metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-2,3-di­hydroxy­propan-1-olato-sodium]

aSaskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, and bDepartment of Food and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
*Correspondence e-mail: gabriele.schatte@usask.ca

(Received 29 March 2010; accepted 30 April 2010; online 12 May 2010)

The Na+ cation in the title compound, [Na(C3H7O3)]n or Na[H2gl], is coordinated by five O atoms leading to a distorted trigonal-bipyramidal geometry. The negatively charged O atom of the glycerolate anion is in an equatorial position, and the O atom of the hydroxo group, attached to the secondary C atom, occupies an axial position completing a five-membered non-planar chelate ring; this defines the asymmetric unit. The Na+ cation is coordinated by three other symmetry-related monodentate H2gl ligands, so that each H2gl ligand is bonded to four Na+ ions. The H2gl ligands are connected via strong O—H⋯O hydrogen bonds and these, together with the Na⋯O inter­connections, are responsible for the formation of polymeric sheets which propagate in the directions of the b and c axes.

Related literature

For syntheses of mono sodium glyceroxide, see: Letts (1872[Letts, E. A. (1872). Berichte, 5, 159-160.]); Fairbourne & Toms (1921[Fairbourne, A. & Toms, H. (1921). J. Chem. Soc. Trans. 119, 1035-1040.]); Gross & Jacobs (1926[Gross, F. C. & Jacobs, J. M. (1926). J. Soc. Chem. Ind. London, 45, 320T-321T.]). For the syntheses and characterization of sodium alkoxides and aryl­oxides, see: Davies et al. (1982[Davies, J. E., Kopf, J. & Weiss, E. (1982). Acta Cryst. B38, 2251-2253.]); Brooker et al. (1991[Brooker, S., Edelmann, F. T., Kottke, T., Roesky, H. W., Sheldrick, G. M., Stalke, D. & Whitmire, K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 144-146.]); Hogerheide et al. (1996[Hogerheide, M. P., Ringelberg, S. N., Janssen, M. D., Boersma, J., Spek, A. L. & van Kotten, G. (1996). Inorg. Chem. 35, 1195-1200.]). For related crystal structures of transition metal mono glyceroxides, see: Rath et al. (1998[Rath, S. P., Rajak, K. K., Mondal, S. & Chakravorty, A. (1998). J. Chem. Soc. Dalton Trans. pp. 2097-2101.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C3H7O3)]

  • Mr = 114.08

  • Monoclinic, P 21 /c

  • a = 8.1117 (4) Å

  • b = 6.1559 (3) Å

  • c = 9.4882 (5) Å

  • β = 100.113 (3)°

  • V = 466.43 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 183 K

  • 0.25 × 0.25 × 0.13 mm

Data collection
  • Bruker–Nonius KappaCCD four-circle diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.948, Tmax = 0.972

  • 1963 measured reflections

  • 1058 independent reflections

  • 953 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.07

  • 1058 reflections

  • 72 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

O1—Na1 2.4243 (10)
O2—Na1 2.4237 (9)
Na1—O1i 2.3163 (9)
Na1—O3ii 2.3462 (10)
Na1—O2iii 2.3551 (9)
Na1—O2ii 3.3549 (10)
Na1—O3iii 3.5265 (10)
Na1—O1iv 3.8258 (10)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1iv 0.865 (18) 1.723 (18) 2.5837 (12) 173.0 (18)
O3—H3⋯O1v 0.857 (18) 1.804 (18) 2.6575 (12) 173.7 (19)
Symmetry codes: (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and ORTEP (in SHELXTL-NT; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

We have shown that alkali metal glyceroxides can be used as efficient catalysts in trans-esterification reactions to produce biodiesel. Earlier syntheses of the mono sodium glyceroxide, Na[OCH2CH(OH)CH2(OH)] (referred to as Na[H2gl]), involved the reaction of excess sodium dissolved in ethanol with glycerol (Letts, 1872; Fairbourne & Toms, 1921). A more elegant and less expensive method for the the preparation of the title compound, (I), involved heating and stirring together equimolar quantities of powdered sodium hydroxide and glycerol (Gross & Jacobs, 1926).

Crystal structures of putative alkali metal glycerolates, M[H2gl], have not been reported to our knowledge. The crystal structure of oxo(propane-1,3-diol-2-olato)(salicylaldehyde hydroxophenylmethylenehydrazonato-N,O,O')vanadium(V) has been until now the only reported structure containing coordinated H2gl- ions (Rath et al., 1998). The crystal structure of (I) was determined as part of our research on catalysts which can be used in the production of biodiesel. The results of our crystal structure determination confirmed the earlier proposed structure based on derivative chemistry (Fairbourne & Toms, 1921).

The H2gl- anion behaves as a multifunctional ligand in the structure of (I), Fig. 1. In the first mode, the H2gl- ligand is coordinating to the sodium atom by one oxo- (O1) and one hydroxo (O2) group forming a non-planar 5-membered ring. Symmetry related H2gl- ligands form essentially monodentate attachments. Pseudo-five-membered chelate rings are formed if rather longer Na···O interactions are taken into account [Na···O distances ranging from 3.35 to 3.83 Å (sum of the van der Waals radii, 3.8 Å)]; Table 1 and Fig. 2.

The observed intra- and inter-molecular Na···O bond distances are elongated in comparison to the related bond distances reported for sodium phenolate complexes (Hogerheide et al., 1996; Brooker et al., 1991) and sodium tert-butoxide (Davies et al., 1982). The oxygen atoms O1 and O2 act as bridging atoms between sodium atoms forming a planar O···Na···O···Na ring with alternation between O1 in one ring and O2 in the following ring. Each H2gl- ligand is bonded to four Na ions. The H2gl- ligands are connected via two strong intermolecular O—H···O hydrogen bond interactions (Table 2 and Fig. 2). Both the Na···O and O—H···O interconnections are responsible for the formation of polymeric sheets which extends indefinitely in the directions of the b and c axes (Fig. 2). Finally, it is noted that in (I), the hydroxo group attached to primary carbon atom of the glycerol is deprotonated. This is in contrast to the reported structure for the vanadium-H2gl complex, where the hydroxo group attached to secondary carbon atom is deprotonated (Rath et al., 1998).

Related literature top

For syntheses of mono sodium glyceroxide, see: Letts (1872); Fairbourne & Toms (1921); Gross & Jacobs (1926). For the syntheses and characterization of sodium alkoxides and aryloxides, see: Davies et al. (1982); Brooker et al. (1991); Hogerheide et al. (1996). For related crystal structures of transition metal mono glyceroxides, see: Rath et al. (1998).

Experimental top

A sodium hydroxide solution (240 g, 50%) was freshly prepared by dissolving sodium hydroxide pellets (120 g, 3 mol) in water (120 g). Glycerol (92 g, 1 mol) was slowly added into the hot sodium hydroxide solution under agitation. The mixture was allowed to stand and to cool down to room temperature. Colourless crystals of mono sodium glyceroxide started to form. The crystals are only stable in a very basic solution at ambient temperatures. A suitable single crystal was quickly coated with oil, collected onto the nylon fiber of a mounted CryoLoopTM and quickly transferred to the cold stream of the X-ray diffractometer. The data collection was performed at -90°C instead of -100°C to prevent cracking of the crystals at the lower temperature.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The hydrogen atoms of the hydroxo groups were located in the difference Fourier map and were allowed to refine freely.

Structure description top

We have shown that alkali metal glyceroxides can be used as efficient catalysts in trans-esterification reactions to produce biodiesel. Earlier syntheses of the mono sodium glyceroxide, Na[OCH2CH(OH)CH2(OH)] (referred to as Na[H2gl]), involved the reaction of excess sodium dissolved in ethanol with glycerol (Letts, 1872; Fairbourne & Toms, 1921). A more elegant and less expensive method for the the preparation of the title compound, (I), involved heating and stirring together equimolar quantities of powdered sodium hydroxide and glycerol (Gross & Jacobs, 1926).

Crystal structures of putative alkali metal glycerolates, M[H2gl], have not been reported to our knowledge. The crystal structure of oxo(propane-1,3-diol-2-olato)(salicylaldehyde hydroxophenylmethylenehydrazonato-N,O,O')vanadium(V) has been until now the only reported structure containing coordinated H2gl- ions (Rath et al., 1998). The crystal structure of (I) was determined as part of our research on catalysts which can be used in the production of biodiesel. The results of our crystal structure determination confirmed the earlier proposed structure based on derivative chemistry (Fairbourne & Toms, 1921).

The H2gl- anion behaves as a multifunctional ligand in the structure of (I), Fig. 1. In the first mode, the H2gl- ligand is coordinating to the sodium atom by one oxo- (O1) and one hydroxo (O2) group forming a non-planar 5-membered ring. Symmetry related H2gl- ligands form essentially monodentate attachments. Pseudo-five-membered chelate rings are formed if rather longer Na···O interactions are taken into account [Na···O distances ranging from 3.35 to 3.83 Å (sum of the van der Waals radii, 3.8 Å)]; Table 1 and Fig. 2.

The observed intra- and inter-molecular Na···O bond distances are elongated in comparison to the related bond distances reported for sodium phenolate complexes (Hogerheide et al., 1996; Brooker et al., 1991) and sodium tert-butoxide (Davies et al., 1982). The oxygen atoms O1 and O2 act as bridging atoms between sodium atoms forming a planar O···Na···O···Na ring with alternation between O1 in one ring and O2 in the following ring. Each H2gl- ligand is bonded to four Na ions. The H2gl- ligands are connected via two strong intermolecular O—H···O hydrogen bond interactions (Table 2 and Fig. 2). Both the Na···O and O—H···O interconnections are responsible for the formation of polymeric sheets which extends indefinitely in the directions of the b and c axes (Fig. 2). Finally, it is noted that in (I), the hydroxo group attached to primary carbon atom of the glycerol is deprotonated. This is in contrast to the reported structure for the vanadium-H2gl complex, where the hydroxo group attached to secondary carbon atom is deprotonated (Rath et al., 1998).

For syntheses of mono sodium glyceroxide, see: Letts (1872); Fairbourne & Toms (1921); Gross & Jacobs (1926). For the syntheses and characterization of sodium alkoxides and aryloxides, see: Davies et al. (1982); Brooker et al. (1991); Hogerheide et al. (1996). For related crystal structures of transition metal mono glyceroxides, see: Rath et al. (1998).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993) and ORTEP (in SHELXTL-NT; Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit in (I) showing the labelling scheme. Non-hydrogen atoms are represented by displacement ellipsoids at the 30% propability level.
[Figure 2] Fig. 2. Partial packing diagram for (I) showing the intra- and inter-molecular Na···O and intermolecular O(H)···O contacts (dashed lines) leading to a polymeric sheet-like structure. Hydrogen atoms have been omitted for clarity.
Poly[µ-2,3-dihydroxypropan-1-olato-sodium] top
Crystal data top
[Na(C3H7O3)]F(000) = 240
Mr = 114.08Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1052 reflections
a = 8.1117 (4) Åθ = 1.0–27.5°
b = 6.1559 (3) ŵ = 0.22 mm1
c = 9.4882 (5) ÅT = 183 K
β = 100.113 (3)°Plate, colourless
V = 466.43 (4) Å30.25 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD four-circle
diffractometer
1058 independent reflections
Radiation source: fine-focus sealed tube953 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.016
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.0°
ω scans with κ offsetsh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 77
Tmin = 0.948, Tmax = 0.972l = 1212
1963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.217P]
where P = (Fo2 + 2Fc2)/3
1058 reflections(Δ/σ)max < 0.001
72 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
[Na(C3H7O3)]V = 466.43 (4) Å3
Mr = 114.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1117 (4) ŵ = 0.22 mm1
b = 6.1559 (3) ÅT = 183 K
c = 9.4882 (5) Å0.25 × 0.25 × 0.13 mm
β = 100.113 (3)°
Data collection top
Bruker–Nonius KappaCCD four-circle
diffractometer
1058 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
953 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.972Rint = 0.016
1963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
1058 reflectionsΔρmin = 0.22 e Å3
72 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14472 (10)0.45332 (13)0.38811 (9)0.01321 (19)
O20.06200 (10)0.00441 (13)0.35060 (9)0.01191 (19)
H20.009 (2)0.029 (3)0.273 (2)0.041 (5)*
O30.29537 (11)0.26839 (14)0.23818 (9)0.0148 (2)
H30.248 (2)0.352 (3)0.292 (2)0.039 (5)*
C10.26407 (14)0.28434 (18)0.40749 (12)0.0131 (2)
H1A0.28300.23790.50890.016*
H1B0.37150.34030.38640.016*
C20.21073 (13)0.08815 (18)0.31254 (12)0.0112 (2)
H2A0.18430.13810.21080.013*
C30.34809 (14)0.08287 (19)0.32497 (13)0.0145 (2)
H3A0.44850.01890.29510.017*
H3B0.37920.12870.42620.017*
Na10.08654 (6)0.26587 (7)0.46569 (5)0.01393 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (4)0.0087 (4)0.0148 (4)0.0023 (3)0.0031 (3)0.0006 (3)
O20.0120 (4)0.0120 (4)0.0125 (4)0.0011 (3)0.0040 (3)0.0004 (3)
O30.0188 (4)0.0101 (4)0.0169 (4)0.0001 (3)0.0066 (3)0.0019 (3)
C10.0140 (5)0.0101 (5)0.0150 (5)0.0012 (4)0.0015 (4)0.0006 (4)
C20.0118 (5)0.0105 (5)0.0121 (5)0.0004 (4)0.0043 (4)0.0008 (4)
C30.0134 (5)0.0109 (5)0.0195 (6)0.0004 (4)0.0035 (4)0.0025 (4)
Na10.0186 (3)0.0108 (2)0.0133 (2)0.00036 (17)0.00535 (18)0.00017 (17)
Geometric parameters (Å, º) top
O1—C11.4108 (13)C2—C31.5224 (15)
O1—Na12.4243 (10)C2—H2A1.0000
O2—C21.4366 (13)C3—H3A0.9900
O2—Na12.4237 (9)C3—H3B0.9900
O2—H20.868 (19)Na1—O1i2.3163 (9)
O3—C31.4288 (14)Na1—O3ii2.3462 (10)
O3—H30.86 (2)Na1—O2iii2.3551 (9)
C1—C21.5233 (15)Na1—O2ii3.3549 (10)
C1—Na12.9929 (13)Na1—O3iii3.5265 (10)
C1—H1A0.9900Na1—O1iv3.8258 (10)
C1—H1B0.9900
C1—O1—Na1i132.80 (7)O2—C2—H2A108.5
C1—O1—Na199.17 (7)C3—C2—H2A108.5
Na1i—O1—Na185.61 (3)C1—C2—H2A108.5
C2—O2—Na1iii119.44 (6)O3—C3—C2111.54 (9)
C2—O2—Na1110.30 (6)O3—C3—H3A109.3
Na1iii—O2—Na196.88 (3)C2—C3—H3A109.3
C2—O2—H2108.5 (13)O3—C3—H3B109.3
Na1iii—O2—H2118.0 (13)C2—C3—H3B109.3
Na1—O2—H2101.2 (13)H3A—C3—H3B108.0
C3—O3—Na1iv120.20 (7)O1i—Na1—O3ii111.55 (4)
C3—O3—H3104.9 (13)O1i—Na1—O2iii93.81 (3)
Na1iv—O3—H3102.2 (12)O3ii—Na1—O2iii120.25 (3)
O1—C1—C2112.98 (9)O1i—Na1—O2162.14 (4)
O1—C1—Na153.10 (5)O3ii—Na1—O284.89 (3)
C2—C1—Na184.18 (6)O2iii—Na1—O283.12 (3)
O1—C1—H1A109.0O1i—Na1—O194.39 (3)
C2—C1—H1A109.0O3ii—Na1—O1106.12 (3)
Na1—C1—H1A78.4O2iii—Na1—O1125.50 (3)
O1—C1—H1B109.0O2—Na1—O173.59 (3)
C2—C1—H1B109.0O1i—Na1—C1112.47 (3)
Na1—C1—H1B161.7O3ii—Na1—C1115.04 (4)
H1A—C1—H1B107.8O2iii—Na1—C1101.71 (3)
O2—C2—C3109.99 (9)O2—Na1—C151.63 (3)
O2—C2—C1109.25 (9)O1—Na1—C127.73 (3)
C3—C2—C1111.99 (9)
Na1i—O1—C1—C2155.38 (7)Na1iii—O2—Na1—O1130.18 (4)
Na1—O1—C1—C262.86 (9)C2—O2—Na1—C114.05 (6)
Na1i—O1—C1—Na192.51 (8)Na1iii—O2—Na1—C1110.87 (4)
Na1iii—O2—C2—C335.83 (11)C1—O1—Na1—O1i132.68 (7)
Na1—O2—C2—C3146.65 (7)Na1i—O1—Na1—O1i0.0
Na1iii—O2—C2—C187.48 (9)C1—O1—Na1—O3ii113.39 (6)
Na1—O2—C2—C123.34 (10)Na1i—O1—Na1—O3ii113.93 (4)
O1—C1—C2—O263.28 (12)C1—O1—Na1—O2iii34.84 (8)
Na1—C1—C2—O217.61 (7)Na1i—O1—Na1—O2iii97.85 (4)
O1—C1—C2—C3174.62 (9)C1—O1—Na1—O233.86 (6)
Na1—C1—C2—C3139.72 (8)Na1i—O1—Na1—O2166.54 (4)
Na1iv—O3—C3—C225.87 (12)Na1i—O1—Na1—C1132.68 (7)
O2—C2—C3—O356.91 (12)O1—C1—Na1—O1i52.49 (8)
C1—C2—C3—O3178.59 (9)C2—C1—Na1—O1i177.05 (6)
C2—O2—Na1—O1i43.92 (14)O1—C1—Na1—O3ii76.71 (7)
Na1iii—O2—Na1—O1i81.00 (12)C2—C1—Na1—O3ii47.85 (7)
C2—O2—Na1—O3ii113.73 (7)O1—C1—Na1—O2iii151.64 (6)
Na1iii—O2—Na1—O3ii121.34 (4)C2—C1—Na1—O2iii83.80 (6)
C2—O2—Na1—O2iii124.92 (7)O1—C1—Na1—O2137.03 (7)
Na1iii—O2—Na1—O2iii0.0C2—C1—Na1—O212.47 (5)
C2—O2—Na1—O15.26 (6)C2—C1—Na1—O1124.56 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1iv0.865 (18)1.723 (18)2.5837 (12)173.0 (18)
O3—H3···O1v0.857 (18)1.804 (18)2.6575 (12)173.7 (19)
Symmetry codes: (iv) x, y1/2, z+1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Na(C3H7O3)]
Mr114.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)8.1117 (4), 6.1559 (3), 9.4882 (5)
β (°) 100.113 (3)
V3)466.43 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.25 × 0.13
Data collection
DiffractometerBruker–Nonius KappaCCD four-circle
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.948, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
1963, 1058, 953
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.07
No. of reflections1058
No. of parameters72
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993) and ORTEP (in SHELXTL-NT; Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
O1—Na12.4243 (10)Na1—O2iii2.3551 (9)
O2—Na12.4237 (9)Na1—O2ii3.3549 (10)
Na1—O1i2.3163 (9)Na1—O3iii3.5265 (10)
Na1—O3ii2.3462 (10)Na1—O1iv3.8258 (10)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1iv0.865 (18)1.723 (18)2.5837 (12)173.0 (18)
O3—H3···O1v0.857 (18)1.804 (18)2.6575 (12)173.7 (19)
Symmetry codes: (iv) x, y1/2, z+1/2; (v) x, y1, z.
 

Acknowledgements

Funding for this research was contributed by The Agriculture Development Fund (ADF), administered by Saskatchewan Agriculture (SMA) and the National Sciences and Engineering Research Council (NSERC).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrooker, S., Edelmann, F. T., Kottke, T., Roesky, H. W., Sheldrick, G. M., Stalke, D. & Whitmire, K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 144–146.  CrossRef Web of Science Google Scholar
First citationDavies, J. E., Kopf, J. & Weiss, E. (1982). Acta Cryst. B38, 2251–2253.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFairbourne, A. & Toms, H. (1921). J. Chem. Soc. Trans. 119, 1035–1040.  CrossRef CAS Google Scholar
First citationGross, F. C. & Jacobs, J. M. (1926). J. Soc. Chem. Ind. London, 45, 320T–321T.  Google Scholar
First citationHogerheide, M. P., Ringelberg, S. N., Janssen, M. D., Boersma, J., Spek, A. L. & van Kotten, G. (1996). Inorg. Chem. 35, 1195–1200.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationLetts, E. A. (1872). Berichte, 5, 159–160.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRath, S. P., Rajak, K. K., Mondal, S. & Chakravorty, A. (1998). J. Chem. Soc. Dalton Trans. pp. 2097–2101.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds