metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(ethyl­enedi­amine-κ2N,N′)copper(II) bis­­(4-phenyl­benzoate) 2.66-hydrate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 27 April 2010; accepted 3 May 2010; online 8 May 2010)

In the title complex, [Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2O, the CuII centre (located at an inversion centre) is coordinated by two bidentate ethyl­enediamine (en) ligands and two water O atoms in a typical Jahn–Teller distorted octahedral geometry. The amino groups and the water mol­ecules are disordered over two distinct crystallographic positions with occupancies of 1/3 and 2/3. In the crystal, the cations and anions are disposed in alternating layers. One of the water mol­ecules of crystallization is disordered and the other has a fractional occupation. In the 2/3 occupancy component, water mol­ecules are organized into a chain composed of hexa­meric units inter­connected by carboxyl­ate bridges.

Related literature

For general background to reactions based on the copper cation, see: Graham et al. (2000[Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121-5132.]); Majumder et al. (2006[Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J. P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des. 6, 2355-2368.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Zhao et al. (2009[Zhao, Z., He, X., Zhao, Y. M., Shao, M. & Zhu, S. R. (2009). Dalton Trans. pp. 2802-2811.]). For examples of framework-type structures of hybrid materials comprising carboxyl­ate anions, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O'Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]). For general background to crystal engineering approaches from our research group, see: Paz & Khimyak et al. (2002[Paz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823-2828.]); Paz & Bond et al. (2002[Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381-383.]); Paz & Klinowski (2003[Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238-244.]); Paz et al. (2005[Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113-125.]); Shi et al. (2008[Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.]). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2O

  • Mr = 662.20

  • Monoclinic, P 21 /n

  • a = 6.1466 (6) Å

  • b = 34.984 (3) Å

  • c = 7.3101 (7) Å

  • β = 95.819 (4)°

  • V = 1563.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 150 K

  • 0.13 × 0.10 × 0.06 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.956

  • 26073 measured reflections

  • 4736 independent reflections

  • 3908 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.137

  • S = 1.10

  • 4736 reflections

  • 259 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.019 (2)
Cu1—N1′ 2.035 (4)
Cu1—N2 2.006 (2)
Cu1—N2′ 2.008 (4)
Cu1—O1W 2.496 (4)
Cu1—O3W 2.605 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2ii 0.92 2.13 2.986 (3) 154
N1—H1B⋯O2Wiii 0.92 2.32 3.093 (3) 141
N2—H2A⋯O2iii 0.92 2.16 3.037 (3) 158
N1′—H1E⋯O2Wiii 0.92 2.51 3.375 (4) 157
N1′—H1F⋯O1iii 0.92 2.20 3.087 (5) 161
N2′—H2E⋯O4Wiv 0.92 2.33 3.181 (9) 154
N2′—H2F⋯O2Wv 0.92 2.21 3.055 (5) 152
O1W—H1M⋯O2iii 0.95 (1) 1.92 (1) 2.844 (4) 163 (4)
O1W—H1N⋯O2vi 0.95 (1) 1.88 (1) 2.814 (4) 169 (4)
O2W—H2M⋯O2vii 0.95 (1) 1.73 (1) 2.668 (2) 168 (5)
O2W—H2N⋯O1viii 0.95 (1) 1.87 (2) 2.765 (2) 156 (5)
O3W—H3M⋯O2Wv 0.95 (1) 2.01 (1) 2.932 (3) 163 (3)
O3W—H3N⋯O1ix 0.95 (1) 1.82 (1) 2.721 (3) 158 (3)
O4W—H4M⋯O1x 0.95 (1) 1.91 2.8562 (17) 178
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). Our research group specialises on the design and preparation of these compounds (Paz & Khimyak et al., 2002; Paz et al., 2003; Paz et al., 2005; Shi et al., 2008) and following our previous interest in the biphenyldicarboxylate anion (bpdc2-) as a bridging ligand (Paz & Bond et al., 2002), we have recently started to use 4-phenylbenzoate (pb-). Given its ability to form stable coordination complexes, copper was chosen as metal centre for our preliminary studies (Graham et al., 2000; Majumder et al., 2006; Rao et al., 2004; Zhao et al., 2009). While reacting pb- with [Cu(en)2(H2O)2](NO3)2 we isolated as a secondary product, the title complex, (I), whose structure we wish to report now.

The asymmetric unit of (I) contains one 4-phenylbenzoate anion, 1.33 water molecules of crystallisation, and 1/2 of the [Cu(en)2(H2O)2]2+ cation; the latter is situated about a centre of inversion. The species are distributed in alternating layers along the b axis (Fig. 1a). An ordered hydrophobic layer is composed by the aromatic rings from pb- and occupies the unit cell regions located between ca. 0.1 < b < 0.4 and 0.6 < b < 0.9 (Fig. 1a). Along the c axis, these moieties are distributed in two alternating layers, from which the aromatic rings of a specific layer are off-set from those of the layers directly above and below, avoiding efficient π-π stacking (Fig. 1b). The two average planes containing the phenyl rings are mutually rotated by ca. 40°, which increases the distance between hydrogen atoms of neighbouring pb- anions.

