C12B | 0.0206 (9) | 0.0237 (11) | 0.0222 (10) | −0.0007 (9) | 0.0007 (8) | 0.0016 (9) |
O1W | 0.018 (3) | 0.017 (3) | 0.032 (3) | 0.000 (2) | 0.005 (3) | −0.001 (3) |
O2W | 0.122 (3) | 0.0424 (13) | 0.0626 (15) | −0.0350 (16) | 0.0451 (17) | −0.0191 (12) |
N1A—C1A | 1.347 (3) | N1B—H1NB | 0.95 (4) |
N1A—C5A | 1.365 (3) | N2B—C1B | 1.329 (3) |
N1A—H1NA | 0.97 (4) | N2B—H2NB | 0.82 (3) |
N2A—C1A | 1.331 (3) | N2B—H3NB | 0.93 (3) |
N2A—H2NA | 0.96 (4) | C1B—C2B | 1.423 (3) |
N2A—H3NA | 0.94 (3) | C2B—C3B | 1.353 (3) |
C1A—C2A | 1.423 (3) | C2B—H2BA | 0.9300 |
C2A—C3A | 1.368 (3) | C3B—C4B | 1.421 (4) |
C2A—H2AA | 0.9300 | C3B—H3BA | 0.9300 |
C3A—C4A | 1.412 (3) | C4B—C5B | 1.371 (3) |
C3A—H3AA | 0.9300 | C4B—C6B | 1.491 (3) |
C4A—C5A | 1.368 (3) | C5B—H5BA | 0.9300 |
C4A—C6A | 1.502 (3) | C6B—H6BA | 0.9600 |
C5A—H5AA | 0.9300 | C6B—H6BB | 0.9600 |
C6A—H6AA | 0.9600 | C6B—H6BC | 0.9600 |
C6A—H6AB | 0.9600 | O1B—C12B | 1.241 (3) |
C6A—H6AC | 0.9600 | O2B—C12B | 1.262 (3) |
O1A—C12A | 1.223 (3) | N3B—C7B | 1.340 (3) |
O2A—C12A | 1.273 (3) | N3B—C11B | 1.350 (3) |
N3A—C11A | 1.333 (3) | C7B—C8B | 1.391 (4) |
N3A—C7A | 1.343 (3) | C7B—H7BA | 0.9300 |
C7A—C8A | 1.382 (4) | C8B—C9B | 1.372 (4) |
C7A—H7AA | 0.9300 | C8B—H8BA | 0.9300 |
C8A—C9A | 1.376 (4) | C9B—C10B | 1.389 (3) |
C8A—H8AA | 0.9300 | C9B—H9BA | 0.9300 |
C9A—C10A | 1.395 (3) | C10B—C11B | 1.384 (3) |
C9A—H9AA | 0.9300 | C10B—H10B | 0.9300 |
C10A—C11A | 1.393 (3) | C11B—C12B | 1.524 (3) |
C10A—H10A | 0.9300 | O1W—H1W1 | 0.8098 |
C11A—C12A | 1.523 (3) | O1W—H2W1 | 0.8148 |
N1B—C1B | 1.353 (3) | O2W—H1W2 | 0.8172 |
N1B—C5B | 1.360 (3) | O2W—H2W2 | 0.8226 |
C1A—N1A—C5A | 123.2 (2) | C1B—N1B—H1NB | 123 (2) |
C1A—N1A—H1NA | 114 (2) | C5B—N1B—H1NB | 114 (2) |
C5A—N1A—H1NA | 122 (2) | C1B—N2B—H2NB | 117 (2) |
C1A—N2A—H2NA | 118 (2) | C1B—N2B—H3NB | 117 (2) |
C1A—N2A—H3NA | 123.3 (19) | H2NB—N2B—H3NB | 126 (3) |
H2NA—N2A—H3NA | 119 (3) | N2B—C1B—N1B | 119.1 (2) |
N2A—C1A—N1A | 119.2 (2) | N2B—C1B—C2B | 123.9 (2) |
N2A—C1A—C2A | 123.5 (2) | N1B—C1B—C2B | 117.0 (2) |
N1A—C1A—C2A | 117.2 (2) | C3B—C2B—C1B | 119.9 (2) |
C3A—C2A—C1A | 120.0 (2) | C3B—C2B—H2BA | 120.0 |
C3A—C2A—H2AA | 120.0 | C1B—C2B—H2BA | 120.0 |
C1A—C2A—H2AA | 120.0 | C2B—C3B—C4B | 122.2 (2) |
C2A—C3A—C4A | 121.1 (2) | C2B—C3B—H3BA | 118.9 |
C2A—C3A—H3AA | 119.4 | C4B—C3B—H3BA | 118.9 |
C4A—C3A—H3AA | 119.4 | C5B—C4B—C3B | 116.0 (2) |
C5A—C4A—C3A | 117.3 (2) | C5B—C4B—C6B | 121.5 (2) |
C5A—C4A—C6A | 121.2 (2) | C3B—C4B—C6B | 122.6 (2) |
C3A—C4A—C6A | 121.5 (2) | N1B—C5B—C4B | 121.8 (2) |
N1A—C5A—C4A | 121.2 (2) | N1B—C5B—H5BA | 119.1 |
N1A—C5A—H5AA | 119.4 | C4B—C5B—H5BA | 119.1 |
C4A—C5A—H5AA | 119.4 | C4B—C6B—H6BA | 109.5 |
C4A—C6A—H6AA | 109.5 | C4B—C6B—H6BB | 109.5 |
C4A—C6A—H6AB | 109.5 | H6BA—C6B—H6BB | 109.5 |
H6AA—C6A—H6AB | 109.5 | C4B—C6B—H6BC | 109.5 |
C4A—C6A—H6AC | 109.5 | H6BA—C6B—H6BC | 109.5 |
H6AA—C6A—H6AC | 109.5 | H6BB—C6B—H6BC | 109.5 |
H6AB—C6A—H6AC | 109.5 | C7B—N3B—C11B | 116.8 (2) |
C11A—N3A—C7A | 117.5 (2) | N3B—C7B—C8B | 123.8 (2) |
N3A—C7A—C8A | 124.0 (3) | N3B—C7B—H7BA | 118.1 |
N3A—C7A—H7AA | 118.0 | C8B—C7B—H7BA | 118.1 |
C8A—C7A—H7AA | 118.0 | C9B—C8B—C7B | 118.7 (2) |
C9A—C8A—C7A | 118.1 (2) | C9B—C8B—H8BA | 120.7 |
C9A—C8A—H8AA | 120.9 | C7B—C8B—H8BA | 120.7 |
C7A—C8A—H8AA | 120.9 | C8B—C9B—C10B | 118.6 (2) |
C8A—C9A—C10A | 119.0 (2) | C8B—C9B—H9BA | 120.7 |
C8A—C9A—H9AA | 120.5 | C10B—C9B—H9BA | 120.7 |
C10A—C9A—H9AA | 120.5 | C11B—C10B—C9B | 119.3 (2) |
C11A—C10A—C9A | 118.8 (2) | C11B—C10B—H10B | 120.3 |
C11A—C10A—H10A | 120.6 | C9B—C10B—H10B | 120.3 |
C9A—C10A—H10A | 120.6 | N3B—C11B—C10B | 122.8 (2) |
N3A—C11A—C10A | 122.6 (2) | N3B—C11B—C12B | 116.7 (2) |
N3A—C11A—C12A | 116.7 (2) | C10B—C11B—C12B | 120.5 (2) |
C10A—C11A—C12A | 120.7 (2) | O1B—C12B—O2B | 126.5 (2) |
O1A—C12A—O2A | 125.7 (2) | O1B—C12B—C11B | 117.7 (2) |
O1A—C12A—C11A | 118.3 (2) | O2B—C12B—C11B | 115.8 (2) |
O2A—C12A—C11A | 116.0 (2) | H1W1—O1W—H2W1 | 114.2 |
C1B—N1B—C5B | 123.0 (2) | H1W2—O2W—H2W2 | 111.4 |
C5A—N1A—C1A—N2A | −179.8 (2) | C5B—N1B—C1B—N2B | 179.2 (2) |
C5A—N1A—C1A—C2A | 0.8 (3) | C5B—N1B—C1B—C2B | 0.1 (3) |
N2A—C1A—C2A—C3A | −179.4 (2) | N2B—C1B—C2B—C3B | −179.2 (2) |
N1A—C1A—C2A—C3A | 0.0 (3) | N1B—C1B—C2B—C3B | −0.2 (3) |
C1A—C2A—C3A—C4A | −0.6 (4) | C1B—C2B—C3B—C4B | 0.2 (4) |
C2A—C3A—C4A—C5A | 0.4 (3) | C2B—C3B—C4B—C5B | −0.1 (4) |
C2A—C3A—C4A—C6A | −177.5 (2) | C2B—C3B—C4B—C6B | −179.6 (3) |
C1A—N1A—C5A—C4A | −1.0 (3) | C1B—N1B—C5B—C4B | 0.0 (4) |
C3A—C4A—C5A—N1A | 0.4 (3) | C3B—C4B—C5B—N1B | 0.0 (4) |
C6A—C4A—C5A—N1A | 178.3 (2) | C6B—C4B—C5B—N1B | 179.5 (2) |
C11A—N3A—C7A—C8A | 1.3 (5) | C11B—N3B—C7B—C8B | 0.0 (4) |
N3A—C7A—C8A—C9A | −0.3 (5) | N3B—C7B—C8B—C9B | −1.1 (5) |
C7A—C8A—C9A—C10A | −0.6 (4) | C7B—C8B—C9B—C10B | 0.6 (4) |
C8A—C9A—C10A—C11A | 0.6 (4) | C8B—C9B—C10B—C11B | 0.9 (4) |
C7A—N3A—C11A—C10A | −1.4 (4) | C7B—N3B—C11B—C10B | 1.6 (4) |
C7A—N3A—C11A—C12A | 177.5 (3) | C7B—N3B—C11B—C12B | −177.3 (2) |
C9A—C10A—C11A—N3A | 0.5 (4) | C9B—C10B—C11B—N3B | −2.1 (4) |
C9A—C10A—C11A—C12A | −178.3 (2) | C9B—C10B—C11B—C12B | 176.8 (2) |
N3A—C11A—C12A—O1A | 11.8 (4) | N3B—C11B—C12B—O1B | 4.8 (3) |
C10A—C11A—C12A—O1A | −169.3 (3) | C10B—C11B—C12B—O1B | −174.2 (2) |
N3A—C11A—C12A—O2A | −166.9 (3) | N3B—C11B—C12B—O2B | −175.6 (2) |
C10A—C11A—C12A—O2A | 12.0 (4) | C10B—C11B—C12B—O2B | 5.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2W2···O2Ai | 0.82 | 2.00 | 2.812 (2) | 170 |
N1A—H1NA···O2Bii | 0.99 (2) | 1.69 (2) | 2.669 (2) | 170 (2) |
N2A—H2NA···O1Bii | 0.94 (3) | 1.89 (3) | 2.829 (2) | 178 (3) |
N2A—H3NA···N3A | 0.94 (3) | 2.08 (3) | 3.019 (3) | 177 (2) |
N1B—H1NB···O2Ai | 0.96 (3) | 1.68 (3) | 2.642 (2) | 173 (3) |
N2B—H2NB···N3B | 0.83 (3) | 2.22 (3) | 3.040 (2) | 173 (2) |
N2B—H3NB···O1Ai | 0.93 (2) | 1.90 (2) | 2.831 (3) | 175 (2) |
C5A—H5AA···O2Wiii | 0.93 | 2.39 | 3.319 (3) | 175 |
C7A—H7AA···O2Biv | 0.93 | 2.42 | 3.217 (3) | 144 |
C8A—H8AA···O2Wv | 0.93 | 2.50 | 3.339 (3) | 151 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, −y+3/2, −z; (v) x+1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H9N2+·C6H4NO2−·0.63H2O |
Mr | 242.51 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 12.126 (3), 13.842 (3), 14.318 (3) |
V (Å3) | 2403.4 (10) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.28 × 0.20 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.973, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 50363, 3955, 3119 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.708 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.141, 1.09 |
No. of reflections | 3955 |
No. of parameters | 353 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.35 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2W2···O2Ai | 0.8200 | 2.0000 | 2.812 (2) | 170.00 |
N1A—H1NA···O2Bii | 0.99 (2) | 1.69 (2) | 2.669 (2) | 170 (2) |
N2A—H2NA···O1Bii | 0.94 (3) | 1.89 (3) | 2.829 (2) | 178 (3) |
N2A—H3NA···N3A | 0.94 (3) | 2.08 (3) | 3.019 (3) | 177 (2) |
N1B—H1NB···O2Ai | 0.96 (3) | 1.68 (3) | 2.642 (2) | 173 (3) |
N2B—H2NB···N3B | 0.83 (3) | 2.22 (3) | 3.040 (2) | 173 (2) |
N2B—H3NB···O1Ai | 0.93 (2) | 1.90 (2) | 2.831 (3) | 175 (2) |
C5A—H5AA···O2Wiii | 0.9300 | 2.3900 | 3.319 (3) | 175.00 |
C7A—H7AA···O2Biv | 0.9300 | 2.4200 | 3.217 (3) | 144.00 |
C8A—H8AA···O2Wv | 0.9300 | 2.5000 | 3.339 (3) | 151.00 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, −y+3/2, −z; (v) x+1/2, −y+1/2, −z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276. Web of Science CSD CrossRef CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195. Web of Science CSD CrossRef CAS Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854. CSD CrossRef Web of Science Google Scholar
Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801–803. New York: Harper and Row Publishers. Google Scholar
Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22. CSD CrossRef CAS IUCr Journals Google Scholar
Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. & Taguchi, H. (2000). Biosci. Biotechnol. Biochem. 64, 327–332. Web of Science CrossRef PubMed CAS Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 21, 38–41. Google Scholar
Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349. Web of Science CSD CrossRef Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem. 38, 3586–3589. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.
The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A and B), two picolinate anions (A and B) and two water molecules, O1W and O2W (with occupancies 0.25 and 1.0, respectively), (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (2) Å for atom C6A in cation A and 0.005 (2) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.2 (2)°] and C1B—N1B—C5B [123.0 (2)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.
In the crystal structure (Fig. 2), the carboxylate groups of each picolinate anion interact with the corresponding 2-amino-5-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···N, N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a one-dimensional chain along the b-axis. The crystal structure is further stabilized by π–π interactions involving the pyridinium (N1A/C1A–C5A) and pyridinium (N1B/C1B–C5B) rings, with centroid-to-centroid distance of 3.5306 (13) Å [symmetry code: 1-x, 1/2+y, 1/2-z].