metal-organic compounds
Tris(ethylenediamine)cobalt(II) sulfate
aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Correspondence e-mail: apinpus@gmail.com
The structure of the title compound, [CoII(C2H8N2)3]SO4, the cobalt example of [M(C2H8N2)3]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32), respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3) has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H⋯O hydrogen-bonding interactions.
Related literature
For isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970); Cullen & Lingafelter (1970); Daniels et al. (1995); Lu (2009) for the nickel, copper, vanadium and manganese analogues, respectively.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810016168/tk2667sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810016168/tk2667Isup2.hkl
Orange blocks of the title complex were synthesized and grown from the sovolthermal reaction of Co(NO3)2.6H2O (1.34 mmol), NH2SO3H (1.34 mmol), NH2C2H4NH2 (3.89 mmol) in ethylene glycol (160 mmol), conducted at 453 K for 72 h.
The O atoms were positioned from a difference Fourier map, and refined with restraints using commands SUMP, SADI and SIMU in SHELXL (Sheldrick, 2008). Although there was an indication for further splitting of the O2 atom, after the final cycles of
such action did not give a better result. All H-atoms were treated as riding groups on the bonded atoms, with C—H = 0.97 Å and N—H 0.90 Å, and with Uiso(H) = 1.2Uequiv(C, N).The title complex, [CoII(C2H8N2)3]SO4 (Fig. 1), is isostructural to the earlier reported [NiII(C2H8N2)3]SO4 (Haque et al.,, 1970), [VII(C2H8N2)3]SO4 (Daniels et al., 1995), [MnII(C2H8N2)3]SO4 (Lu, 2009) and [CuII(C2H8N2)3]SO4 (Cullen & Lingafelter, 1970) complexes, constituting the [MII(C2H2N2)3]SO4 series. The [MII(C2H2N2)3]SO4 structures crystallize in the same trigonal 31c with quite similar cell parameters. Likewise, the metal and sulfur atoms are positioned in the same crystallographic sites; MII on the 2d and S on the 2c Wyckoff sites (each with 32). The disorder about the six-fold rotation axis found in the sulfate anion is intriguingly common in each structure, although the number of unique O atoms varies from two to four. In the structure of [CoII(C2H8N2)3]SO4, the O atoms were refined as being disordered over three crystallographic sites, although the site occupancy of O3 located on the 4f Wyckoff site approaches zero. The bond length associated with this O3 atom (S1—O3; 1.382 (16) Å) is notably shorter than the other S—O bonds (1.431 (5)–1.445 (5) Å). The disordered sulfate anions are linked to the [CoII(C2H8N2)3]2+ cations by hydrogen bonding interactions of N—H···O type to form a hydrogen-bonding supramolecular network. The hydrogen bonding geometries are consistent with those of the previously reported [MII(C2H2N2)3]SO4 complexes.
of PFor isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970); Cullen & Lingafelter (1970); Daniels et al. (1995); Lu (2009) for the nickel, copper, vanadium and manganese analogues, respectively.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. View of the title complex showing atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (iv) -x+y+1, y, -z+1/2; (v) x, x-y, -z+1/2; (vi) -y+1, x-y+1, z, (vii) -x+y, -x+1, z; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2]. Hydrogen atoms are omitted. | |
Fig. 2. View of the hydrogen bonding interactions (dotted lines) between the disordered sulfate O atoms and the amino-H atoms of the [CoII(C2H8N2)]2+ cations. [Symmetry codes: (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2; (xiii) y, x, z+1/2; (xiv) -y+x, -y+1, -z+1/2; (xv) -x+1, -x+y+1, z+1/2]. |
[Co(C2H8N2)3]SO4 | Dx = 1.658 Mg m−3 |
Mr = 335.30 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P31c | Cell parameters from 589 reflections |
Hall symbol: -P 3 2c | θ = 2.6–31.0° |
a = 8.9920 (2) Å | µ = 1.45 mm−1 |
c = 9.5927 (3) Å | T = 298 K |
V = 671.71 (3) Å3 | Block, orange |
Z = 2 | 0.48 × 0.22 × 0.20 mm |
F(000) = 354 |
Bruker SMART CCD area-detector diffractometer | 688 independent reflections |
Radiation source: fine-focus sealed tube | 589 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
? scan | θmax = 31.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→10 |
Tmin = 0.543, Tmax = 0.760 | k = −11→11 |
3638 measured reflections | l = −11→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1217P] where P = (Fo2 + 2Fc2)/3 |
688 reflections | (Δ/σ)max < 0.001 |
47 parameters | Δρmax = 0.25 e Å−3 |
16 restraints | Δρmin = −0.29 e Å−3 |
[Co(C2H8N2)3]SO4 | Z = 2 |
Mr = 335.30 | Mo Kα radiation |
Trigonal, P31c | µ = 1.45 mm−1 |
a = 8.9920 (2) Å | T = 298 K |
c = 9.5927 (3) Å | 0.48 × 0.22 × 0.20 mm |
V = 671.71 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 688 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 589 reflections with I > 2σ(I) |
Tmin = 0.543, Tmax = 0.760 | Rint = 0.027 |
3638 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 16 restraints |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.25 e Å−3 |
688 reflections | Δρmin = −0.29 e Å−3 |
47 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.6667 | 0.3333 | 0.2500 | 0.02175 (16) | |
N1 | 0.68784 (18) | 0.54599 (18) | 0.12760 (13) | 0.0332 (3) | |
H1A | 0.6936 | 0.5265 | 0.0363 | 0.040* | |
H1B | 0.5954 | 0.5579 | 0.1418 | 0.040* | |
S1 | 0.3333 | 0.6667 | 0.2500 | 0.0240 (2) | |
C1 | 0.8446 (2) | 0.7024 (2) | 0.17145 (19) | 0.0388 (4) | |
H1C | 0.8405 | 0.8031 | 0.1409 | 0.047* | |
H1D | 0.9444 | 0.7056 | 0.1297 | 0.047* | |
O1 | 0.3029 (19) | 0.5088 (9) | 0.1852 (8) | 0.096 (3) | 0.319 (8) |
O2 | 0.339 (2) | 0.7851 (9) | 0.1475 (6) | 0.096 (4) | 0.316 (9) |
O3 | 0.3333 | 0.6667 | 0.1059 (16) | 0.086 (8) | 0.094 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0226 (2) | 0.0226 (2) | 0.0201 (2) | 0.01129 (10) | 0.000 | 0.000 |
N1 | 0.0410 (8) | 0.0330 (7) | 0.0283 (7) | 0.0204 (6) | −0.0033 (5) | 0.0031 (5) |
S1 | 0.0243 (3) | 0.0243 (3) | 0.0233 (4) | 0.01215 (14) | 0.000 | 0.000 |
C1 | 0.0445 (10) | 0.0267 (8) | 0.0413 (9) | 0.0147 (7) | 0.0058 (7) | 0.0076 (6) |
O1 | 0.185 (9) | 0.051 (4) | 0.063 (4) | 0.069 (5) | −0.012 (5) | −0.016 (3) |
O2 | 0.194 (12) | 0.055 (4) | 0.044 (3) | 0.067 (5) | −0.012 (4) | 0.012 (3) |
O3 | 0.118 (11) | 0.118 (11) | 0.021 (11) | 0.059 (5) | 0.000 | 0.000 |
Co1—N1i | 2.1696 (13) | S1—O2vi | 1.431 (5) |
Co1—N1ii | 2.1696 (13) | S1—O2v | 1.431 (5) |
Co1—N1iii | 2.1696 (13) | S1—O2vii | 1.431 (5) |
Co1—N1iv | 2.1696 (13) | S1—O2viii | 1.431 (5) |
Co1—N1 | 2.1696 (13) | S1—O2ix | 1.431 (5) |
Co1—N1v | 2.1696 (13) | S1—O1ix | 1.445 (5) |
N1—C1 | 1.469 (2) | S1—O1viii | 1.445 (5) |
N1—H1A | 0.9000 | S1—O1vi | 1.445 (5) |
N1—H1B | 0.9000 | S1—O1vii | 1.445 (5) |
S1—O3 | 1.382 (16) | C1—C1iv | 1.512 (4) |
S1—O3v | 1.382 (16) | C1—H1C | 0.9700 |
S1—O2 | 1.431 (5) | C1—H1D | 0.9700 |
N1i—Co1—N1ii | 80.49 (7) | O2viii—S1—O1viii | 110.7 (4) |
N1i—Co1—N1iii | 93.48 (5) | O2ix—S1—O1viii | 138.0 (11) |
N1ii—Co1—N1iii | 93.17 (8) | O1ix—S1—O1viii | 63.4 (8) |
N1i—Co1—N1iv | 93.17 (8) | O3—S1—O1vi | 64.5 (3) |
N1ii—Co1—N1iv | 93.48 (5) | O3v—S1—O1vi | 115.5 (3) |
N1iii—Co1—N1iv | 171.28 (7) | O2—S1—O1vi | 57.2 (5) |
N1i—Co1—N1 | 93.48 (5) | O2vi—S1—O1vi | 110.7 (4) |
N1ii—Co1—N1 | 171.28 (8) | O2v—S1—O1vi | 138.0 (11) |
N1iii—Co1—N1 | 93.48 (5) | O2vii—S1—O1vi | 69.9 (6) |
N1iv—Co1—N1 | 80.49 (7) | O2viii—S1—O1vi | 45.7 (4) |
N1i—Co1—N1v | 171.28 (8) | O2ix—S1—O1vi | 119.2 (10) |
N1ii—Co1—N1v | 93.48 (5) | O1ix—S1—O1vi | 93.3 (11) |
N1iii—Co1—N1v | 80.49 (7) | O1viii—S1—O1vi | 102.9 (4) |
N1iv—Co1—N1v | 93.48 (5) | O3—S1—O1vii | 115.5 (3) |
N1—Co1—N1v | 93.17 (8) | O3v—S1—O1vii | 64.5 (3) |
C1—N1—Co1 | 107.94 (10) | O2—S1—O1vii | 138.0 (11) |
C1—N1—H1A | 110.1 | O2vi—S1—O1vii | 69.9 (6) |
Co1—N1—H1A | 110.1 | O2v—S1—O1vii | 57.2 (5) |
C1—N1—H1B | 110.1 | O2vii—S1—O1vii | 110.7 (4) |
Co1—N1—H1B | 110.1 | O2viii—S1—O1vii | 119.2 (10) |
H1A—N1—H1B | 108.4 | O2ix—S1—O1vii | 45.7 (4) |
O3—S1—O3v | 180.000 (3) | O1ix—S1—O1vii | 102.9 (4) |
O3—S1—O2 | 46.6 (3) | O1viii—S1—O1vii | 93.3 (11) |
O3v—S1—O2 | 133.4 (3) | O1vi—S1—O1vii | 161.1 (12) |
O3—S1—O2vi | 46.6 (3) | N1—C1—C1iv | 108.84 (12) |
O3v—S1—O2vi | 133.4 (3) | N1—C1—H1C | 109.9 |
O2—S1—O2vi | 78.0 (5) | C1iv—C1—H1C | 109.9 |
O3—S1—O2v | 133.4 (3) | N1—C1—H1D | 109.9 |
O3v—S1—O2v | 46.6 (3) | C1iv—C1—H1D | 109.9 |
O2—S1—O2v | 104.4 (11) | H1C—C1—H1D | 108.3 |
O2vi—S1—O2v | 99.7 (7) | O2vi—O1—O2viii | 91.9 (8) |
O3—S1—O2vii | 133.4 (3) | O2vi—O1—S1 | 66.5 (5) |
O3v—S1—O2vii | 46.6 (3) | O2viii—O1—S1 | 60.9 (3) |
O2—S1—O2vii | 99.7 (7) | O2vi—O1—O1vii | 75.7 (11) |
O2vi—S1—O2vii | 176.3 (13) | O2viii—O1—O1vii | 117.8 (4) |
O2v—S1—O2vii | 78.0 (5) | S1—O1—O1vii | 58.3 (4) |
O3—S1—O2viii | 46.6 (3) | O2vi—O1—O2ix | 108.3 (7) |
O3v—S1—O2viii | 133.4 (3) | O2viii—O1—O2ix | 92.2 (8) |
O2—S1—O2viii | 78.0 (5) | S1—O1—O2ix | 54.6 (4) |
O2vi—S1—O2viii | 78.0 (5) | O1viii—O2—O1vi | 129.8 (7) |
O2v—S1—O2viii | 176.3 (13) | O1viii—O2—S1 | 67.8 (4) |
O2vii—S1—O2viii | 104.4 (11) | O1vi—O2—S1 | 61.9 (4) |
O3—S1—O2ix | 133.4 (3) | O1viii—O2—O1ix | 63.3 (12) |
O3v—S1—O2ix | 46.6 (3) | O1vi—O2—O1ix | 87.5 (9) |
O2—S1—O2ix | 176.3 (13) | S1—O2—O1ix | 55.5 (3) |
O2vi—S1—O2ix | 104.4 (11) | O1viii—O2—O2vi | 49.8 (6) |
O2v—S1—O2ix | 78.0 (5) | O1vi—O2—O2vi | 95.3 (5) |
O2vii—S1—O2ix | 78.0 (5) | S1—O2—O2vi | 51.0 (2) |
O2viii—S1—O2ix | 99.7 (7) | O1ix—O2—O2vi | 91.9 (8) |
O3—S1—O1ix | 115.5 (3) | O1viii—O2—O2viii | 106.1 (5) |
O3v—S1—O1ix | 64.5 (3) | S1—O2—O2viii | 51.0 (2) |
O2—S1—O1ix | 69.9 (6) | O1ix—O2—O2viii | 102.2 (4) |
O2vi—S1—O1ix | 119.2 (10) | O2vi—O2—O2viii | 60.000 (1) |
O2v—S1—O1ix | 45.7 (4) | O2vi—O3—O2viii | 107.9 (8) |
O2vii—S1—O1ix | 57.2 (5) | O2vi—O3—S1 | 69.0 (8) |
O2viii—S1—O1ix | 138.0 (11) | O2viii—O3—S1 | 69.0 (8) |
O2ix—S1—O1ix | 110.7 (4) | O2vi—O3—O1viii | 61.1 (6) |
O3—S1—O1viii | 64.5 (3) | O2viii—O3—O1viii | 128.2 (13) |
O3v—S1—O1viii | 115.5 (3) | S1—O3—O1viii | 59.8 (5) |
O2—S1—O1viii | 45.7 (4) | O2vi—O3—O1vi | 128.2 (13) |
O2vi—S1—O1viii | 57.2 (5) | O2viii—O3—O1vi | 47.4 (6) |
O2v—S1—O1viii | 69.9 (6) | S1—O3—O1vi | 59.8 (5) |
O2vii—S1—O1viii | 119.2 (10) | O1viii—O3—O1vi | 96.9 (7) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) x, x−y, −z+1/2; (iii) −y+1, x−y, z; (iv) −x+y+1, y, −z+1/2; (v) −y+1, −x+1, −z+1/2; (vi) −y+1, x−y+1, z; (vii) −x+y, y, −z+1/2; (viii) −x+y, −x+1, z; (ix) x, x−y+1, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3x | 0.90 | 2.13 | 2.889 (12) | 142 |
N1—H1A···O1x | 0.90 | 2.15 | 3.049 (7) | 176 |
N1—H1A···O2xi | 0.90 | 2.22 | 3.054 (8) | 155 |
N1—H1A···O2xii | 0.90 | 2.32 | 3.104 (11) | 145 |
N1—H1B···O2viii | 0.90 | 1.98 | 2.843 (6) | 161 |
N1—H1B···O1 | 0.90 | 2.48 | 3.353 (14) | 165 |
N1—H1B···O1v | 0.90 | 2.52 | 3.256 (10) | 139 |
Symmetry codes: (v) −y+1, −x+1, −z+1/2; (viii) −x+y, −x+1, z; (x) −x+1, −y+1, −z; (xi) y, −x+y, −z; (xii) x−y+1, x, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C2H8N2)3]SO4 |
Mr | 335.30 |
Crystal system, space group | Trigonal, P31c |
Temperature (K) | 298 |
a, c (Å) | 8.9920 (2), 9.5927 (3) |
V (Å3) | 671.71 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.45 |
Crystal size (mm) | 0.48 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.543, 0.760 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3638, 688, 589 |
Rint | 0.027 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.069, 1.06 |
No. of reflections | 688 |
No. of parameters | 47 |
No. of restraints | 16 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.29 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.90 | 2.13 | 2.889 (12) | 142 |
N1—H1A···O1i | 0.90 | 2.15 | 3.049 (7) | 176 |
N1—H1A···O2ii | 0.90 | 2.22 | 3.054 (8) | 155 |
N1—H1A···O2iii | 0.90 | 2.32 | 3.104 (11) | 145 |
N1—H1B···O2iv | 0.90 | 1.98 | 2.843 (6) | 161 |
N1—H1B···O1 | 0.90 | 2.48 | 3.353 (14) | 165 |
N1—H1B···O1v | 0.90 | 2.52 | 3.256 (10) | 139 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) y, −x+y, −z; (iii) x−y+1, x, −z; (iv) −x+y, −x+1, z; (v) −y+1, −x+1, −z+1/2. |
Acknowledgements
This work was supported financially by the Thailand Research Fund and the Center of Excellence for Innovation in Chemistry. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a graduate scholarship.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864. CSD CrossRef CAS Web of Science Google Scholar
Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Haque, M.-U., Caughlan, C. N. & Emerson, K. (1970). Inorg. Chem. 9, 2421–2424. Google Scholar
Lu, J. (2009). Acta Cryst. E65, m1187. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title complex, [CoII(C2H8N2)3]SO4 (Fig. 1), is isostructural to the earlier reported [NiII(C2H8N2)3]SO4 (Haque et al.,, 1970), [VII(C2H8N2)3]SO4 (Daniels et al., 1995), [MnII(C2H8N2)3]SO4 (Lu, 2009) and [CuII(C2H8N2)3]SO4 (Cullen & Lingafelter, 1970) complexes, constituting the [MII(C2H2N2)3]SO4 series. The [MII(C2H2N2)3]SO4 structures crystallize in the same trigonal space group of P31c with quite similar cell parameters. Likewise, the metal and sulfur atoms are positioned in the same crystallographic sites; MII on the 2d and S on the 2c Wyckoff sites (each with point symmetry 32). The disorder about the six-fold rotation axis found in the sulfate anion is intriguingly common in each structure, although the number of unique O atoms varies from two to four. In the structure of [CoII(C2H8N2)3]SO4, the O atoms were refined as being disordered over three crystallographic sites, although the site occupancy of O3 located on the 4f Wyckoff site approaches zero. The bond length associated with this O3 atom (S1—O3; 1.382 (16) Å) is notably shorter than the other S—O bonds (1.431 (5)–1.445 (5) Å). The disordered sulfate anions are linked to the [CoII(C2H8N2)3]2+ cations by hydrogen bonding interactions of N—H···O type to form a hydrogen-bonding supramolecular network. The hydrogen bonding geometries are consistent with those of the previously reported [MII(C2H2N2)3]SO4 complexes.