The hydrophilic layer, which is formed by the carboxylate groups, the [Cu(en)2(H2O)2]2+ cations and the water molecules of crystallisation, exhibits extensive crystallographic disorder. On the one hand, the centrosymmetric cation has two possible mutually-tilted crystallographic positions (rates of occupancy of 1/3 and 2/3; see Fig. 2), which have in common the two carbon atoms and the Cu centre. For each possibility the Cu centre exhibits a typical octahedral coordination environment with a strong Jahn-Teller distortion: the Cu—N bonds (equatorial planes) range from 2.006 (2) to 2.035 (4) Å, and the Cu—Owater (apical positions) are either 2.601 (2) Å (2/3 occupancy) or 2.495 (4) Å (1/3 occupancy); however, the cis octahedral angles fall within a rather short range around the ideal value: 84.65 (15) – 95.35 (15) ° (Table 1).

The crystal structure is rich with a variety of hydrogen bonds due to the presence of amines, carboxylates and water molecules (both coordinated and uncoordinated). The formed hydrogen bonding sub-network is strongly affected by the aforementioned crystal disorder plus some additional disorder associated with the two uncoordinated water molecules (O2W and O4W). The coordinated O3W and uncoordinated O2W water molecules, plus the O1 oxygen atom of the carboxylate group are engaged in a series of strong [O···O distances ranging from 2.668 (2) to 2.932 (3) Å; Table 2] and rather directional [angles in the range 156 (5) – 168 (5) °; Table 2] O—H···O hydrogen bonds, forming an almost planar supramolecular hexagon (longest distance to the average plane of ca. 0.17 Å) with a graph set motif R64(12) (Grell et al., 1999) (Fig. 3). Remarkably, the carboxylate group further establishes bridges between adjacent supramolecular hexagons [O2W—H2M···O2 at 1.731 (10) Å; Fig. 3], leading to a 1-D hydrogen bonded chain running parallel the a axis (Fig. 3). The amino groups also participate in the hydrogen bonding network with rather directional interactions [angles are in the range 141 – 174 °; Table 2], even though the N···O distances with the O2 carboxylate atom and the water molecules are relatively long [N1···O2 2.986 (3) Å, N2···O2 3.037 (3) Å and N1···O2W 3.093 (3) Å].

Related literature top

For general background to reactions based on the copper cation, see: Graham et al. (2000); Majumder et al. (2006); Rao et al. (2004); Zhao et al. (2009). For examples of framework-type structures of hybrid materials comprising carboxylate anions, see: Eddaoudi et al. (2001). For general background to crystal engineering approaches from our research group, see: Paz & Khimyak et al. (2002); Paz & Bond et al. (2002); Paz et al. (2003); Paz et al. (2005); Shi et al. (2008). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999).

Experimental top

All chemicals were purchased from commercial sources and were used as received without any further purification. An aqueous solution of Cu(NO3)2.3H2O (Sigma-Aldrich, 0.80 g, 3.3 mmol, 5 ml) was added to a solution of ethylenediamine (Riedel-de Haën, 0.5 ml, 7.3 mmol) in water (5 ml). After 1 min, a deep-violet solution was formed. Slow evaporation of the aqueous solution yielded crystalline plates of [Cu(en)2(H2O)2](NO3)2 after 15 days.

An aqueous solution of KOH (Eka, 0.106 g, 1.89 mmol, 10 ml) was added to a suspension of 4-phenylbenzoic acid (Hpb, Sigma-Aldrich, 0.375 g, 0.945 mmol) in water (40 ml). The resulting solution was filtered and added to an aqueous solution of [Cu(en)2(H2O)2](NO3)2 (0.228 g, 0.945 mmol, 10 ml). The precipitation of a blue-violet powder was immediate. The slow evaporation of the aqueous solution yielded crystalline needles of the title complex after 60 days.

Selected FT—IR (KBr, cm-1): ν(NH2) = 3363s, 3307s, 3216s and 3138m; νasym(—COO-) = 1596vs, 1541vs and 1577vs; 1447m; νsym(—COO-) = 1395vs; 1101m; 1045s; γ(-CH, di-subs. Ph) = 838m and 800m; γ(-CH, mono-subs. Ph) = 751s; 694m; 525m; 461m.

Refinement top

Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding-motion approximation with: C—H = 0.95 Å (aromatic) and 0.95 Å (—CH2 moieties); N—H = 0.92 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent atom.

H atoms associated with the four crystallographically independent water molecules were directly located from difference Fourier maps and included in the structure with the O—H and H···H distances restrained to 0.95 (1) and 1.55 (1) Å, respectively, in order to ensure a chemically reasonable geometry for these moieties. The Uiso of these H-atoms were fixed at 1.5 times Ueq of the parent O-atoms.

The crystallographically independent ethylendiamine moiety was found to be disordered over two distinct positions with rates of occupancy of 2/3 and 1/3, respectively (calculated from unrestrained refinements for the respective sites occupancies). The analogous pairs of carbon atoms of these moieties (C1 and C1'; C2 and C2') were located at the same crystallographic positions and were further included in the final structural model with identical anisotropic displacement parameters.

Structure description top

Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). Our research group specialises on the design and preparation of these compounds (Paz & Khimyak et al., 2002; Paz et al., 2003; Paz et al., 2005; Shi et al., 2008) and following our previous interest in the biphenyldicarboxylate anion (bpdc2-) as a bridging ligand (Paz & Bond et al., 2002), we have recently started to use 4-phenylbenzoate (pb-). Given its ability to form stable coordination complexes, copper was chosen as metal centre for our preliminary studies (Graham et al., 2000; Majumder et al., 2006; Rao et al., 2004; Zhao et al., 2009). While reacting pb- with [Cu(en)2(H2O)2](NO3)2 we isolated as a secondary product, the title complex, (I), whose structure we wish to report now.

The asymmetric unit of (I) contains one 4-phenylbenzoate anion, 1.33 water molecules of crystallisation, and 1/2 of the [Cu(en)2(H2O)2]2+ cation; the latter is situated about a centre of inversion. The species are distributed in alternating layers along the b axis (Fig. 1a). An ordered hydrophobic layer is composed by the aromatic rings from pb- and occupies the unit cell regions located between ca. 0.1 < b < 0.4 and 0.6 < b < 0.9 (Fig. 1a). Along the c axis, these moieties are distributed in two alternating layers, from which the aromatic rings of a specific layer are off-set from those of the layers directly above and below, avoiding efficient π-π stacking (Fig. 1b). The two average planes containing the phenyl rings are mutually rotated by ca. 40°, which increases the distance between hydrogen atoms of neighbouring pb- anions.

The hydrophilic layer, which is formed by the carboxylate groups, the [Cu(en)2(H2O)2]2+ cations and the water molecules of crystallisation, exhibits extensive crystallographic disorder. On the one hand, the centrosymmetric cation has two possible mutually-tilted crystallographic positions (rates of occupancy of 1/3 and 2/3; see Fig. 2), which have in common the two carbon atoms and the Cu centre. For each possibility the Cu centre exhibits a typical octahedral coordination environment with a strong Jahn-Teller distortion: the Cu—N bonds (equatorial planes) range from 2.006 (2) to 2.035 (4) Å, and the Cu—Owater (apical positions) are either 2.601 (2) Å (2/3 occupancy) or 2.495 (4) Å (1/3 occupancy); however, the cis octahedral angles fall within a rather short range around the ideal value: 84.65 (15) – 95.35 (15) ° (Table 1).

The crystal structure is rich with a variety of hydrogen bonds due to the presence of amines, carboxylates and water molecules (both coordinated and uncoordinated). The formed hydrogen bonding sub-network is strongly affected by the aforementioned crystal disorder plus some additional disorder associated with the two uncoordinated water molecules (O2W and O4W). The coordinated O3W and uncoordinated O2W water molecules, plus the O1 oxygen atom of the carboxylate group are engaged in a series of strong [O···O distances ranging from 2.668 (2) to 2.932 (3) Å; Table 2] and rather directional [angles in the range 156 (5) – 168 (5) °; Table 2] O—H···O hydrogen bonds, forming an almost planar supramolecular hexagon (longest distance to the average plane of ca. 0.17 Å) with a graph set motif R64(12) (Grell et al., 1999) (Fig. 3). Remarkably, the carboxylate group further establishes bridges between adjacent supramolecular hexagons [O2W—H2M···O2 at 1.731 (10) Å; Fig. 3], leading to a 1-D hydrogen bonded chain running parallel the a axis (Fig. 3). The amino groups also participate in the hydrogen bonding network with rather directional interactions [angles are in the range 141 – 174 °; Table 2], even though the N···O distances with the O2 carboxylate atom and the water molecules are relatively long [N1···O2 2.986 (3) Å, N2···O2 3.037 (3) Å and N1···O2W 3.093 (3) Å].

For general background to reactions based on the copper cation, see: Graham et al. (2000); Majumder et al. (2006); Rao et al. (2004); Zhao et al. (2009). For examples of framework-type structures of hybrid materials comprising carboxylate anions, see: Eddaoudi et al. (2001). For general background to crystal engineering approaches from our research group, see: Paz & Khimyak et al. (2002); Paz & Bond et al. (2002); Paz et al. (2003); Paz et al. (2005); Shi et al. (2008). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective views along the (a) [001] and (b) [100] directions of the unit cell of the crystal packing of the title compound. Only the major contribution for the cation and water molecules of crystallisation are represented.
[Figure 2] Fig. 2. Octahedral coordination environments of the Cu centres. Symmetry transformations used to generate equivalent atoms: (i) 1-x, -y, -z.
[Figure 3] Fig. 3. Hydrogen bonding network solely composed by the major component of the title complex. The O—H···O bonds are depicted in violet, and N—H···O bonds are depicted in blue. The organic part of the pb- ligand has been omitted for clarity. Symmetry operations used to generate equivalent atoms have been omitted for simplicity.
Diaquabis(1,2-ethylenediamine-κ2N,N')copper(II) bis(4-phenylbenzoate) 2.66-hydrate top
Crystal data top
[Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2OF(000) = 699
Mr = 662.20Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9591 reflections
a = 6.1466 (6) Åθ = 3.3–30.5°
b = 34.984 (3) ŵ = 0.76 mm1
c = 7.3101 (7) ÅT = 150 K
β = 95.819 (4)°Needle, violet
V = 1563.8 (3) Å30.13 × 0.10 × 0.06 mm
Z = 2
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4736 independent reflections
Radiation source: fine-focus sealed tube3908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω/φ scansθmax = 30.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 88
Tmin = 0.908, Tmax = 0.956k = 4749
26073 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.5782P]
where P = (Fo2 + 2Fc2)/3
4736 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.52 e Å3
15 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2OV = 1563.8 (3) Å3
Mr = 662.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1466 (6) ŵ = 0.76 mm1
b = 34.984 (3) ÅT = 150 K
c = 7.3101 (7) Å0.13 × 0.10 × 0.06 mm
β = 95.819 (4)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3908 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.956Rint = 0.034
26073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04115 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.52 e Å3
4736 reflectionsΔρmin = 0.66 e Å3
259 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.00000.00000.02840 (11)
N10.6260 (4)0.04498 (6)0.1479 (3)0.0285 (4)0.67
H1A0.57470.04530.26180.034*0.67
H1B0.77610.04340.16390.034*0.67
N20.3249 (4)0.03936 (6)0.1506 (3)0.0326 (5)0.67
H2A0.38290.04280.26070.039*0.67
H2B0.18310.03100.17550.039*0.67
C10.5555 (4)0.08119 (5)0.0418 (3)0.0337 (4)0.67
H1C0.55640.10320.12720.040*0.67
H1D0.65830.08670.05060.040*0.67
C20.3274 (3)0.07512 (5)0.0527 (3)0.0336 (4)0.67
H2C0.22010.07440.03950.040*0.67
H2D0.28780.09630.13930.040*0.67
N1'0.6818 (6)0.04865 (12)0.0030 (6)0.0247 (8)0.33
H1E0.79950.04650.09070.030*0.33
H1F0.73450.05180.10950.030*0.33
N2'0.2445 (6)0.03581 (11)0.0017 (6)0.0237 (8)0.33
H2E0.13260.02800.08660.028*0.33
H2F0.19350.03650.11230.028*0.33
C1'0.5555 (4)0.08119 (5)0.0418 (3)0.0337 (4)0.33
H1G0.62070.10470.00510.040*0.33
H1H0.55070.08390.17620.040*0.33
C2'0.3274 (3)0.07512 (5)0.0527 (3)0.0336 (4)0.33
H2G0.32990.07690.18760.040*0.33
H2H0.22820.09520.01390.040*0.33
O1W0.4441 (9)0.00131 (10)0.3429 (6)0.0369 (10)0.33
H1M0.467 (14)0.0206 (7)0.415 (6)0.055*0.33
H1N0.473 (14)0.0236 (7)0.410 (7)0.055*0.33
O10.3256 (2)0.42163 (4)0.1362 (2)0.0358 (3)
O20.0141 (2)0.42725 (4)0.00400 (19)0.0357 (3)
C30.1443 (3)0.40764 (5)0.0747 (2)0.0281 (3)
C40.1163 (3)0.36494 (5)0.0880 (2)0.0246 (3)
C50.2925 (3)0.34223 (5)0.1570 (2)0.0279 (3)
H50.42860.35380.19730.034*
C60.2705 (3)0.30293 (5)0.1670 (2)0.0281 (3)
H60.39200.28790.21440.034*
C70.0717 (3)0.28509 (4)0.1083 (2)0.0236 (3)
C80.1055 (3)0.30806 (5)0.0421 (2)0.0265 (3)
H80.24250.29650.00350.032*
C90.0835 (3)0.34750 (5)0.0321 (2)0.0272 (3)
H90.20520.36270.01320.033*
C100.0507 (3)0.24284 (4)0.1143 (2)0.0245 (3)
C110.2192 (3)0.21931 (5)0.0648 (3)0.0288 (3)
H110.34830.23040.02700.035*
C120.1993 (3)0.17987 (5)0.0705 (3)0.0343 (4)
H120.31360.16420.03430.041*
C130.0136 (3)0.16311 (5)0.1287 (3)0.0353 (4)
H130.00190.13610.13460.042*
C140.1549 (3)0.18613 (5)0.1784 (3)0.0325 (4)
H140.28250.17480.21820.039*
C150.1371 (3)0.22569 (5)0.1697 (2)0.0283 (3)
H150.25410.24120.20190.034*
O2W0.5759 (3)0.43249 (6)0.8469 (2)0.0544 (5)
H2M0.716 (3)0.4273 (15)0.908 (4)0.082*0.67
H2N0.474 (4)0.4355 (17)0.935 (3)0.082*0.67
H2O0.563 (15)0.4550 (11)0.918 (8)0.082*0.33
H2P0.510 (14)0.4117 (13)0.904 (9)0.082*0.33
O3W0.1809 (3)0.00801 (6)0.2058 (3)0.0345 (4)0.67
H3M0.124 (6)0.0139 (5)0.261 (4)0.052*0.67
H3N0.184 (6)0.0289 (5)0.289 (3)0.052*0.67
O4W0.0081 (8)0.99783 (6)0.3679 (12)0.067 (2)0.33
H4M0.06560.97280.36440.101*0.33
H4N0.1242 (18)1.01587 (19)0.377 (17)0.101*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03755 (18)0.01744 (15)0.02768 (18)0.00265 (10)0.00905 (12)0.00195 (10)
N10.0365 (11)0.0218 (9)0.0259 (10)0.0002 (8)0.0038 (8)0.0054 (8)
N20.0453 (13)0.0211 (10)0.0288 (11)0.0044 (9)0.0085 (9)0.0006 (8)
C10.0507 (10)0.0214 (8)0.0297 (8)0.0054 (7)0.0080 (7)0.0036 (6)
C20.0462 (10)0.0230 (8)0.0325 (9)0.0091 (7)0.0081 (8)0.0035 (7)
N1'0.0226 (17)0.027 (2)0.0234 (19)0.0036 (14)0.0015 (14)0.0001 (15)
N2'0.0203 (17)0.0252 (18)0.0253 (19)0.0006 (14)0.0018 (14)0.0003 (15)
C1'0.0507 (10)0.0214 (8)0.0297 (8)0.0054 (7)0.0080 (7)0.0036 (6)
C2'0.0462 (10)0.0230 (8)0.0325 (9)0.0091 (7)0.0081 (8)0.0035 (7)
O1W0.065 (3)0.0230 (18)0.0216 (18)0.0027 (16)0.0006 (18)0.0007 (13)
O10.0410 (7)0.0305 (6)0.0368 (7)0.0123 (5)0.0081 (6)0.0007 (5)
O20.0386 (7)0.0244 (6)0.0462 (9)0.0002 (5)0.0140 (6)0.0015 (5)
C30.0374 (8)0.0246 (7)0.0247 (8)0.0056 (6)0.0143 (6)0.0024 (6)
C40.0303 (7)0.0227 (7)0.0219 (7)0.0030 (6)0.0076 (6)0.0022 (6)
C50.0277 (7)0.0292 (8)0.0267 (8)0.0051 (6)0.0015 (6)0.0020 (6)
C60.0259 (7)0.0298 (8)0.0277 (8)0.0004 (6)0.0014 (6)0.0001 (6)
C70.0263 (7)0.0232 (7)0.0211 (7)0.0008 (5)0.0020 (5)0.0001 (6)
C80.0256 (7)0.0236 (7)0.0297 (8)0.0031 (6)0.0004 (6)0.0004 (6)
C90.0278 (7)0.0245 (7)0.0293 (8)0.0001 (6)0.0036 (6)0.0009 (6)
C100.0291 (7)0.0233 (7)0.0203 (7)0.0007 (5)0.0016 (5)0.0013 (5)
C110.0287 (7)0.0263 (8)0.0307 (8)0.0026 (6)0.0006 (6)0.0022 (6)
C120.0352 (9)0.0266 (8)0.0392 (10)0.0074 (6)0.0048 (7)0.0010 (7)
C130.0442 (10)0.0226 (8)0.0368 (10)0.0002 (7)0.0076 (8)0.0028 (7)
C140.0390 (9)0.0274 (8)0.0304 (9)0.0064 (7)0.0002 (7)0.0028 (7)
C150.0319 (8)0.0268 (8)0.0260 (8)0.0016 (6)0.0028 (6)0.0008 (6)
O2W0.0487 (9)0.0846 (13)0.0313 (8)0.0280 (9)0.0115 (6)0.0046 (8)
O3W0.0367 (10)0.0221 (8)0.0430 (12)0.0042 (7)0.0037 (9)0.0011 (8)
O4W0.040 (3)0.028 (2)0.129 (7)0.0058 (17)0.009 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu1—N12.019 (2)C3—C41.508 (2)
Cu1—N1'2.035 (4)C4—C91.395 (2)
Cu1—N22.006 (2)C4—C51.395 (2)
Cu1—N2'2.008 (4)C5—C61.384 (2)
Cu1—O1W2.496 (4)C5—H50.9500
Cu1—O3W2.605 (2)C6—C71.400 (2)
Cu1—N2i2.006 (2)C6—H60.9500
Cu1—N2'i2.008 (4)C7—C81.400 (2)
Cu1—N1i2.019 (2)C7—C101.485 (2)
Cu1—N1'i2.035 (4)C8—C91.389 (2)
Cu1—O1Wi2.496 (4)C8—H80.9500
Cu1—O3Wi2.605 (2)C9—H90.9500
N1—C11.525 (3)C10—C151.397 (2)
N1—H1A0.9200C10—C111.399 (2)
N1—H1B0.9200C11—C121.386 (2)
N2—C21.441 (3)C11—H110.9500
N2—H2A0.9200C12—C131.388 (3)
N2—H2B0.9200C12—H120.9500
C1—C21.514 (3)C13—C141.389 (3)
C1—H1C0.9900C13—H130.9500
C1—H1D0.9900C14—C151.390 (2)
C2—H2C0.9900C14—H140.9500
C2—H2D0.9900C15—H150.9500
N1'—H1E0.9200O2W—H2M0.9500 (11)
N1'—H1F0.9200O2W—H2N0.9500 (10)
N2'—H2E0.9200O2W—H2O0.9500 (11)
N2'—H2F0.9200O2W—H2P0.9500 (12)
O1W—H1M0.9500 (10)O3W—H3M0.9499 (10)
O1W—H1N0.9500 (10)O3W—H3N0.9500 (10)
O1—C31.258 (2)O4W—H4M0.9457
O2—C31.258 (2)O4W—H4N0.950 (2)
N2—Cu1—N185.08 (9)H2A—N2—H2B108.1
N2—Cu1—N1i94.92 (9)C2—C1—N1108.52 (15)
N2'—Cu1—N1'84.65 (15)C2—C1—Cu173.63 (9)
N2'—Cu1—N1'i95.35 (15)C2—C1—H1C110.0
N1'—Cu1—O1W92.62 (15)N1—C1—H1C110.0
N1'—Cu1—O1Wi87.38 (15)Cu1—C1—H1C145.9
N2i—Cu1—N2180.00 (9)C2—C1—H1D110.0
N2i—Cu1—N2'i36.18 (14)N1—C1—H1D110.0
N2—Cu1—N2'i143.82 (14)Cu1—C1—H1D101.4
N2i—Cu1—N2'143.82 (14)H1C—C1—H1D108.4
N2—Cu1—N2'36.18 (14)N2—C2—C1108.13 (16)
N2'i—Cu1—N2'180.0 (3)C1—C2—Cu175.67 (9)
N2i—Cu1—N1i85.08 (9)N2—C2—H2C110.1
N2'i—Cu1—N1i76.97 (13)C1—C2—H2C110.1
N2'—Cu1—N1i103.03 (13)Cu1—C2—H2C98.7
N2i—Cu1—N194.92 (9)N2—C2—H2D110.1
N2'i—Cu1—N1103.03 (13)C1—C2—H2D110.1
N2'—Cu1—N176.97 (13)Cu1—C2—H2D147.5
N1i—Cu1—N1180.00 (14)H2C—C2—H2D108.4
N2i—Cu1—N1'i72.26 (13)Cu1—N1'—H1E109.4
N2—Cu1—N1'i107.74 (13)Cu1—N1'—H1F109.4
N2'i—Cu1—N1'i84.65 (15)H1E—N1'—H1F108.0
N1i—Cu1—N1'i33.06 (14)Cu1—N2'—H2E110.4
N1—Cu1—N1'i146.94 (14)Cu1—N2'—H2F110.4
N2i—Cu1—N1'107.74 (13)H2E—N2'—H2F108.6
N2—Cu1—N1'72.26 (13)Cu1—O1W—H1M122 (3)
N2'i—Cu1—N1'95.35 (15)Cu1—O1W—H1N121 (4)
N1i—Cu1—N1'146.94 (14)H1M—O1W—H1N109.34 (16)
N1—Cu1—N1'33.06 (14)O2—C3—O1123.74 (16)
N1'i—Cu1—N1'180.00 (13)O2—C3—C4118.56 (15)
N2i—Cu1—O1Wi56.63 (12)O1—C3—C4117.70 (16)
N2—Cu1—O1Wi123.37 (12)C9—C4—C5119.00 (15)
N2'i—Cu1—O1Wi88.69 (17)C9—C4—C3121.13 (15)
N2'—Cu1—O1Wi91.31 (17)C5—C4—C3119.86 (15)
N1i—Cu1—O1Wi123.96 (11)C6—C5—C4120.56 (15)
N1—Cu1—O1Wi56.04 (11)C6—C5—H5119.7
N1'i—Cu1—O1Wi92.62 (15)C4—C5—H5119.7
N2i—Cu1—O1W123.37 (12)C5—C6—C7120.87 (15)
N2—Cu1—O1W56.63 (12)C5—C6—H6119.6
N2'i—Cu1—O1W91.31 (17)C7—C6—H6119.6
N2'—Cu1—O1W88.69 (17)C8—C7—C6118.33 (15)
N1i—Cu1—O1W56.04 (11)C8—C7—C10120.99 (14)
N1—Cu1—O1W123.96 (11)C6—C7—C10120.68 (14)
N1'i—Cu1—O1W87.38 (15)C9—C8—C7120.77 (15)
O1Wi—Cu1—O1W180.0C9—C8—H8119.6
N2i—Cu1—O3W90.15 (9)C7—C8—H8119.6
N2—Cu1—O3W89.85 (9)C8—C9—C4120.45 (15)
N2'i—Cu1—O3W124.30 (13)C8—C9—H9119.8
N2'—Cu1—O3W55.70 (13)C4—C9—H9119.8
N1i—Cu1—O3W87.42 (8)C15—C10—C11118.51 (15)
N1—Cu1—O3W92.58 (8)C15—C10—C7120.86 (15)
N1'i—Cu1—O3W58.09 (13)C11—C10—C7120.64 (15)
N1'—Cu1—O3W121.91 (13)C12—C11—C10120.55 (17)
O1Wi—Cu1—O3W57.13 (13)C12—C11—H11119.7
O1W—Cu1—O3W122.87 (13)C10—C11—H11119.7
N2i—Cu1—O3Wi89.85 (9)C11—C12—C13120.49 (17)
N2—Cu1—O3Wi90.15 (9)C11—C12—H12119.8
N2'i—Cu1—O3Wi55.70 (13)C13—C12—H12119.8
N2'—Cu1—O3Wi124.30 (13)C12—C13—C14119.58 (16)
N1i—Cu1—O3Wi92.58 (8)C12—C13—H13120.2
N1—Cu1—O3Wi87.42 (8)C14—C13—H13120.2
N1'i—Cu1—O3Wi121.91 (13)C13—C14—C15120.06 (17)
N1'—Cu1—O3Wi58.09 (13)C13—C14—H14120.0
O1Wi—Cu1—O3Wi122.87 (13)C15—C14—H14120.0
O1W—Cu1—O3Wi57.13 (13)C14—C15—C10120.80 (16)
O3W—Cu1—O3Wi180.00 (5)C14—C15—H15119.6
C1—N1—Cu1107.53 (14)C10—C15—H15119.6
C1—N1—H1A110.2H2M—O2W—H2N109.33 (16)
Cu1—N1—H1A110.2H2M—O2W—H2O91 (6)
C1—N1—H1B110.2H2N—O2W—H2O56 (4)
Cu1—N1—H1B110.2H2M—O2W—H2P93 (6)
H1A—N1—H1B108.5H2N—O2W—H2P56 (4)
C2—N2—Cu1110.19 (15)H2O—O2W—H2P109.33 (17)
C2—N2—H2A109.6Cu1—O3W—H3M119 (2)
Cu1—N2—H2A109.6Cu1—O3W—H3N119 (2)
C2—N2—H2B109.6H3M—O3W—H3N109.33 (16)
Cu1—N2—H2B109.6H4M—O4W—H4N109.7
N2i—Cu1—N1—C1168.87 (15)N2'i—Cu1—C2—N2102.4 (3)
N2—Cu1—N1—C111.13 (15)N2'—Cu1—C2—N277.6 (3)
N2'i—Cu1—N1—C1133.12 (18)N1i—Cu1—C2—N219.2 (2)
N2'—Cu1—N1—C146.88 (18)N1—Cu1—C2—N2160.8 (2)
N1'i—Cu1—N1—C1126.5 (2)N1'i—Cu1—C2—N259.0 (2)
N1'—Cu1—N1—C153.5 (2)N1'—Cu1—C2—N2121.0 (2)
O1Wi—Cu1—N1—C1147.5 (2)O1Wi—Cu1—C2—N2157.5 (2)
O1W—Cu1—N1—C132.5 (2)O1W—Cu1—C2—N222.5 (2)
O3W—Cu1—N1—C1100.76 (15)O3W—Cu1—C2—N2102.02 (19)
O3Wi—Cu1—N1—C179.24 (15)O3Wi—Cu1—C2—N277.98 (19)
N2'i—Cu1—N2—C2121.7 (2)N2i—Cu1—C2—C139.2 (2)
N2'—Cu1—N2—C258.3 (2)N2—Cu1—C2—C1140.8 (2)
N1i—Cu1—N2—C2163.71 (18)N2'i—Cu1—C2—C138.4 (3)
N1—Cu1—N2—C216.29 (18)N2'—Cu1—C2—C1141.6 (3)
N1'i—Cu1—N2—C2132.5 (2)N1i—Cu1—C2—C1160.01 (12)
N1'—Cu1—N2—C247.5 (2)N1—Cu1—C2—C119.99 (12)
O1Wi—Cu1—N2—C227.0 (3)N1'i—Cu1—C2—C1160.24 (18)
O1W—Cu1—N2—C2153.0 (3)N1'—Cu1—C2—C119.76 (18)
O3W—Cu1—N2—C276.31 (18)O1Wi—Cu1—C2—C161.70 (16)
O3Wi—Cu1—N2—C2103.69 (18)O1W—Cu1—C2—C1118.30 (16)
Cu1—N1—C1—C235.43 (19)O3W—Cu1—C2—C1117.21 (12)
N2i—Cu1—C1—C2158.57 (13)O3Wi—Cu1—C2—C162.79 (12)
N2—Cu1—C1—C221.43 (13)O2—C3—C4—C93.1 (2)
N2'i—Cu1—C1—C2157.87 (17)O1—C3—C4—C9176.50 (16)
N2'—Cu1—C1—C222.13 (17)O2—C3—C4—C5176.68 (16)
N1i—Cu1—C1—C235.0 (2)O1—C3—C4—C53.7 (2)
N1—Cu1—C1—C2145.0 (2)C9—C4—C5—C61.0 (3)
N1'i—Cu1—C1—C236.8 (3)C3—C4—C5—C6178.83 (15)
N1'—Cu1—C1—C2143.2 (3)C4—C5—C6—C70.0 (3)
O1Wi—Cu1—C1—C2118.33 (16)C5—C6—C7—C81.1 (3)
O1W—Cu1—C1—C261.67 (16)C5—C6—C7—C10178.21 (16)
O3W—Cu1—C1—C263.05 (12)C6—C7—C8—C91.0 (3)
O3Wi—Cu1—C1—C2116.95 (12)C10—C7—C8—C9178.23 (16)
N2i—Cu1—C1—N113.52 (19)C7—C8—C9—C40.0 (3)
N2—Cu1—C1—N1166.48 (19)C5—C4—C9—C81.0 (3)
N2'i—Cu1—C1—N157.1 (2)C3—C4—C9—C8178.81 (16)
N2'—Cu1—C1—N1122.9 (2)C8—C7—C10—C1541.2 (2)
N1i—Cu1—C1—N1180.0C6—C7—C10—C15139.60 (17)
N1'i—Cu1—C1—N1108.2 (3)C8—C7—C10—C11138.95 (17)
N1'—Cu1—C1—N171.8 (3)C6—C7—C10—C1140.3 (2)
O1Wi—Cu1—C1—N126.7 (2)C15—C10—C11—C120.1 (2)
O1W—Cu1—C1—N1153.3 (2)C7—C10—C11—C12179.99 (16)
O3W—Cu1—C1—N181.99 (16)C10—C11—C12—C131.2 (3)
O3Wi—Cu1—C1—N198.01 (16)C11—C12—C13—C141.2 (3)
Cu1—N2—C2—C140.1 (2)C12—C13—C14—C150.0 (3)
N1—C1—C2—N250.0 (2)C13—C14—C15—C101.1 (3)
Cu1—C1—C2—N226.13 (15)C11—C10—C15—C141.0 (2)
N1—C1—C2—Cu123.88 (13)C7—C10—C15—C14178.88 (16)
N2i—Cu1—C2—N2180.0
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.922.132.986 (3)154
N1—H1B···O2Wiii0.922.323.093 (3)141
N2—H2A···O2iii0.922.163.037 (3)158
N1—H1E···O2Wiii0.922.513.375 (4)157
N1—H1F···O1iii0.922.203.087 (5)161
N2—H2E···O4Wiv0.922.333.181 (9)154
N2—H2F···O2Wv0.922.213.055 (5)152
O1W—H1M···O2iii0.95 (1)1.92 (1)2.844 (4)163 (4)
O1W—H1N···O2vi0.95 (1)1.88 (1)2.814 (4)169 (4)
O2W—H2M···O2vii0.95 (1)1.73 (1)2.668 (2)168 (5)
O2W—H2N···O1viii0.95 (1)1.87 (2)2.765 (2)156 (5)
O3W—H3M···O2Wv0.95 (1)2.01 (1)2.932 (3)163 (3)
O3W—H3N···O1ix0.95 (1)1.82 (1)2.721 (3)158 (3)
O4W—H4M···O1x0.95 (1)1.912.8562 (17)178
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z1/2; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) x+1/2, y1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2O
Mr662.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)6.1466 (6), 34.984 (3), 7.3101 (7)
β (°) 95.819 (4)
V3)1563.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.13 × 0.10 × 0.06
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.908, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
26073, 4736, 3908
Rint0.034
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.137, 1.10
No. of reflections4736
No. of parameters259
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.66

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Cu1—N12.019 (2)Cu1—N2'2.008 (4)
Cu1—N1'2.035 (4)Cu1—O1W2.496 (4)
Cu1—N22.006 (2)Cu1—O3W2.605 (2)
N2—Cu1—N185.08 (9)N1'—Cu1—O1Wi87.38 (15)
N2—Cu1—N1i94.92 (9)N2'i—Cu1—O1Wi88.69 (17)
N2'—Cu1—N1'84.65 (15)N2—Cu1—O3W89.85 (9)
N2'—Cu1—N1'i95.35 (15)N1i—Cu1—O3W87.42 (8)
C6—C7—C10—C1140.3 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.922.132.986 (3)154
N1—H1B···O2Wiii0.922.323.093 (3)141
N2—H2A···O2iii0.922.163.037 (3)158
N1'—H1E···O2Wiii0.922.513.375 (4)157
N1'—H1F···O1iii0.922.203.087 (5)161
N2'—H2E···O4Wiv0.922.333.181 (9)154
N2'—H2F···O2Wv0.922.213.055 (5)152
O1W—H1M···O2iii0.95 (1)1.924 (13)2.844 (4)163 (4)
O1W—H1N···O2vi0.95 (1)1.876 (9)2.814 (4)169 (4)
O2W—H2M···O2vii0.95 (1)1.731 (10)2.668 (2)168 (5)
O2W—H2N···O1viii0.95 (1)1.87 (2)2.765 (2)156 (5)
O3W—H3M···O2Wv0.95 (1)2.009 (10)2.932 (3)163 (3)
O3W—H3N···O1ix0.95 (1)1.818 (12)2.721 (3)158 (3)
O4W—H4M···O1x0.95 (1)1.912.8562 (17)178
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z1/2; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) x+1/2, y1/2, z+1/2; (x) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (R&D projects PTDC/QUI/65805/2006 and PDTC/QUI/69302/2006), for a post-doctoral research grant (under the former project), for the PhD grant SFRH/BD46601/2008, and also for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O'Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGraham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121–5132.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMajumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J. P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des. 6, 2355–2368.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.  Google Scholar
First citationPaz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828.  Google Scholar
First citationPaz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem. 33, 113–125.  Web of Science CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, Z., He, X., Zhao, Y. M., Shao, M. & Zhu, S. R. (2009). Dalton Trans. pp. 2802–2811.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds