organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium picolinate 0.63-hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 May 2010; accepted 17 May 2010; online 22 May 2010)

The asymmetric unit of the title compound, C6H9N2+·C6H4NO2·0.63H2O, contains two crystallographically independent 2-amino-5-methyl­pyridinium cations, a pair of picolinate anions and two water mol­ecules, one with an occupancy of 0.25. Both the 2-amino-5-methyl­pyridine mol­ecules are protonated at the pyridine N atoms. In the crystal structure, the cations, anions and water mol­ecules are linked via N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, as well as by C—H⋯O contacts, forming a chain along the b axis. In addition, weak ππ inter­actions are observed between pyridinium rings, with centroid–centroid distances of 3.5306 (13) Å.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Navarro Ranninger et al. (1985[Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21-22.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Qin et al. (1999[Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461-3464.]); Yip et al. (1999[Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem. 38, 3586-3589.]); Ren et al. (2002[Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 21, 38-41.]); Rivas et al. (2003[Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339-3349.]); Jin et al. (2001[Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.]); Albrecht et al. (2003[Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269-276.]); Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For details of picolinic acid, see: Mahler & Cordes (1971[Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801-803. New York: Harper and Row Publishers.]); Ogata et al. (2000[Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. & Taguchi, H. (2000). Biosci. Biotechnol. Biochem. 64, 327-332.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C6H4NO2·0.63H2O

  • Mr = 242.51

  • Orthorhombic, P 21 21 21

  • a = 12.126 (3) Å

  • b = 13.842 (3) Å

  • c = 14.318 (3) Å

  • V = 2403.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.28 × 0.20 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.991

  • 50363 measured reflections

  • 3955 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.09

  • 3955 reflections

  • 353 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2W2⋯O2Ai 0.82 2.00 2.812 (2) 170
N1A—H1NA⋯O2Bii 0.99 (2) 1.69 (2) 2.669 (2) 170 (2)
N2A—H2NA⋯O1Bii 0.94 (3) 1.89 (3) 2.829 (2) 178 (3)
N2A—H3NA⋯N3A 0.94 (3) 2.08 (3) 3.019 (3) 177 (2)
N1B—H1NB⋯O2Ai 0.96 (3) 1.68 (3) 2.642 (2) 173 (3)
N2B—H2NB⋯N3B 0.83 (3) 2.22 (3) 3.040 (2) 173 (2)
N2B—H3NB⋯O1Ai 0.93 (2) 1.90 (2) 2.831 (3) 175 (2)
C5A—H5AA⋯O2Wiii 0.93 2.39 3.319 (3) 175
C7A—H7AA⋯O2Biv 0.93 2.42 3.217 (3) 144
C8A—H8AA⋯O2Wv 0.93 2.50 3.339 (3) 151
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A and B), two picolinate anions (A and B) and two water molecules, O1W and O2W (with occupancies 0.25 and 1.0, respectively), (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (2) Å for atom C6A in cation A and 0.005 (2) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.2 (2)°] and C1B—N1B—C5B [123.0 (2)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the carboxylate groups of each picolinate anion interact with the corresponding 2-amino-5-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···N, N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a one-dimensional chain along the b-axis. The crystal structure is further stabilized by ππ interactions involving the pyridinium (N1A/C1A–C5A) and pyridinium (N1B/C1B–C5B) rings, with centroid-to-centroid distance of 3.5306 (13) Å [symmetry code: 1-x, 1/2+y, 1/2-z].

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Ren et al. (2002); Rivas et al. (2003)); Luque et al. (1997); Jin et al. (2001); Albrecht et al. (2003); Nahringbauer & Kvick (1977). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For details of picolinic acid, see: Mahler & Cordes (1971); Ogata et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and picolinic acid (62 mg, Merck) were mixed and warmed over a a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located from a difference Fourier map and freely refined. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.82 (3)–0.97 (4) Å and O–H = 0.8098–0.8226 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The occupancy of the (O1W) water molecule was initially refined and then fixed at 25% occupancy in the final refinement. In the absence of significant anomalous scattering effects, 3139 Friedel pairs were merged.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A and B), two picolinate anions (A and B) and two water molecules, O1W and O2W (with occupancies 0.25 and 1.0, respectively), (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (2) Å for atom C6A in cation A and 0.005 (2) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.2 (2)°] and C1B—N1B—C5B [123.0 (2)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the carboxylate groups of each picolinate anion interact with the corresponding 2-amino-5-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···N, N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a one-dimensional chain along the b-axis. The crystal structure is further stabilized by ππ interactions involving the pyridinium (N1A/C1A–C5A) and pyridinium (N1B/C1B–C5B) rings, with centroid-to-centroid distance of 3.5306 (13) Å [symmetry code: 1-x, 1/2+y, 1/2-z].

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Ren et al. (2002); Rivas et al. (2003)); Luque et al. (1997); Jin et al. (2001); Albrecht et al. (2003); Nahringbauer & Kvick (1977). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For details of picolinic acid, see: Mahler & Cordes (1971); Ogata et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity.
2-Amino-5-methylpyridinium pyridine-2-carboxylate 0.63-hydrate top
Crystal data top
C6H9N2+·C6H4NO2·0.63H2OF(000) = 1026
Mr = 242.51Dx = 1.340 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7433 reflections
a = 12.126 (3) Åθ = 2.2–29.8°
b = 13.842 (3) ŵ = 0.10 mm1
c = 14.318 (3) ÅT = 100 K
V = 2403.4 (10) Å3Block, colourless
Z = 80.28 × 0.20 × 0.09 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3955 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.973, Tmax = 0.991k = 1919
50363 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.4137P]
where P = (Fo2 + 2Fc2)/3
3955 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C6H9N2+·C6H4NO2·0.63H2OV = 2403.4 (10) Å3
Mr = 242.51Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.126 (3) ŵ = 0.10 mm1
b = 13.842 (3) ÅT = 100 K
c = 14.318 (3) Å0.28 × 0.20 × 0.09 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3119 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.068
50363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.33 e Å3
3955 reflectionsΔρmin = 0.35 e Å3
353 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.97657 (16)0.86544 (15)0.09594 (13)0.0235 (4)
N2A0.98590 (18)0.69933 (17)0.08274 (15)0.0291 (5)
C1A0.93479 (19)0.78196 (18)0.06311 (15)0.0231 (4)
C2A0.83756 (19)0.78782 (18)0.00781 (17)0.0253 (5)
H2AA0.80600.73190.01620.030*
C3A0.79046 (19)0.87571 (18)0.01001 (17)0.0257 (5)
H3AA0.72730.87890.04670.031*
C4A0.83615 (19)0.96169 (17)0.02636 (17)0.0247 (5)
C5A0.92944 (19)0.95332 (17)0.07947 (16)0.0238 (5)
H5AA0.96131.00850.10480.029*
C6A0.7824 (2)1.05808 (19)0.01044 (19)0.0306 (5)
H6AA0.81701.10580.04930.046*
H6AB0.70551.05390.02580.046*
H6AC0.79041.07610.05390.046*
O1A1.0576 (2)0.51193 (14)0.1466 (2)0.0585 (8)
O2A1.06051 (16)0.35162 (13)0.15326 (14)0.0349 (4)
N3A0.8965 (2)0.50822 (17)0.01507 (19)0.0407 (6)
C7A0.8132 (2)0.5040 (2)0.0465 (2)0.0425 (7)
H7AA0.79460.56020.07850.051*
C8A0.7533 (2)0.4213 (2)0.0653 (2)0.0373 (6)
H8AA0.69590.42190.10840.045*
C9A0.7809 (2)0.3379 (2)0.0184 (2)0.0332 (6)
H9AA0.74200.28110.02880.040*
C10A0.8683 (2)0.34009 (19)0.04496 (18)0.0280 (5)
H10A0.88900.28460.07710.034*
C11A0.9239 (2)0.42690 (18)0.05917 (18)0.0282 (5)
C12A1.0218 (2)0.43223 (19)0.1257 (2)0.0319 (5)
N1B0.24603 (16)0.35896 (15)0.24965 (14)0.0233 (4)
N2B0.25938 (19)0.52545 (16)0.24544 (15)0.0271 (4)
C1B0.29982 (19)0.44099 (17)0.27328 (16)0.0230 (4)
C2B0.39853 (18)0.43069 (17)0.32614 (17)0.0251 (5)
H2BA0.43840.48510.34380.030*
C3B0.4344 (2)0.34168 (19)0.35063 (18)0.0280 (5)
H3BA0.49890.33620.38530.034*
C4B0.3767 (2)0.25626 (18)0.32509 (17)0.0276 (5)
C5B0.2821 (2)0.26944 (17)0.27415 (17)0.0251 (5)
H5BA0.24150.21570.25590.030*
C6B0.4152 (3)0.15790 (19)0.3523 (2)0.0392 (7)
H6BA0.37320.11020.31910.059*
H6BB0.40520.14910.41820.059*
H6BC0.49190.15110.33710.059*
O1B0.16897 (15)0.71003 (12)0.20473 (13)0.0300 (4)
O2B0.16686 (15)0.87068 (13)0.18961 (13)0.0310 (4)
N3B0.35568 (17)0.71727 (15)0.30874 (15)0.0279 (4)
C7B0.4429 (2)0.72461 (19)0.3658 (2)0.0358 (6)
H7BA0.47670.66790.38570.043*
C8B0.4858 (2)0.8121 (2)0.3969 (2)0.0373 (6)
H8BA0.54580.81340.43730.045*
C9B0.4378 (2)0.89624 (19)0.36688 (19)0.0332 (6)
H9BA0.46500.95580.38600.040*
C10B0.3477 (2)0.89054 (18)0.30724 (17)0.0271 (5)
H10B0.31420.94650.28510.033*
C11B0.30822 (18)0.80070 (17)0.28102 (16)0.0227 (4)
C12B0.20592 (18)0.79216 (17)0.21971 (16)0.0222 (4)
O1W0.1654 (5)0.0578 (4)0.2767 (5)0.0227 (12)0.25
H1W10.11960.09660.29370.034*0.25
H2W10.13980.00690.25820.034*0.25
O2W0.0279 (3)0.15220 (18)0.17835 (19)0.0758 (10)
H1W20.02190.14020.21500.114*
H2W20.03120.21030.16670.114*
H1NA1.044 (3)0.858 (3)0.131 (3)0.050 (10)*
H2NA1.049 (3)0.702 (3)0.124 (3)0.060 (11)*
H3NA0.959 (3)0.638 (2)0.064 (2)0.034 (8)*
H1NB0.177 (3)0.359 (3)0.219 (3)0.061 (11)*
H2NB0.292 (3)0.574 (2)0.263 (2)0.037 (9)*
H3NB0.193 (3)0.525 (3)0.212 (2)0.045 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0208 (9)0.0264 (10)0.0232 (9)0.0005 (8)0.0022 (8)0.0015 (8)
N2A0.0295 (10)0.0258 (11)0.0318 (11)0.0013 (9)0.0059 (9)0.0014 (9)
C1A0.0233 (10)0.0254 (11)0.0206 (10)0.0000 (9)0.0007 (9)0.0010 (9)
C2A0.0242 (10)0.0245 (11)0.0274 (11)0.0028 (9)0.0029 (9)0.0013 (9)
C3A0.0205 (10)0.0314 (12)0.0253 (11)0.0022 (9)0.0019 (9)0.0026 (9)
C4A0.0231 (10)0.0248 (11)0.0263 (11)0.0013 (9)0.0032 (9)0.0031 (9)
C5A0.0240 (10)0.0217 (11)0.0257 (11)0.0007 (9)0.0002 (9)0.0008 (9)
C6A0.0275 (11)0.0281 (12)0.0361 (13)0.0001 (10)0.0007 (10)0.0047 (11)
O1A0.0586 (14)0.0248 (10)0.0922 (19)0.0069 (10)0.0532 (14)0.0083 (11)
O2A0.0308 (9)0.0263 (9)0.0475 (11)0.0005 (7)0.0147 (8)0.0024 (8)
N3A0.0420 (13)0.0305 (12)0.0495 (14)0.0023 (10)0.0252 (12)0.0033 (11)
C7A0.0435 (16)0.0355 (15)0.0483 (16)0.0052 (13)0.0225 (14)0.0034 (13)
C8A0.0311 (13)0.0435 (16)0.0373 (14)0.0067 (12)0.0122 (11)0.0120 (12)
C9A0.0267 (12)0.0338 (14)0.0392 (14)0.0009 (10)0.0045 (11)0.0136 (11)
C10A0.0242 (11)0.0293 (12)0.0305 (12)0.0010 (10)0.0006 (9)0.0032 (10)
C11A0.0265 (11)0.0263 (12)0.0318 (12)0.0001 (10)0.0057 (10)0.0009 (10)
C12A0.0298 (12)0.0253 (12)0.0407 (14)0.0018 (10)0.0125 (11)0.0017 (11)
N1B0.0228 (9)0.0216 (10)0.0255 (9)0.0017 (8)0.0028 (8)0.0009 (8)
N2B0.0292 (10)0.0215 (10)0.0305 (11)0.0005 (9)0.0057 (9)0.0004 (8)
C1B0.0225 (10)0.0235 (11)0.0230 (10)0.0006 (9)0.0019 (8)0.0003 (9)
C2B0.0209 (10)0.0249 (11)0.0294 (12)0.0010 (9)0.0036 (9)0.0018 (9)
C3B0.0246 (11)0.0298 (13)0.0295 (12)0.0024 (9)0.0051 (9)0.0019 (10)
C4B0.0300 (12)0.0246 (11)0.0281 (11)0.0028 (10)0.0030 (10)0.0016 (9)
C5B0.0277 (11)0.0208 (11)0.0268 (11)0.0004 (9)0.0017 (9)0.0001 (9)
C6B0.0436 (15)0.0250 (12)0.0490 (16)0.0054 (12)0.0147 (13)0.0054 (12)
O1B0.0288 (8)0.0233 (8)0.0378 (10)0.0010 (7)0.0088 (8)0.0037 (7)
O2B0.0280 (8)0.0267 (9)0.0382 (10)0.0038 (7)0.0098 (8)0.0084 (8)
N3B0.0256 (10)0.0254 (10)0.0327 (10)0.0018 (8)0.0074 (8)0.0038 (8)
C7B0.0348 (13)0.0256 (13)0.0470 (15)0.0031 (11)0.0183 (12)0.0069 (11)
C8B0.0367 (13)0.0322 (14)0.0432 (15)0.0102 (12)0.0176 (12)0.0065 (12)
C9B0.0376 (14)0.0236 (12)0.0385 (14)0.0115 (10)0.0126 (12)0.0055 (11)
C10B0.0294 (12)0.0200 (11)0.0320 (12)0.0043 (9)0.0048 (10)0.0048 (9)
C11B0.0207 (10)0.0246 (11)0.0227 (10)0.0032 (9)0.0004 (8)0.0026 (9)
C12B0.0206 (9)0.0237 (11)0.0222 (10)0.0007 (9)0.0007 (8)0.0016 (9)
O1W0.018 (3)0.017 (3)0.032 (3)0.000 (2)0.005 (3)0.001 (3)
O2W0.122 (3)0.0424 (13)0.0626 (15)0.0350 (16)0.0451 (17)0.0191 (12)
Geometric parameters (Å, º) top
N1A—C1A1.347 (3)N1B—H1NB0.95 (4)
N1A—C5A1.365 (3)N2B—C1B1.329 (3)
N1A—H1NA0.97 (4)N2B—H2NB0.82 (3)
N2A—C1A1.331 (3)N2B—H3NB0.93 (3)
N2A—H2NA0.96 (4)C1B—C2B1.423 (3)
N2A—H3NA0.94 (3)C2B—C3B1.353 (3)
C1A—C2A1.423 (3)C2B—H2BA0.9300
C2A—C3A1.368 (3)C3B—C4B1.421 (4)
C2A—H2AA0.9300C3B—H3BA0.9300
C3A—C4A1.412 (3)C4B—C5B1.371 (3)
C3A—H3AA0.9300C4B—C6B1.491 (3)
C4A—C5A1.368 (3)C5B—H5BA0.9300
C4A—C6A1.502 (3)C6B—H6BA0.9600
C5A—H5AA0.9300C6B—H6BB0.9600
C6A—H6AA0.9600C6B—H6BC0.9600
C6A—H6AB0.9600O1B—C12B1.241 (3)
C6A—H6AC0.9600O2B—C12B1.262 (3)
O1A—C12A1.223 (3)N3B—C7B1.340 (3)
O2A—C12A1.273 (3)N3B—C11B1.350 (3)
N3A—C11A1.333 (3)C7B—C8B1.391 (4)
N3A—C7A1.343 (3)C7B—H7BA0.9300
C7A—C8A1.382 (4)C8B—C9B1.372 (4)
C7A—H7AA0.9300C8B—H8BA0.9300
C8A—C9A1.376 (4)C9B—C10B1.389 (3)
C8A—H8AA0.9300C9B—H9BA0.9300
C9A—C10A1.395 (3)C10B—C11B1.384 (3)
C9A—H9AA0.9300C10B—H10B0.9300
C10A—C11A1.393 (3)C11B—C12B1.524 (3)
C10A—H10A0.9300O1W—H1W10.8098
C11A—C12A1.523 (3)O1W—H2W10.8148
N1B—C1B1.353 (3)O2W—H1W20.8172
N1B—C5B1.360 (3)O2W—H2W20.8226
C1A—N1A—C5A123.2 (2)C1B—N1B—H1NB123 (2)
C1A—N1A—H1NA114 (2)C5B—N1B—H1NB114 (2)
C5A—N1A—H1NA122 (2)C1B—N2B—H2NB117 (2)
C1A—N2A—H2NA118 (2)C1B—N2B—H3NB117 (2)
C1A—N2A—H3NA123.3 (19)H2NB—N2B—H3NB126 (3)
H2NA—N2A—H3NA119 (3)N2B—C1B—N1B119.1 (2)
N2A—C1A—N1A119.2 (2)N2B—C1B—C2B123.9 (2)
N2A—C1A—C2A123.5 (2)N1B—C1B—C2B117.0 (2)
N1A—C1A—C2A117.2 (2)C3B—C2B—C1B119.9 (2)
C3A—C2A—C1A120.0 (2)C3B—C2B—H2BA120.0
C3A—C2A—H2AA120.0C1B—C2B—H2BA120.0
C1A—C2A—H2AA120.0C2B—C3B—C4B122.2 (2)
C2A—C3A—C4A121.1 (2)C2B—C3B—H3BA118.9
C2A—C3A—H3AA119.4C4B—C3B—H3BA118.9
C4A—C3A—H3AA119.4C5B—C4B—C3B116.0 (2)
C5A—C4A—C3A117.3 (2)C5B—C4B—C6B121.5 (2)
C5A—C4A—C6A121.2 (2)C3B—C4B—C6B122.6 (2)
C3A—C4A—C6A121.5 (2)N1B—C5B—C4B121.8 (2)
N1A—C5A—C4A121.2 (2)N1B—C5B—H5BA119.1
N1A—C5A—H5AA119.4C4B—C5B—H5BA119.1
C4A—C5A—H5AA119.4C4B—C6B—H6BA109.5
C4A—C6A—H6AA109.5C4B—C6B—H6BB109.5
C4A—C6A—H6AB109.5H6BA—C6B—H6BB109.5
H6AA—C6A—H6AB109.5C4B—C6B—H6BC109.5
C4A—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AA—C6A—H6AC109.5H6BB—C6B—H6BC109.5
H6AB—C6A—H6AC109.5C7B—N3B—C11B116.8 (2)
C11A—N3A—C7A117.5 (2)N3B—C7B—C8B123.8 (2)
N3A—C7A—C8A124.0 (3)N3B—C7B—H7BA118.1
N3A—C7A—H7AA118.0C8B—C7B—H7BA118.1
C8A—C7A—H7AA118.0C9B—C8B—C7B118.7 (2)
C9A—C8A—C7A118.1 (2)C9B—C8B—H8BA120.7
C9A—C8A—H8AA120.9C7B—C8B—H8BA120.7
C7A—C8A—H8AA120.9C8B—C9B—C10B118.6 (2)
C8A—C9A—C10A119.0 (2)C8B—C9B—H9BA120.7
C8A—C9A—H9AA120.5C10B—C9B—H9BA120.7
C10A—C9A—H9AA120.5C11B—C10B—C9B119.3 (2)
C11A—C10A—C9A118.8 (2)C11B—C10B—H10B120.3
C11A—C10A—H10A120.6C9B—C10B—H10B120.3
C9A—C10A—H10A120.6N3B—C11B—C10B122.8 (2)
N3A—C11A—C10A122.6 (2)N3B—C11B—C12B116.7 (2)
N3A—C11A—C12A116.7 (2)C10B—C11B—C12B120.5 (2)
C10A—C11A—C12A120.7 (2)O1B—C12B—O2B126.5 (2)
O1A—C12A—O2A125.7 (2)O1B—C12B—C11B117.7 (2)
O1A—C12A—C11A118.3 (2)O2B—C12B—C11B115.8 (2)
O2A—C12A—C11A116.0 (2)H1W1—O1W—H2W1114.2
C1B—N1B—C5B123.0 (2)H1W2—O2W—H2W2111.4
C5A—N1A—C1A—N2A179.8 (2)C5B—N1B—C1B—N2B179.2 (2)
C5A—N1A—C1A—C2A0.8 (3)C5B—N1B—C1B—C2B0.1 (3)
N2A—C1A—C2A—C3A179.4 (2)N2B—C1B—C2B—C3B179.2 (2)
N1A—C1A—C2A—C3A0.0 (3)N1B—C1B—C2B—C3B0.2 (3)
C1A—C2A—C3A—C4A0.6 (4)C1B—C2B—C3B—C4B0.2 (4)
C2A—C3A—C4A—C5A0.4 (3)C2B—C3B—C4B—C5B0.1 (4)
C2A—C3A—C4A—C6A177.5 (2)C2B—C3B—C4B—C6B179.6 (3)
C1A—N1A—C5A—C4A1.0 (3)C1B—N1B—C5B—C4B0.0 (4)
C3A—C4A—C5A—N1A0.4 (3)C3B—C4B—C5B—N1B0.0 (4)
C6A—C4A—C5A—N1A178.3 (2)C6B—C4B—C5B—N1B179.5 (2)
C11A—N3A—C7A—C8A1.3 (5)C11B—N3B—C7B—C8B0.0 (4)
N3A—C7A—C8A—C9A0.3 (5)N3B—C7B—C8B—C9B1.1 (5)
C7A—C8A—C9A—C10A0.6 (4)C7B—C8B—C9B—C10B0.6 (4)
C8A—C9A—C10A—C11A0.6 (4)C8B—C9B—C10B—C11B0.9 (4)
C7A—N3A—C11A—C10A1.4 (4)C7B—N3B—C11B—C10B1.6 (4)
C7A—N3A—C11A—C12A177.5 (3)C7B—N3B—C11B—C12B177.3 (2)
C9A—C10A—C11A—N3A0.5 (4)C9B—C10B—C11B—N3B2.1 (4)
C9A—C10A—C11A—C12A178.3 (2)C9B—C10B—C11B—C12B176.8 (2)
N3A—C11A—C12A—O1A11.8 (4)N3B—C11B—C12B—O1B4.8 (3)
C10A—C11A—C12A—O1A169.3 (3)C10B—C11B—C12B—O1B174.2 (2)
N3A—C11A—C12A—O2A166.9 (3)N3B—C11B—C12B—O2B175.6 (2)
C10A—C11A—C12A—O2A12.0 (4)C10B—C11B—C12B—O2B5.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W2···O2Ai0.822.002.812 (2)170
N1A—H1NA···O2Bii0.99 (2)1.69 (2)2.669 (2)170 (2)
N2A—H2NA···O1Bii0.94 (3)1.89 (3)2.829 (2)178 (3)
N2A—H3NA···N3A0.94 (3)2.08 (3)3.019 (3)177 (2)
N1B—H1NB···O2Ai0.96 (3)1.68 (3)2.642 (2)173 (3)
N2B—H2NB···N3B0.83 (3)2.22 (3)3.040 (2)173 (2)
N2B—H3NB···O1Ai0.93 (2)1.90 (2)2.831 (3)175 (2)
C5A—H5AA···O2Wiii0.932.393.319 (3)175
C7A—H7AA···O2Biv0.932.423.217 (3)144
C8A—H8AA···O2Wv0.932.503.339 (3)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C6H4NO2·0.63H2O
Mr242.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)12.126 (3), 13.842 (3), 14.318 (3)
V3)2403.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.20 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
50363, 3955, 3119
Rint0.068
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.09
No. of reflections3955
No. of parameters353
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2W2···O2Ai0.82002.00002.812 (2)170.00
N1A—H1NA···O2Bii0.99 (2)1.69 (2)2.669 (2)170 (2)
N2A—H2NA···O1Bii0.94 (3)1.89 (3)2.829 (2)178 (3)
N2A—H3NA···N3A0.94 (3)2.08 (3)3.019 (3)177 (2)
N1B—H1NB···O2Ai0.96 (3)1.68 (3)2.642 (2)173 (3)
N2B—H2NB···N3B0.83 (3)2.22 (3)3.040 (2)173 (2)
N2B—H3NB···O1Ai0.93 (2)1.90 (2)2.831 (3)175 (2)
C5A—H5AA···O2Wiii0.93002.39003.319 (3)175.00
C7A—H7AA···O2Biv0.93002.42003.217 (3)144.00
C8A—H8AA···O2Wv0.93002.50003.339 (3)151.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAlbrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationJin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationMahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801–803. New York: Harper and Row Publishers.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNavarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOgata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. & Taguchi, H. (2000). Biosci. Biotechnol. Biochem. 64, 327–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationQin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 21, 38–41.  Google Scholar
First citationRivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.  Web of Science CSD CrossRef Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem. 38, 3586–3589.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds