metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­copper(II)]-μ-2,2′-{[p-phenyl­enebis(oxymethyl­ene)]bis­­(pyridinium-3,1-di­yl)}di­acetate] dibromide]

aCollege of Chemical Engineering and Foods, Zhongzhou University, Zhengzhou, Henan 450044, People's Republic of China, and bCollege of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
*Correspondence e-mail: zzulhl@yahoo.com.cn

(Received 15 March 2010; accepted 20 April 2010; online 8 May 2010)

The title centrosymmetric coordination polymer, {[Cu(C22H20N2O6)(H2O)2]Br2}n, formed by the reaction of the flexible double betaine ligand 2,2′-{[p-phenyl­enebis(oxymethyl­ene)]bis­(pyridine-3,1-di­yl)}diacetic acid with CuBr2, contains a Cu(II) atom ([\overline1] symmetry) which is surrounded by two water molecules and bridged by two anions in a square-planar coordination. In the crystal, polymeric zigzag chains are linked via O—H⋯Br inter­actions, forming a two-dimensional network extending parallel to (011).

Related literature

For double betaine coordination polymers, see: Zhang et al. (2004[Zhang, L.-P., Lam, C.-K., Song, H.-B. & Mak, T. C. W. (2004). Polyhedron, 23, 2413-2425.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C22H20N2O6)(H2O)2]Br2

  • Mr = 667.78

  • Triclinic, [P \overline 1]

  • a = 7.5422 (7) Å

  • b = 9.3001 (8) Å

  • c = 9.9890 (9) Å

  • α = 64.194 (2)°

  • β = 79.405 (2)°

  • γ = 77.000 (2)°

  • V = 611.66 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.21 mm−1

  • T = 293 K

  • 0.52 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.218, Tmax = 0.365

  • 3313 measured reflections

  • 2129 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.163

  • S = 1.03

  • 2129 reflections

  • 160 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯Br1 0.52 2.74 3.220 (9) 155
O1W—H1WA⋯Br1i 0.78 2.38 3.139 (9) 167
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular assembly is a powerful tool in the design of metallo-organic based complex molecular architectures. Ligands of the double betaine type are known to be generators of variable coordination frameworks in organic-inorganic hybrid materials (Zhang et al., 2004).

The title complex is centrosymmetric and exists as infinite zigzag chains (Fig. 1). In the crystal the bromide serves as a hydrogen-bond acceptor and the coordinated water molecules as donors leading to the formation of a two-dimensional network (Fig. 2 and Table 1).

Related literature top

For double betaine coordination polymers, see: Zhang et al. (2004).

Experimental top

An aqueous solution (5 ml of H2O) of 1,4-bis(3-picolyloxyl)benzene- N,N'-diacetate) [0.08 g, 0.2 mmol] and CuBr2 (0.067 g, 0.3 mmol) were mixed together and heated at 340 K for 10 min with continuous stirring. The mixture was then filtered and upon slow evaporation of the filtrate, at RT for several weeks, blue block-shaped crystals were obtained (Yield ca. 58% based on L).

Refinement top

The water H-atoms were located in a difference electron-density map and were held fixed with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Supramolecular assembly is a powerful tool in the design of metallo-organic based complex molecular architectures. Ligands of the double betaine type are known to be generators of variable coordination frameworks in organic-inorganic hybrid materials (Zhang et al., 2004).

The title complex is centrosymmetric and exists as infinite zigzag chains (Fig. 1). In the crystal the bromide serves as a hydrogen-bond acceptor and the coordinated water molecules as donors leading to the formation of a two-dimensional network (Fig. 2 and Table 1).

For double betaine coordination polymers, see: Zhang et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the infinite chain of the title compound, with atom labels and 50% probability displacement ellipsoids (Symmetry codes: A: -x+2, -y+2, -z+2; B: -x+1, -y+1, -z+1).
[Figure 2] Fig. 2. A view of the two-dimensional network formed as a result of the O—H···Br hydrogen bonds (dashed lines); Symmetry codes: A: -x, -y + 1, -z + 1; B: -x + 1, -y + 1, -z + 1; C: x + 1, y, z; D: -x + 2, -y + 1, -z + 1; D: x + 2, y, z.
catena-Poly[[[diaquacopper(II)]-µ-2,2'-{[p- phenylenebis(oxymethylene)]bis(pyridinium-3,1-diyl)}diacetate] dibromide] top
Crystal data top
[Cu(C22H20N2O6)(H2O)2]Br2Z = 1
Mr = 667.78F(000) = 333
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5422 (7) ÅCell parameters from 126 reflections
b = 9.3001 (8) Åθ = 2.0–27.5°
c = 9.9890 (9) ŵ = 4.21 mm1
α = 64.194 (2)°T = 293 K
β = 79.405 (2)°Block, blue
γ = 77.000 (2)°0.52 × 0.30 × 0.30 mm
V = 611.66 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2129 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.218, Tmax = 0.365k = 1011
3313 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1116P)2]
where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.82 e Å3
3 restraintsΔρmin = 0.95 e Å3
Crystal data top
[Cu(C22H20N2O6)(H2O)2]Br2γ = 77.000 (2)°
Mr = 667.78V = 611.66 (10) Å3
Triclinic, P1Z = 1
a = 7.5422 (7) ÅMo Kα radiation
b = 9.3001 (8) ŵ = 4.21 mm1
c = 9.9890 (9) ÅT = 293 K
α = 64.194 (2)°0.52 × 0.30 × 0.30 mm
β = 79.405 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1746 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.365Rint = 0.087
3313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0613 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.82 e Å3
2129 reflectionsΔρmin = 0.95 e Å3
160 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0266 (4)
Br10.09111 (11)0.71414 (10)0.61132 (10)0.0434 (4)
O10.4292 (7)0.6175 (6)0.6239 (5)0.0288 (12)
O1W0.2454 (8)0.4936 (11)0.5040 (10)0.089 (3)
H1WA0.19630.45630.46780.133*
H1WB0.18300.50870.53060.133*
O20.4295 (9)0.8338 (7)0.4071 (6)0.0462 (16)
O30.7158 (10)0.8939 (9)0.9512 (7)0.0570 (19)
N10.3377 (9)0.7917 (7)0.7897 (7)0.0290 (14)
C10.4042 (10)0.7683 (9)0.5435 (8)0.0293 (16)
C20.3214 (11)0.8765 (9)0.6271 (8)0.0315 (17)
H2A0.38260.97020.58610.038*
H2B0.19320.91480.61070.038*
C30.2186 (11)0.6898 (10)0.8751 (9)0.0347 (18)
H3A0.12880.67460.83210.042*
C40.2320 (11)0.6095 (10)1.0252 (9)0.0375 (19)
H4A0.15280.53731.08480.045*
C50.3618 (12)0.6351 (10)1.0880 (9)0.0381 (19)
H5A0.36810.58191.19070.046*
C60.4849 (11)0.7399 (9)1.0003 (8)0.0313 (17)
C70.4693 (11)0.8171 (9)0.8479 (8)0.0292 (16)
H7A0.55010.88670.78560.035*
C80.6243 (13)0.7737 (11)1.0664 (10)0.043 (2)
H8A0.56540.81101.14310.051*
H8B0.71090.67591.11170.051*
C90.8556 (11)0.9412 (11)0.9825 (10)0.0377 (19)
C100.9060 (12)0.8939 (11)1.1252 (9)0.040 (2)
H10A0.84310.82391.20870.047*
C110.9504 (12)1.0480 (11)0.8589 (9)0.039 (2)
H11A0.91571.08050.76400.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0268 (7)0.0331 (8)0.0283 (7)0.0080 (5)0.0023 (5)0.0189 (6)
Br10.0384 (6)0.0471 (6)0.0532 (7)0.0103 (4)0.0074 (4)0.0258 (5)
O10.032 (3)0.034 (3)0.026 (3)0.006 (2)0.002 (2)0.018 (2)
O1W0.028 (3)0.140 (8)0.172 (9)0.013 (4)0.001 (4)0.136 (8)
O20.077 (5)0.041 (3)0.021 (3)0.016 (3)0.001 (3)0.012 (2)
O30.063 (4)0.075 (5)0.038 (4)0.035 (4)0.015 (3)0.013 (3)
N10.036 (3)0.028 (3)0.027 (3)0.006 (3)0.001 (3)0.014 (3)
C10.031 (4)0.032 (4)0.032 (4)0.010 (3)0.005 (3)0.017 (3)
C20.042 (4)0.025 (4)0.028 (4)0.008 (3)0.005 (3)0.010 (3)
C30.035 (4)0.037 (4)0.037 (4)0.008 (3)0.002 (3)0.019 (4)
C40.038 (5)0.041 (5)0.031 (4)0.015 (4)0.005 (3)0.012 (4)
C50.045 (5)0.039 (4)0.022 (4)0.002 (4)0.002 (3)0.007 (3)
C60.036 (4)0.033 (4)0.028 (4)0.001 (3)0.007 (3)0.017 (3)
C70.035 (4)0.026 (4)0.029 (4)0.007 (3)0.003 (3)0.013 (3)
C80.050 (5)0.047 (5)0.034 (4)0.006 (4)0.011 (4)0.018 (4)
C90.036 (4)0.046 (5)0.042 (5)0.001 (4)0.014 (4)0.026 (4)
C100.042 (5)0.042 (5)0.035 (4)0.003 (4)0.004 (4)0.018 (4)
C110.041 (5)0.053 (5)0.032 (4)0.004 (4)0.012 (4)0.023 (4)
Geometric parameters (Å, º) top
Cu1—O1i1.919 (5)C3—H3A0.9300
Cu1—O11.919 (5)C4—C51.368 (12)
Cu1—O1W1.927 (6)C4—H4A0.9300
Cu1—O1Wi1.927 (6)C5—C61.394 (12)
O1—C11.266 (9)C5—H5A0.9300
O1W—H1WA0.7774C6—C71.387 (11)
O1W—H1WB0.5183C6—C81.492 (12)
O2—C11.223 (9)C7—H7A0.9300
O3—C91.361 (11)C8—H8A0.9700
O3—C81.409 (11)C8—H8B0.9700
N1—C71.348 (10)C9—C111.396 (12)
N1—C31.353 (10)C9—C101.396 (12)
N1—C21.480 (9)C10—C11ii1.376 (13)
C1—C21.535 (10)C10—H10A0.9300
C2—H2A0.9700C11—C10ii1.376 (13)
C2—H2B0.9700C11—H11A0.9300
C3—C41.365 (11)
O1i—Cu1—O1180C3—C4—H4A119.9
O1i—Cu1—O1W91.4 (2)C5—C4—H4A119.9
O1—Cu1—O1W88.6 (2)C4—C5—C6120.9 (7)
O1i—Cu1—O1Wi88.6 (2)C4—C5—H5A119.5
O1—Cu1—O1Wi91.4 (2)C6—C5—H5A119.5
O1W—Cu1—O1Wi180C7—C6—C5117.4 (7)
C1—O1—Cu1110.1 (5)C7—C6—C8120.6 (7)
Cu1—O1W—H1WA131.9C5—C6—C8122.0 (7)
Cu1—O1W—H1WB138.6N1—C7—C6120.3 (7)
H1WA—O1W—H1WB89.3N1—C7—H7A119.8
C9—O3—C8119.4 (7)C6—C7—H7A119.8
C7—N1—C3122.2 (7)O3—C8—C6108.1 (7)
C7—N1—C2119.7 (6)O3—C8—H8A110.1
C3—N1—C2118.1 (7)C6—C8—H8A110.1
O2—C1—O1126.5 (7)O3—C8—H8B110.1
O2—C1—C2117.8 (7)C6—C8—H8B110.1
O1—C1—C2115.6 (6)H8A—C8—H8B108.4
N1—C2—C1112.9 (6)O3—C9—C11115.3 (7)
N1—C2—H2A109.0O3—C9—C10125.3 (8)
C1—C2—H2A109.0C11—C9—C10119.4 (8)
N1—C2—H2B109.0C11ii—C10—C9119.3 (8)
C1—C2—H2B109.0C11ii—C10—H10A120.4
H2A—C2—H2B107.8C9—C10—H10A120.4
N1—C3—C4119.1 (8)C10ii—C11—C9121.3 (8)
N1—C3—H3A120.5C10ii—C11—H11A119.3
C4—C3—H3A120.5C9—C11—H11A119.3
C3—C4—C5120.1 (8)
O1i—Cu1—O1—C1112 (100)C4—C5—C6—C8178.2 (8)
O1W—Cu1—O1—C191.2 (6)C3—N1—C7—C61.1 (11)
O1Wi—Cu1—O1—C188.8 (6)C2—N1—C7—C6179.3 (7)
Cu1—O1—C1—O23.7 (10)C5—C6—C7—N10.9 (11)
Cu1—O1—C1—C2171.9 (5)C8—C6—C7—N1176.9 (7)
C7—N1—C2—C1101.3 (8)C9—O3—C8—C6177.3 (7)
C3—N1—C2—C178.4 (9)C7—C6—C8—O32.8 (11)
O2—C1—C2—N1166.3 (7)C5—C6—C8—O3175.0 (7)
O1—C1—C2—N117.8 (9)C8—O3—C9—C11173.5 (8)
C7—N1—C3—C40.1 (12)C8—O3—C9—C107.8 (13)
C2—N1—C3—C4179.5 (7)O3—C9—C10—C11ii179.5 (9)
N1—C3—C4—C51.4 (12)C11—C9—C10—C11ii0.8 (14)
C3—C4—C5—C61.5 (13)O3—C9—C11—C10ii179.6 (8)
C4—C5—C6—C70.4 (12)C10—C9—C11—C10ii0.8 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Br10.522.743.220 (9)155
O1W—H1WA···Br1iii0.782.383.139 (9)167
Symmetry code: (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C22H20N2O6)(H2O)2]Br2
Mr667.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5422 (7), 9.3001 (8), 9.9890 (9)
α, β, γ (°)64.194 (2), 79.405 (2), 77.000 (2)
V3)611.66 (10)
Z1
Radiation typeMo Kα
µ (mm1)4.21
Crystal size (mm)0.52 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.218, 0.365
No. of measured, independent and
observed [I > 2σ(I)] reflections
3313, 2129, 1746
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.163, 1.03
No. of reflections2129
No. of parameters160
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.95

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···Br10.522.743.220 (9)155
O1W—H1WA···Br1i0.782.383.139 (9)167
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

Financial support from Zhongzhou University is greatly appreciated.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L.-P., Lam, C.-K., Song, H.-B. & Mak, T. C. W. (2004). Polyhedron, 23, 2413–2425.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds