organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­sulfan­yl)methane

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and bSubdivision of Food Science, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

(Received 14 May 2010; accepted 25 May 2010; online 29 May 2010)

In the title compound, C15H16S2, the structure of the dithioalkyl chain is a helix with an all-cis conformation. The dihedral angle between the mean planes of the terminal aromatic rings is 74.60 (4)°. In the crystal structure, weak C—H⋯π inter­actions contribute to the stabilization of the packing.

Related literature

For the synthesis of the title ligand, see: Cohen et al. (1980[Cohen, T., Ruffner, R. J., Shull, D. W., Fogel, E. R. & Falck, J. R. (1980). Org. Synth. 59, 202-212.]). For related structures, see: Li et al. (2005[Li, J.-R., Bu, X.-H., Jiao, J., Du, X.-H. & Zhang, R.-H. (2005). Dalton Trans. pp. 464-474.]); Tanaka & Ajiki (2005[Tanaka, K. & Ajiki, K. (2005). Org. Lett. 7, 1537-1539.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16S2

  • Mr = 260.40

  • Monoclinic, P 21 /c

  • a = 5.5146 (1) Å

  • b = 12.2628 (3) Å

  • c = 20.0128 (5) Å

  • β = 101.156 (1)°

  • V = 1327.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.22 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.946

  • 12942 measured reflections

  • 3335 independent reflections

  • 2977 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.04

  • 3335 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cgi 0.95 2.85 3.71 151
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dithio acetals (RSCH2SR) have received considerable attention in the literature (Li et al., 2005; Tanaka & Ajiki, 2005). We report herein the crystal structure of the title compound. In asymmetric unit, the conformation of dithioalkyl chain is all cis and the dihedral angle between the aromatic rings is 74.60 (4)°. In the crystal structure (Fig. 1), the bond lengths and angles are within normal ranges.

A weak C13—H13···Cg = 2.85 Å interaction (Cg is the centroid of the C1···C6 ring) is observed, Table 1. Weak intermolecular S···S interactions with 3.4732 (6)Å also exist. These intermolecular interactions may be effective in the stabilization of the structure, Fig. 2.

Related literature top

For the synthesis of the ligand, see: Cohen et al. (1980). For related structures, see: Li et al. (2005); Tanaka & Ajiki (2005).

Experimental top

The title compound was synthesised according to the published procedure (Cohen et al., 1980) and recrystallized from petroleum ether.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso =1.2Ueq(C) for aromatic and 0.99 Å, Uiso = 1.2Ueq(C) for the CH2 atoms.

Structure description top

Dithio acetals (RSCH2SR) have received considerable attention in the literature (Li et al., 2005; Tanaka & Ajiki, 2005). We report herein the crystal structure of the title compound. In asymmetric unit, the conformation of dithioalkyl chain is all cis and the dihedral angle between the aromatic rings is 74.60 (4)°. In the crystal structure (Fig. 1), the bond lengths and angles are within normal ranges.

A weak C13—H13···Cg = 2.85 Å interaction (Cg is the centroid of the C1···C6 ring) is observed, Table 1. Weak intermolecular S···S interactions with 3.4732 (6)Å also exist. These intermolecular interactions may be effective in the stabilization of the structure, Fig. 2.

For the synthesis of the ligand, see: Cohen et al. (1980). For related structures, see: Li et al. (2005); Tanaka & Ajiki (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···π (red dotted lines) and S···S (green dotted lines) interactions in the title compound. All H atoms except those related to intermolecular interactions have been omitted for clarity. Cg is the centroid of the C1/C2/C3/C4/C5/C6 ring. [Symmetry codes: (i) x, -1+y, z]
Bis(benzylsulfanyl)methane top
Crystal data top
C15H16S2F(000) = 552
Mr = 260.40Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7825 reflections
a = 5.5146 (1) Åθ = 2.7–28.4°
b = 12.2628 (3) ŵ = 0.38 mm1
c = 20.0128 (5) ÅT = 173 K
β = 101.156 (1)°Block, colourless
V = 1327.78 (5) Å30.22 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3335 independent reflections
Radiation source: fine-focus sealed tube2977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1216
Tmin = 0.922, Tmax = 0.946l = 2426
12942 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4363P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3335 reflectionsΔρmax = 0.30 e Å3
155 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)
Crystal data top
C15H16S2V = 1327.78 (5) Å3
Mr = 260.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5146 (1) ŵ = 0.38 mm1
b = 12.2628 (3) ÅT = 173 K
c = 20.0128 (5) Å0.22 × 0.15 × 0.15 mm
β = 101.156 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3335 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2977 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.946Rint = 0.033
12942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3335 reflectionsΔρmin = 0.29 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63212 (6)0.46872 (3)0.430321 (16)0.03123 (10)
S20.80471 (6)0.43167 (3)0.294901 (16)0.03327 (11)
C10.7958 (2)0.73297 (11)0.47700 (6)0.0318 (3)
H10.69900.71300.50950.038*
C20.9857 (3)0.80750 (11)0.49456 (7)0.0369 (3)
H21.01970.83770.53910.044*
C31.1262 (3)0.83815 (11)0.44745 (8)0.0376 (3)
H31.25790.88870.45970.045*
C41.0740 (3)0.79496 (11)0.38253 (7)0.0371 (3)
H41.16780.81700.34980.045*
C50.8848 (2)0.71936 (11)0.36495 (6)0.0324 (3)
H50.85080.68970.32030.039*
C60.7447 (2)0.68671 (10)0.41215 (6)0.0269 (2)
C70.5451 (2)0.60237 (11)0.39470 (7)0.0319 (3)
H7A0.49950.59590.34450.038*
H7B0.39700.62760.41140.038*
C80.8761 (2)0.43180 (11)0.38662 (7)0.0303 (3)
H8A0.93440.35790.40190.036*
H8B1.01580.48260.40140.036*
C90.5351 (2)0.34398 (11)0.27868 (6)0.0320 (3)
H9A0.39920.38080.29560.038*
H9B0.48220.33510.22880.038*
C100.5717 (2)0.23235 (10)0.31064 (6)0.0263 (2)
C110.7532 (2)0.16136 (11)0.29690 (6)0.0309 (3)
H110.85980.18390.26750.037*
C120.7799 (2)0.05829 (11)0.32574 (7)0.0327 (3)
H120.90410.01060.31580.039*
C130.6268 (2)0.02439 (11)0.36880 (7)0.0324 (3)
H130.64520.04630.38850.039*
C140.4464 (3)0.09429 (11)0.38292 (7)0.0344 (3)
H140.34060.07160.41250.041*
C150.4196 (2)0.19762 (11)0.35389 (7)0.0307 (3)
H150.29510.24510.36390.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03604 (18)0.02830 (18)0.03133 (17)0.00231 (12)0.01147 (13)0.00010 (12)
S20.04070 (19)0.02943 (18)0.03283 (17)0.00462 (13)0.01497 (13)0.00064 (12)
C10.0353 (6)0.0333 (7)0.0270 (6)0.0013 (5)0.0064 (5)0.0029 (5)
C20.0422 (7)0.0336 (7)0.0322 (6)0.0033 (6)0.0008 (5)0.0007 (5)
C30.0336 (7)0.0275 (7)0.0505 (8)0.0018 (5)0.0048 (6)0.0079 (6)
C40.0395 (7)0.0316 (7)0.0445 (7)0.0056 (6)0.0185 (6)0.0113 (6)
C50.0390 (7)0.0293 (6)0.0299 (6)0.0089 (5)0.0093 (5)0.0039 (5)
C60.0270 (6)0.0240 (6)0.0285 (5)0.0060 (5)0.0026 (4)0.0028 (4)
C70.0269 (6)0.0302 (6)0.0368 (6)0.0046 (5)0.0018 (5)0.0015 (5)
C80.0263 (6)0.0291 (6)0.0349 (6)0.0019 (5)0.0042 (5)0.0005 (5)
C90.0345 (6)0.0295 (6)0.0302 (6)0.0001 (5)0.0019 (5)0.0020 (5)
C100.0264 (5)0.0257 (6)0.0251 (5)0.0019 (5)0.0009 (4)0.0029 (4)
C110.0309 (6)0.0340 (7)0.0288 (6)0.0006 (5)0.0085 (5)0.0032 (5)
C120.0320 (6)0.0297 (6)0.0359 (6)0.0043 (5)0.0051 (5)0.0072 (5)
C130.0355 (6)0.0231 (6)0.0364 (6)0.0019 (5)0.0011 (5)0.0015 (5)
C140.0347 (7)0.0305 (7)0.0399 (7)0.0041 (5)0.0120 (5)0.0012 (5)
C150.0277 (6)0.0281 (6)0.0374 (6)0.0011 (5)0.0087 (5)0.0027 (5)
Geometric parameters (Å, º) top
S1—C81.7988 (13)C7—H7B0.9900
S1—C71.8144 (14)C8—H8A0.9900
S2—C81.8013 (13)C8—H8B0.9900
S2—C91.8125 (14)C9—C101.5079 (17)
C1—C21.3831 (19)C9—H9A0.9900
C1—C61.3942 (17)C9—H9B0.9900
C1—H10.9500C10—C151.3841 (18)
C2—C31.383 (2)C10—C111.3934 (18)
C2—H20.9500C11—C121.3854 (19)
C3—C41.381 (2)C11—H110.9500
C3—H30.9500C12—C131.382 (2)
C4—C51.389 (2)C12—H120.9500
C4—H40.9500C13—C141.383 (2)
C5—C61.3898 (18)C13—H130.9500
C5—H50.9500C14—C151.3899 (19)
C6—C71.5016 (18)C14—H140.9500
C7—H7A0.9900C15—H150.9500
C8—S1—C7101.67 (6)S2—C8—H8A108.0
C8—S2—C9101.13 (6)S1—C8—H8B108.0
C2—C1—C6120.80 (12)S2—C8—H8B108.0
C2—C1—H1119.6H8A—C8—H8B107.2
C6—C1—H1119.6C10—C9—S2115.14 (9)
C1—C2—C3120.19 (13)C10—C9—H9A108.5
C1—C2—H2119.9S2—C9—H9A108.5
C3—C2—H2119.9C10—C9—H9B108.5
C4—C3—C2119.65 (13)S2—C9—H9B108.5
C4—C3—H3120.2H9A—C9—H9B107.5
C2—C3—H3120.2C15—C10—C11118.46 (12)
C3—C4—C5120.26 (13)C15—C10—C9119.80 (11)
C3—C4—H4119.9C11—C10—C9121.73 (11)
C5—C4—H4119.9C12—C11—C10120.68 (12)
C4—C5—C6120.61 (12)C12—C11—H11119.7
C4—C5—H5119.7C10—C11—H11119.7
C6—C5—H5119.7C13—C12—C11120.38 (12)
C5—C6—C1118.46 (12)C13—C12—H12119.8
C5—C6—C7121.28 (11)C11—C12—H12119.8
C1—C6—C7120.25 (12)C12—C13—C14119.43 (12)
C6—C7—S1113.86 (8)C12—C13—H13120.3
C6—C7—H7A108.8C14—C13—H13120.3
S1—C7—H7A108.8C13—C14—C15120.14 (13)
C6—C7—H7B108.8C13—C14—H14119.9
S1—C7—H7B108.8C15—C14—H14119.9
H7A—C7—H7B107.7C10—C15—C14120.91 (12)
S1—C8—S2117.33 (7)C10—C15—H15119.5
S1—C8—H8A108.0C14—C15—H15119.5
C6—C1—C2—C30.7 (2)C9—S2—C8—S153.62 (9)
C1—C2—C3—C40.8 (2)C8—S2—C9—C1055.87 (11)
C2—C3—C4—C51.4 (2)S2—C9—C10—C15123.62 (11)
C3—C4—C5—C60.4 (2)S2—C9—C10—C1157.57 (14)
C4—C5—C6—C11.09 (18)C15—C10—C11—C120.22 (18)
C4—C5—C6—C7177.97 (12)C9—C10—C11—C12178.61 (11)
C2—C1—C6—C51.67 (19)C10—C11—C12—C130.15 (19)
C2—C1—C6—C7177.40 (12)C11—C12—C13—C140.00 (19)
C5—C6—C7—S1103.14 (12)C12—C13—C14—C150.1 (2)
C1—C6—C7—S175.91 (14)C11—C10—C15—C140.12 (18)
C8—S1—C7—C664.96 (10)C9—C10—C15—C14178.72 (12)
C7—S1—C8—S256.40 (9)C13—C14—C15—C100.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgi0.952.853.71151
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16S2
Mr260.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.5146 (1), 12.2628 (3), 20.0128 (5)
β (°) 101.156 (1)
V3)1327.78 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.22 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
12942, 3335, 2977
Rint0.033
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.04
No. of reflections3335
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgi0.952.853.71151
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0016386).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, T., Ruffner, R. J., Shull, D. W., Fogel, E. R. & Falck, J. R. (1980). Org. Synth. 59, 202–212.  CAS Google Scholar
First citationLi, J.-R., Bu, X.-H., Jiao, J., Du, X.-H. & Zhang, R.-H. (2005). Dalton Trans. pp. 464–474.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K. & Ajiki, K. (2005). Org. Lett. 7, 1537–1539.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds