metal-organic compounds
catena-Poly[[[diaquacopper(II)]-μ-2,2′-{[p-phenylenebis(oxymethylene)]bis(pyridinium-3,1-diyl)}diacetate] dibromide]
aCollege of Chemical Engineering and Foods, Zhongzhou University, Zhengzhou, Henan 450044, People's Republic of China, and bCollege of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
*Correspondence e-mail: zzulhl@yahoo.com.cn
The title centrosymmetric coordination polymer, {[Cu(C22H20N2O6)(H2O)2]Br2}n, formed by the reaction of the flexible double betaine ligand 2,2′-{[p-phenylenebis(oxymethylene)]bis(pyridine-3,1-diyl)}diacetic acid with CuBr2, contains a Cu(II) atom ( symmetry) which is surrounded by two water molecules and bridged by two anions in a square-planar coordination. In the crystal, polymeric zigzag chains are linked via O—H⋯Br interactions, forming a two-dimensional network extending parallel to (011).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810014510/su2168sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810014510/su2168Isup2.hkl
An aqueous solution (5 ml of H2O) of 1,4-bis(3-picolyloxyl)benzene- N,N'-diacetate) [0.08 g, 0.2 mmol] and CuBr2 (0.067 g, 0.3 mmol) were mixed together and heated at 340 K for 10 min with continuous stirring. The mixture was then filtered and upon slow evaporation of the filtrate, at RT for several weeks, blue block-shaped crystals were obtained (Yield ca. 58% based on L).
The water H-atoms were located in a difference electron-density map and were held fixed with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C).
Supramolecular assembly is a powerful tool in the design of metallo-organic based complex molecular architectures. Ligands of the double betaine type are known to be generators of variable coordination frameworks in organic-inorganic hybrid materials (Zhang et al., 2004).
The title complex is centrosymmetric and exists as infinite zigzag chains (Fig. 1). In the crystal the bromide serves as a hydrogen-bond acceptor and the coordinated water molecules as donors leading to the formation of a two-dimensional network (Fig. 2 and Table 1).
For double betaine coordination polymers, see: Zhang et al. (2004).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C22H20N2O6)(H2O)2]Br2 | Z = 1 |
Mr = 667.78 | F(000) = 333 |
Triclinic, P1 | Dx = 1.813 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5422 (7) Å | Cell parameters from 126 reflections |
b = 9.3001 (8) Å | θ = 2.0–27.5° |
c = 9.9890 (9) Å | µ = 4.21 mm−1 |
α = 64.194 (2)° | T = 293 K |
β = 79.405 (2)° | Block, blue |
γ = 77.000 (2)° | 0.52 × 0.30 × 0.30 mm |
V = 611.66 (10) Å3 |
Bruker SMART CCD area-detector diffractometer | 2129 independent reflections |
Radiation source: fine-focus sealed tube | 1746 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
phi and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.218, Tmax = 0.365 | k = −10→11 |
3313 measured reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1116P)2] where P = (Fo2 + 2Fc2)/3 |
2129 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.82 e Å−3 |
3 restraints | Δρmin = −0.95 e Å−3 |
[Cu(C22H20N2O6)(H2O)2]Br2 | γ = 77.000 (2)° |
Mr = 667.78 | V = 611.66 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.5422 (7) Å | Mo Kα radiation |
b = 9.3001 (8) Å | µ = 4.21 mm−1 |
c = 9.9890 (9) Å | T = 293 K |
α = 64.194 (2)° | 0.52 × 0.30 × 0.30 mm |
β = 79.405 (2)° |
Bruker SMART CCD area-detector diffractometer | 2129 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1746 reflections with I > 2σ(I) |
Tmin = 0.218, Tmax = 0.365 | Rint = 0.087 |
3313 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 3 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.82 e Å−3 |
2129 reflections | Δρmin = −0.95 e Å−3 |
160 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0266 (4) | |
Br1 | −0.09111 (11) | 0.71414 (10) | 0.61132 (10) | 0.0434 (4) | |
O1 | 0.4292 (7) | 0.6175 (6) | 0.6239 (5) | 0.0288 (12) | |
O1W | 0.2454 (8) | 0.4936 (11) | 0.5040 (10) | 0.089 (3) | |
H1WA | 0.1963 | 0.4563 | 0.4678 | 0.133* | |
H1WB | 0.1830 | 0.5087 | 0.5306 | 0.133* | |
O2 | 0.4295 (9) | 0.8338 (7) | 0.4071 (6) | 0.0462 (16) | |
O3 | 0.7158 (10) | 0.8939 (9) | 0.9512 (7) | 0.0570 (19) | |
N1 | 0.3377 (9) | 0.7917 (7) | 0.7897 (7) | 0.0290 (14) | |
C1 | 0.4042 (10) | 0.7683 (9) | 0.5435 (8) | 0.0293 (16) | |
C2 | 0.3214 (11) | 0.8765 (9) | 0.6271 (8) | 0.0315 (17) | |
H2A | 0.3826 | 0.9702 | 0.5861 | 0.038* | |
H2B | 0.1932 | 0.9148 | 0.6107 | 0.038* | |
C3 | 0.2186 (11) | 0.6898 (10) | 0.8751 (9) | 0.0347 (18) | |
H3A | 0.1288 | 0.6746 | 0.8321 | 0.042* | |
C4 | 0.2320 (11) | 0.6095 (10) | 1.0252 (9) | 0.0375 (19) | |
H4A | 0.1528 | 0.5373 | 1.0848 | 0.045* | |
C5 | 0.3618 (12) | 0.6351 (10) | 1.0880 (9) | 0.0381 (19) | |
H5A | 0.3681 | 0.5819 | 1.1907 | 0.046* | |
C6 | 0.4849 (11) | 0.7399 (9) | 1.0003 (8) | 0.0313 (17) | |
C7 | 0.4693 (11) | 0.8171 (9) | 0.8479 (8) | 0.0292 (16) | |
H7A | 0.5501 | 0.8867 | 0.7856 | 0.035* | |
C8 | 0.6243 (13) | 0.7737 (11) | 1.0664 (10) | 0.043 (2) | |
H8A | 0.5654 | 0.8110 | 1.1431 | 0.051* | |
H8B | 0.7109 | 0.6759 | 1.1117 | 0.051* | |
C9 | 0.8556 (11) | 0.9412 (11) | 0.9825 (10) | 0.0377 (19) | |
C10 | 0.9060 (12) | 0.8939 (11) | 1.1252 (9) | 0.040 (2) | |
H10A | 0.8431 | 0.8239 | 1.2087 | 0.047* | |
C11 | 0.9504 (12) | 1.0480 (11) | 0.8589 (9) | 0.039 (2) | |
H11A | 0.9157 | 1.0805 | 0.7640 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0268 (7) | 0.0331 (8) | 0.0283 (7) | −0.0080 (5) | −0.0023 (5) | −0.0189 (6) |
Br1 | 0.0384 (6) | 0.0471 (6) | 0.0532 (7) | −0.0103 (4) | −0.0074 (4) | −0.0258 (5) |
O1 | 0.032 (3) | 0.034 (3) | 0.026 (3) | −0.006 (2) | −0.002 (2) | −0.018 (2) |
O1W | 0.028 (3) | 0.140 (8) | 0.172 (9) | −0.013 (4) | 0.001 (4) | −0.136 (8) |
O2 | 0.077 (5) | 0.041 (3) | 0.021 (3) | −0.016 (3) | 0.001 (3) | −0.012 (2) |
O3 | 0.063 (4) | 0.075 (5) | 0.038 (4) | −0.035 (4) | −0.015 (3) | −0.013 (3) |
N1 | 0.036 (3) | 0.028 (3) | 0.027 (3) | −0.006 (3) | −0.001 (3) | −0.014 (3) |
C1 | 0.031 (4) | 0.032 (4) | 0.032 (4) | −0.010 (3) | −0.005 (3) | −0.017 (3) |
C2 | 0.042 (4) | 0.025 (4) | 0.028 (4) | −0.008 (3) | −0.005 (3) | −0.010 (3) |
C3 | 0.035 (4) | 0.037 (4) | 0.037 (4) | −0.008 (3) | −0.002 (3) | −0.019 (4) |
C4 | 0.038 (5) | 0.041 (5) | 0.031 (4) | −0.015 (4) | 0.005 (3) | −0.012 (4) |
C5 | 0.045 (5) | 0.039 (4) | 0.022 (4) | −0.002 (4) | −0.002 (3) | −0.007 (3) |
C6 | 0.036 (4) | 0.033 (4) | 0.028 (4) | 0.001 (3) | −0.007 (3) | −0.017 (3) |
C7 | 0.035 (4) | 0.026 (4) | 0.029 (4) | −0.007 (3) | −0.003 (3) | −0.013 (3) |
C8 | 0.050 (5) | 0.047 (5) | 0.034 (4) | −0.006 (4) | −0.011 (4) | −0.018 (4) |
C9 | 0.036 (4) | 0.046 (5) | 0.042 (5) | −0.001 (4) | −0.014 (4) | −0.026 (4) |
C10 | 0.042 (5) | 0.042 (5) | 0.035 (4) | −0.003 (4) | −0.004 (4) | −0.018 (4) |
C11 | 0.041 (5) | 0.053 (5) | 0.032 (4) | −0.004 (4) | −0.012 (4) | −0.023 (4) |
Cu1—O1i | 1.919 (5) | C3—H3A | 0.9300 |
Cu1—O1 | 1.919 (5) | C4—C5 | 1.368 (12) |
Cu1—O1W | 1.927 (6) | C4—H4A | 0.9300 |
Cu1—O1Wi | 1.927 (6) | C5—C6 | 1.394 (12) |
O1—C1 | 1.266 (9) | C5—H5A | 0.9300 |
O1W—H1WA | 0.7774 | C6—C7 | 1.387 (11) |
O1W—H1WB | 0.5183 | C6—C8 | 1.492 (12) |
O2—C1 | 1.223 (9) | C7—H7A | 0.9300 |
O3—C9 | 1.361 (11) | C8—H8A | 0.9700 |
O3—C8 | 1.409 (11) | C8—H8B | 0.9700 |
N1—C7 | 1.348 (10) | C9—C11 | 1.396 (12) |
N1—C3 | 1.353 (10) | C9—C10 | 1.396 (12) |
N1—C2 | 1.480 (9) | C10—C11ii | 1.376 (13) |
C1—C2 | 1.535 (10) | C10—H10A | 0.9300 |
C2—H2A | 0.9700 | C11—C10ii | 1.376 (13) |
C2—H2B | 0.9700 | C11—H11A | 0.9300 |
C3—C4 | 1.365 (11) | ||
O1i—Cu1—O1 | 180 | C3—C4—H4A | 119.9 |
O1i—Cu1—O1W | 91.4 (2) | C5—C4—H4A | 119.9 |
O1—Cu1—O1W | 88.6 (2) | C4—C5—C6 | 120.9 (7) |
O1i—Cu1—O1Wi | 88.6 (2) | C4—C5—H5A | 119.5 |
O1—Cu1—O1Wi | 91.4 (2) | C6—C5—H5A | 119.5 |
O1W—Cu1—O1Wi | 180 | C7—C6—C5 | 117.4 (7) |
C1—O1—Cu1 | 110.1 (5) | C7—C6—C8 | 120.6 (7) |
Cu1—O1W—H1WA | 131.9 | C5—C6—C8 | 122.0 (7) |
Cu1—O1W—H1WB | 138.6 | N1—C7—C6 | 120.3 (7) |
H1WA—O1W—H1WB | 89.3 | N1—C7—H7A | 119.8 |
C9—O3—C8 | 119.4 (7) | C6—C7—H7A | 119.8 |
C7—N1—C3 | 122.2 (7) | O3—C8—C6 | 108.1 (7) |
C7—N1—C2 | 119.7 (6) | O3—C8—H8A | 110.1 |
C3—N1—C2 | 118.1 (7) | C6—C8—H8A | 110.1 |
O2—C1—O1 | 126.5 (7) | O3—C8—H8B | 110.1 |
O2—C1—C2 | 117.8 (7) | C6—C8—H8B | 110.1 |
O1—C1—C2 | 115.6 (6) | H8A—C8—H8B | 108.4 |
N1—C2—C1 | 112.9 (6) | O3—C9—C11 | 115.3 (7) |
N1—C2—H2A | 109.0 | O3—C9—C10 | 125.3 (8) |
C1—C2—H2A | 109.0 | C11—C9—C10 | 119.4 (8) |
N1—C2—H2B | 109.0 | C11ii—C10—C9 | 119.3 (8) |
C1—C2—H2B | 109.0 | C11ii—C10—H10A | 120.4 |
H2A—C2—H2B | 107.8 | C9—C10—H10A | 120.4 |
N1—C3—C4 | 119.1 (8) | C10ii—C11—C9 | 121.3 (8) |
N1—C3—H3A | 120.5 | C10ii—C11—H11A | 119.3 |
C4—C3—H3A | 120.5 | C9—C11—H11A | 119.3 |
C3—C4—C5 | 120.1 (8) | ||
O1i—Cu1—O1—C1 | 112 (100) | C4—C5—C6—C8 | 178.2 (8) |
O1W—Cu1—O1—C1 | −91.2 (6) | C3—N1—C7—C6 | −1.1 (11) |
O1Wi—Cu1—O1—C1 | 88.8 (6) | C2—N1—C7—C6 | 179.3 (7) |
Cu1—O1—C1—O2 | −3.7 (10) | C5—C6—C7—N1 | 0.9 (11) |
Cu1—O1—C1—C2 | 171.9 (5) | C8—C6—C7—N1 | −176.9 (7) |
C7—N1—C2—C1 | 101.3 (8) | C9—O3—C8—C6 | −177.3 (7) |
C3—N1—C2—C1 | −78.4 (9) | C7—C6—C8—O3 | 2.8 (11) |
O2—C1—C2—N1 | −166.3 (7) | C5—C6—C8—O3 | −175.0 (7) |
O1—C1—C2—N1 | 17.8 (9) | C8—O3—C9—C11 | 173.5 (8) |
C7—N1—C3—C4 | −0.1 (12) | C8—O3—C9—C10 | −7.8 (13) |
C2—N1—C3—C4 | 179.5 (7) | O3—C9—C10—C11ii | −179.5 (9) |
N1—C3—C4—C5 | 1.4 (12) | C11—C9—C10—C11ii | −0.8 (14) |
C3—C4—C5—C6 | −1.5 (13) | O3—C9—C11—C10ii | 179.6 (8) |
C4—C5—C6—C7 | 0.4 (12) | C10—C9—C11—C10ii | 0.8 (14) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···Br1 | 0.52 | 2.74 | 3.220 (9) | 155 |
O1W—H1WA···Br1iii | 0.78 | 2.38 | 3.139 (9) | 167 |
Symmetry code: (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C22H20N2O6)(H2O)2]Br2 |
Mr | 667.78 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.5422 (7), 9.3001 (8), 9.9890 (9) |
α, β, γ (°) | 64.194 (2), 79.405 (2), 77.000 (2) |
V (Å3) | 611.66 (10) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 4.21 |
Crystal size (mm) | 0.52 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.218, 0.365 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3313, 2129, 1746 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.163, 1.03 |
No. of reflections | 2129 |
No. of parameters | 160 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.82, −0.95 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···Br1 | 0.52 | 2.74 | 3.220 (9) | 155 |
O1W—H1WA···Br1i | 0.78 | 2.38 | 3.139 (9) | 167 |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
Financial support from Zhongzhou University is greatly appreciated.
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, L.-P., Lam, C.-K., Song, H.-B. & Mak, T. C. W. (2004). Polyhedron, 23, 2413–2425. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular assembly is a powerful tool in the design of metallo-organic based complex molecular architectures. Ligands of the double betaine type are known to be generators of variable coordination frameworks in organic-inorganic hybrid materials (Zhang et al., 2004).
The title complex is centrosymmetric and exists as infinite zigzag chains (Fig. 1). In the crystal the bromide serves as a hydrogen-bond acceptor and the coordinated water molecules as donors leading to the formation of a two-dimensional network (Fig. 2 and Table 1).