organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-N′-[1-(2-hy­dr­oxy­phen­yl)ethyl­­idene]benzohydrazide

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 24 May 2010; accepted 26 May 2010; online 29 May 2010)

In the title compound, C15H14N2O3, there is an intra­molecular O—H⋯N hydrogen bond and the dihedral angle between the two aromatic rings is 13.9 (3)°. In the crystal structure, mol­ecules are stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Lu et al. (2008a[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.],b[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.],c[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.]); Xiao & Wei (2009[Xiao, G.-J. & Wei, C. (2009). Acta Cryst. E65, o585.]); He (2008[He, L. (2008). Acta Cryst. E64, o82.]); Shi et al. (2007[Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295-o1296.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Monoclinic, P 21 /c

  • a = 4.926 (2) Å

  • b = 31.06 (2) Å

  • c = 8.473 (3) Å

  • β = 93.852 (3)°

  • V = 1293.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.21 × 0.20 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.984

  • 8965 measured reflections

  • 2770 independent reflections

  • 1569 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.172

  • S = 1.05

  • 2770 reflections

  • 188 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.78 2.499 (3) 146
O3—H3⋯O1i 0.82 1.97 2.786 (3) 179
N2—H2⋯O2ii 0.90 (1) 2.09 (2) 2.961 (4) 163 (3)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigation of the crystal structures of Schiff bases derived from the condensation of aldehydes or ketones with benzohydrazides (Lu et al., 2008a,b,c), we report herein on the crystal structure of the new title Schiff base compound.

In the title compound, illustrated in Fig. 1, the bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Xiao & Wei, 2009; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings is 13.9 (3)°, indicating that the Schiff base molecule is slightly twisted. An intramolecular O—H···N hydrogen bond is observed (Table 1).

In the crystal structure, the molecules are stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related structures, see: Lu et al. (2008a,b,c); Xiao & Wei (2009); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of 1-(2-hydroxyphenyl)ethanone (0.1 mol, 13.6 g) and 4-hydroxybenzohydrazide (0.1 mmol, 15.2 g) in 95% ethanol (70 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals, suitable for X-ray diffraction analysis, were obatined by slow evaporation of a 95% ethanol solution at rt.

Refinement top

The N2 H-atom (H2) was located in a difference Fourier map and refined with a distance restraint: N-H = 0.90 (1) Å. The other H-atoms were positioned geometrically (C—H = 0.93–0.96 Å and O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O). A rotating group model was used for the methyl and hydroxyl groups.

Structure description top

As part of our investigation of the crystal structures of Schiff bases derived from the condensation of aldehydes or ketones with benzohydrazides (Lu et al., 2008a,b,c), we report herein on the crystal structure of the new title Schiff base compound.

In the title compound, illustrated in Fig. 1, the bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Xiao & Wei, 2009; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings is 13.9 (3)°, indicating that the Schiff base molecule is slightly twisted. An intramolecular O—H···N hydrogen bond is observed (Table 1).

In the crystal structure, the molecules are stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2).

For related structures, see: Lu et al. (2008a,b,c); Xiao & Wei (2009); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular O-H···N hydrogen bond (see Table 1 for details.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H-atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-Hydroxy-N'-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 957 reflections
a = 4.926 (2) Åθ = 2.5–24.5°
b = 31.06 (2) ŵ = 0.10 mm1
c = 8.473 (3) ÅT = 298 K
β = 93.852 (3)°Block, colourless
V = 1293.5 (11) Å30.21 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2770 independent reflections
Radiation source: fine-focus sealed tube1569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.980, Tmax = 0.984k = 3934
8965 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.4306P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2770 reflectionsΔρmax = 0.26 e Å3
188 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (18)
Crystal data top
C15H14N2O3V = 1293.5 (11) Å3
Mr = 270.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.926 (2) ŵ = 0.10 mm1
b = 31.06 (2) ÅT = 298 K
c = 8.473 (3) Å0.21 × 0.20 × 0.17 mm
β = 93.852 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1569 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.064
8965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
2770 reflectionsΔρmin = 0.21 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9548 (5)0.64659 (7)0.6666 (3)0.0384 (6)
N20.8786 (5)0.68800 (7)0.6186 (3)0.0389 (6)
O11.2807 (5)0.60332 (7)0.8408 (3)0.0581 (7)
H11.21120.62520.80210.087*
O21.3097 (4)0.71011 (6)0.6779 (3)0.0510 (6)
O30.7088 (5)0.89007 (6)0.5716 (3)0.0593 (7)
H30.58100.89200.50480.089*
C10.9088 (6)0.57209 (9)0.6782 (3)0.0377 (7)
C21.1338 (6)0.56842 (9)0.7889 (3)0.0413 (8)
C31.2167 (7)0.52855 (10)0.8469 (4)0.0530 (9)
H3A1.36680.52660.91920.064*
C41.0804 (8)0.49197 (10)0.7992 (4)0.0603 (10)
H41.13750.46530.83890.072*
C50.8616 (8)0.49468 (11)0.6938 (5)0.0644 (11)
H50.76810.46980.66180.077*
C60.7776 (7)0.53373 (10)0.6342 (4)0.0544 (9)
H60.62740.53480.56170.065*
C70.8165 (6)0.61399 (9)0.6136 (3)0.0366 (7)
C81.0701 (6)0.71922 (9)0.6405 (3)0.0374 (7)
C90.9732 (6)0.76376 (9)0.6167 (3)0.0346 (7)
C100.7529 (6)0.77407 (9)0.5133 (3)0.0394 (7)
H100.66390.75230.45470.047*
C110.6634 (6)0.81585 (9)0.4958 (3)0.0411 (8)
H110.51580.82220.42540.049*
C120.7927 (6)0.84846 (9)0.5827 (3)0.0392 (7)
C131.0155 (6)0.83870 (10)0.6841 (4)0.0477 (8)
H131.10560.86050.74150.057*
C141.1051 (6)0.79695 (10)0.7005 (4)0.0446 (8)
H141.25600.79080.76870.054*
C150.5813 (7)0.61695 (11)0.4922 (4)0.0541 (9)
H15A0.41830.60750.53780.081*
H15B0.61540.59900.40350.081*
H15C0.55950.64630.45750.081*
H20.710 (3)0.6991 (11)0.622 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0324 (14)0.0301 (14)0.0522 (15)0.0026 (11)0.0000 (11)0.0024 (11)
N20.0325 (14)0.0302 (14)0.0531 (15)0.0022 (11)0.0030 (12)0.0062 (11)
O10.0596 (15)0.0364 (13)0.0744 (16)0.0035 (11)0.0252 (12)0.0046 (11)
O20.0294 (12)0.0443 (13)0.0784 (16)0.0045 (10)0.0033 (11)0.0088 (11)
O30.0686 (18)0.0336 (13)0.0721 (17)0.0086 (11)0.0224 (13)0.0024 (10)
C10.0364 (17)0.0327 (16)0.0439 (16)0.0017 (13)0.0030 (13)0.0025 (13)
C20.0458 (19)0.0313 (17)0.0464 (17)0.0017 (14)0.0001 (14)0.0005 (13)
C30.062 (2)0.0367 (19)0.060 (2)0.0050 (16)0.0040 (17)0.0084 (15)
C40.077 (3)0.0292 (19)0.076 (2)0.0094 (17)0.013 (2)0.0120 (16)
C50.072 (3)0.0326 (19)0.088 (3)0.0091 (18)0.000 (2)0.0022 (17)
C60.055 (2)0.041 (2)0.066 (2)0.0074 (16)0.0070 (17)0.0049 (16)
C70.0340 (17)0.0351 (16)0.0405 (16)0.0006 (13)0.0001 (13)0.0023 (12)
C80.0338 (17)0.0386 (17)0.0397 (16)0.0010 (14)0.0017 (13)0.0043 (13)
C90.0314 (16)0.0334 (16)0.0388 (15)0.0013 (13)0.0017 (12)0.0036 (12)
C100.0415 (18)0.0313 (16)0.0438 (17)0.0016 (13)0.0080 (13)0.0003 (13)
C110.0426 (18)0.0367 (17)0.0419 (17)0.0008 (14)0.0125 (14)0.0048 (13)
C120.0450 (18)0.0277 (16)0.0445 (17)0.0026 (13)0.0013 (14)0.0032 (13)
C130.046 (2)0.0353 (18)0.0588 (19)0.0043 (14)0.0146 (16)0.0076 (15)
C140.0380 (18)0.0428 (18)0.0509 (19)0.0019 (15)0.0127 (14)0.0019 (14)
C150.049 (2)0.053 (2)0.058 (2)0.0024 (17)0.0111 (16)0.0030 (16)
Geometric parameters (Å, º) top
N1—C71.284 (3)C5—H50.9300
N1—N21.393 (3)C6—H60.9300
N2—C81.357 (4)C7—C151.500 (4)
N2—H20.900 (10)C8—C91.473 (4)
O1—C21.360 (3)C9—C101.385 (4)
O1—H10.8200C9—C141.388 (4)
O2—C81.234 (3)C10—C111.375 (4)
O3—C121.358 (3)C10—H100.9300
O3—H30.8200C11—C121.382 (4)
C1—C61.394 (4)C11—H110.9300
C1—C21.407 (4)C12—C131.381 (4)
C1—C71.472 (4)C13—C141.374 (4)
C2—C31.384 (4)C13—H130.9300
C3—C41.367 (4)C14—H140.9300
C3—H3A0.9300C15—H15A0.9600
C4—C51.356 (5)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.367 (5)
C7—N1—N2120.0 (2)O2—C8—N2121.0 (3)
C8—N2—N1116.7 (2)O2—C8—C9123.1 (3)
C8—N2—H2111 (2)N2—C8—C9115.9 (2)
N1—N2—H2125 (2)C10—C9—C14118.1 (3)
C2—O1—H1109.5C10—C9—C8122.5 (3)
C12—O3—H3109.5C14—C9—C8119.4 (2)
C6—C1—C2116.1 (3)C11—C10—C9121.2 (3)
C6—C1—C7122.0 (3)C11—C10—H10119.4
C2—C1—C7121.9 (2)C9—C10—H10119.4
O1—C2—C3117.4 (3)C10—C11—C12120.1 (3)
O1—C2—C1122.0 (2)C10—C11—H11120.0
C3—C2—C1120.6 (3)C12—C11—H11120.0
C4—C3—C2120.7 (3)O3—C12—C13118.5 (3)
C4—C3—H3A119.6O3—C12—C11122.2 (3)
C2—C3—H3A119.6C13—C12—C11119.3 (3)
C5—C4—C3119.8 (3)C14—C13—C12120.4 (3)
C5—C4—H4120.1C14—C13—H13119.8
C3—C4—H4120.1C12—C13—H13119.8
C4—C5—C6120.4 (3)C13—C14—C9120.9 (3)
C4—C5—H5119.8C13—C14—H14119.6
C6—C5—H5119.8C9—C14—H14119.6
C5—C6—C1122.4 (3)C7—C15—H15A109.5
C5—C6—H6118.8C7—C15—H15B109.5
C1—C6—H6118.8H15A—C15—H15B109.5
N1—C7—C1115.0 (2)C7—C15—H15C109.5
N1—C7—C15124.0 (3)H15A—C15—H15C109.5
C1—C7—C15121.0 (3)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.499 (3)146
O3—H3···O1i0.821.972.786 (3)179
N2—H2···O2ii0.90 (1)2.09 (2)2.961 (4)163 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.926 (2), 31.06 (2), 8.473 (3)
β (°) 93.852 (3)
V3)1293.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.20 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8965, 2770, 1569
Rint0.064
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.172, 1.05
No. of reflections2770
No. of parameters188
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.499 (3)146
O3—H3···O1i0.821.972.786 (3)179
N2—H2···O2ii0.90 (1)2.089 (15)2.961 (4)163 (3)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Scientific Research Foundation of Shaanxi University of Technology (project No. SLGQD0708) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, L. (2008). Acta Cryst. E64, o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, G.-J. & Wei, C. (2009). Acta Cryst. E65, o585.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds