organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-chloro­phen­yl)-2-hy­droxy­butane-1,4-dione

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: pubsliu@163.com

(Received 30 April 2010; accepted 15 May 2010; online 22 May 2010)

In the title compound, C16H12Cl2O3, the benzene rings form a dihedral angle of 2.0 (3)°. Within the central O=C—CH2C(H)OH—C=O unit, the carbonyl groups are coplanar and lie to opposite sides [O—C⋯C—O = −170.1 (6)°]. In the crystal, inter­molecular O—H⋯O hydrogen bonds formed between the hydr­oxy groups lead to a supra­molecular chain along the c axis. In addition, the crystal packing features some very weak C—H⋯π inter­actions.

Related literature

For the synthesis and applications of 1,4-dicarbonyl compounds, see: Ellison (1973[Ellison, R. A. (1973). Synthesis, pp. 397-412.]); Hassner (1991[Hassner, A. (1991). Comprehensive Organic Synthesis, Vol. 1, edited by B. M. Trost, pp. 541-577. Oxford: Pergamon.]); Ohno et al. (2001[Ohno, T., Sakai, M., Ishino, Y., Shibata, T., Maekawa, H. & Nishiguchi, I. (2001). Org. Lett. 3, 3439-3442.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2O3

  • Mr = 323.16

  • Monoclinic, C c

  • a = 34.800 (8) Å

  • b = 7.4221 (14) Å

  • c = 5.6535 (13) Å

  • β = 95.925 (2)°

  • V = 1452.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.947, Tmax = 0.964

  • 3531 measured reflections

  • 1256 independent reflections

  • 998 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.163

  • S = 1.05

  • 1256 reflections

  • 190 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O2i 0.82 2.10 2.894 (6) 163
C1—H1⋯Cg1ii 0.93 2.89 3.507 (6) 125
C4—H4⋯Cg1iii 0.93 2.97 3.600 (6) 126
C13—H13⋯Cg2ii 0.93 2.88 3.517 (6) 127
C16—H16⋯Cg2iii 0.93 2.90 3.544 (6) 128
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Hassner, 1991). For this reason, a number of methods for their synthesis have been developed and applied (Ellison, 1973; Ohno et al., 2001).

In the title compound, Fig. 1, the benzene rings form a dihedral angle of 2.0 (3) °. Intermolecular O2—H2A···O2 hydrogen bonds lead to the formation of a supramolecular chain along the c axis (Table 1, Fig. 2). In addition, the crystal packing is stabilized by intermolecular C—H···π interactions (Table 1) and short Cl···Cli contacts (3.434 (3) Å for i: 1/2+x, 1/2-y, -1/2+z).

Related literature top

For the synthesis and applications of 1,4-dicarbonyl compounds, see: Ellison (1973); Hassner (1991); Ohno et al. (2001).

Experimental top

The title compound was obtained as a by-product in the coupling reaction between 4-ClC6H4COCH2Br and benzaldehyde, a reaction which is being studied in our laboratory. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution over a period of 20 days.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.95–0.99 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O) and Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, 1009 Friedel pairs were averaged in the final refinement.

Structure description top

1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Hassner, 1991). For this reason, a number of methods for their synthesis have been developed and applied (Ellison, 1973; Ohno et al., 2001).

In the title compound, Fig. 1, the benzene rings form a dihedral angle of 2.0 (3) °. Intermolecular O2—H2A···O2 hydrogen bonds lead to the formation of a supramolecular chain along the c axis (Table 1, Fig. 2). In addition, the crystal packing is stabilized by intermolecular C—H···π interactions (Table 1) and short Cl···Cli contacts (3.434 (3) Å for i: 1/2+x, 1/2-y, -1/2+z).

For the synthesis and applications of 1,4-dicarbonyl compounds, see: Ellison (1973); Hassner (1991); Ohno et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram for the title compound, viewed down the a axis, showing the intermolecular hydrogen bonds (dashed lines).
1,4-Bis(4-chlorophenyl)-2-hydroxybutane-1,4-dione top
Crystal data top
C16H12Cl2O3F(000) = 664
Mr = 323.16Dx = 1.478 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1044 reflections
a = 34.800 (8) Åθ = 2.4–24.4°
b = 7.4221 (14) ŵ = 0.45 mm1
c = 5.6535 (13) ÅT = 273 K
β = 95.925 (2)°Column, colourless
V = 1452.4 (5) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1256 independent reflections
Radiation source: fine-focus sealed tube998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3840
Tmin = 0.947, Tmax = 0.964k = 78
3531 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.1063P)2 + 0.4654P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1256 reflectionsΔρmax = 0.40 e Å3
190 parametersΔρmin = 0.21 e Å3
9 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H12Cl2O3V = 1452.4 (5) Å3
Mr = 323.16Z = 4
Monoclinic, CcMo Kα radiation
a = 34.800 (8) ŵ = 0.45 mm1
b = 7.4221 (14) ÅT = 273 K
c = 5.6535 (13) Å0.12 × 0.10 × 0.08 mm
β = 95.925 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
998 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.964Rint = 0.025
3531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0579 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
1256 reflectionsΔρmin = 0.21 e Å3
190 parametersAbsolute structure: nd
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.04214 (18)0.1713 (8)0.3400 (11)0.0369 (15)
H11.03560.12040.48090.044*
C21.0810 (2)0.1845 (10)0.2991 (14)0.053 (2)
H21.10020.13850.40890.063*
C31.0905 (2)0.2672 (9)0.0921 (14)0.049 (2)
C41.0605 (2)0.3249 (10)0.0726 (13)0.049 (2)
H41.06640.37450.21540.058*
C51.0234 (2)0.3116 (8)0.0327 (12)0.0403 (16)
H51.00430.35560.14480.048*
C61.0133 (2)0.2332 (8)0.1732 (12)0.0357 (16)
C70.9724 (2)0.2035 (8)0.2253 (12)0.0374 (16)
C80.9403 (2)0.2685 (8)0.0412 (13)0.0383 (14)
H80.94430.21400.11210.046*
C90.9007 (2)0.2137 (9)0.1027 (12)0.0412 (15)
H9A0.89990.08390.12100.049*
H9B0.89610.26780.25330.049*
C100.8693 (2)0.2712 (9)0.0860 (13)0.0454 (18)
C110.8287 (2)0.2621 (8)0.0279 (12)0.0362 (16)
C120.8185 (2)0.1854 (9)0.1838 (11)0.0444 (18)
H120.83770.14320.29640.053*
C130.7794 (2)0.1712 (10)0.2287 (12)0.0465 (19)
H130.77250.11460.36490.056*
C140.7524 (2)0.2427 (10)0.0672 (14)0.053 (2)
C150.7606 (2)0.3157 (9)0.1456 (15)0.0489 (18)
H150.74090.35580.25640.059*
C160.7982 (2)0.3280 (9)0.1908 (12)0.0473 (18)
H160.80400.38090.33190.057*
Cl11.13745 (6)0.2822 (4)0.0298 (3)0.0922 (9)
Cl20.70386 (6)0.2245 (4)0.1208 (4)0.0948 (10)
O10.96490 (15)0.1328 (6)0.4095 (9)0.0515 (12)
O20.94303 (14)0.4587 (5)0.0178 (8)0.0501 (10)
H2A0.94340.50580.14920.075*
O30.87583 (16)0.3179 (10)0.2824 (10)0.084 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (4)0.037 (3)0.030 (3)0.007 (3)0.002 (3)0.001 (3)
C20.066 (5)0.056 (5)0.035 (4)0.005 (4)0.000 (4)0.001 (3)
C30.060 (6)0.047 (4)0.040 (4)0.008 (3)0.000 (4)0.012 (3)
C40.057 (6)0.053 (4)0.037 (4)0.006 (3)0.008 (4)0.001 (3)
C50.047 (4)0.033 (3)0.040 (4)0.009 (3)0.001 (3)0.002 (3)
C60.042 (4)0.033 (3)0.033 (4)0.009 (3)0.008 (3)0.001 (3)
C70.057 (4)0.026 (3)0.030 (4)0.006 (3)0.009 (3)0.001 (3)
C80.048 (3)0.033 (3)0.033 (3)0.011 (2)0.000 (3)0.002 (3)
C90.047 (3)0.047 (4)0.031 (3)0.007 (3)0.008 (3)0.003 (3)
C100.043 (4)0.057 (4)0.037 (4)0.006 (3)0.008 (3)0.003 (3)
C110.047 (4)0.029 (3)0.032 (4)0.010 (2)0.003 (3)0.004 (3)
C120.053 (5)0.055 (4)0.026 (3)0.013 (3)0.004 (3)0.006 (3)
C130.054 (5)0.058 (4)0.029 (3)0.017 (4)0.013 (3)0.005 (3)
C140.034 (4)0.069 (5)0.058 (6)0.011 (3)0.014 (4)0.004 (4)
C150.027 (3)0.055 (4)0.062 (5)0.008 (3)0.011 (3)0.003 (4)
C160.061 (5)0.042 (3)0.037 (4)0.001 (3)0.002 (4)0.004 (3)
Cl10.0472 (14)0.147 (3)0.0842 (18)0.0177 (14)0.0152 (13)0.0093 (17)
Cl20.0469 (15)0.150 (3)0.089 (2)0.0122 (14)0.0178 (13)0.0072 (17)
O10.052 (3)0.057 (3)0.047 (3)0.002 (2)0.012 (2)0.019 (2)
O20.064 (3)0.039 (2)0.048 (2)0.0037 (19)0.0072 (18)0.0049 (19)
O30.048 (3)0.172 (6)0.033 (3)0.010 (3)0.011 (2)0.033 (3)
Geometric parameters (Å, º) top
C1—C61.384 (10)C9—C101.507 (11)
C1—C21.398 (10)C9—H9A0.9700
C1—H10.9300C9—H9B0.9700
C2—C31.391 (12)C10—O31.206 (9)
C2—H20.9300C10—C111.485 (10)
C3—C41.393 (11)C11—C121.404 (9)
C3—Cl11.711 (8)C11—C161.419 (10)
C4—C51.334 (9)C12—C131.413 (9)
C4—H40.9300C12—H120.9300
C5—C61.380 (9)C13—C141.349 (11)
C5—H50.9300C13—H130.9300
C6—C71.499 (10)C14—C151.376 (12)
C7—O11.218 (8)C14—Cl21.753 (8)
C7—C81.525 (10)C15—C161.361 (10)
C8—O21.422 (7)C15—H150.9300
C8—C91.509 (7)C16—H160.9300
C8—H80.9800O2—H2A0.8200
C6—C1—C2120.7 (6)C10—C9—H9A109.3
C6—C1—H1119.7C8—C9—H9A109.3
C2—C1—H1119.7C10—C9—H9B109.3
C3—C2—C1119.2 (7)C8—C9—H9B109.3
C3—C2—H2120.4H9A—C9—H9B107.9
C1—C2—H2120.4O3—C10—C11119.3 (6)
C2—C3—C4118.1 (8)O3—C10—C9122.8 (6)
C2—C3—Cl1121.1 (6)C11—C10—C9117.8 (6)
C4—C3—Cl1120.6 (6)C12—C11—C16117.0 (7)
C5—C4—C3122.3 (7)C12—C11—C10122.6 (6)
C5—C4—H4118.8C16—C11—C10120.4 (6)
C3—C4—H4118.8C11—C12—C13121.2 (6)
C4—C5—C6120.7 (7)C11—C12—H12119.4
C4—C5—H5119.7C13—C12—H12119.4
C6—C5—H5119.7C14—C13—C12117.7 (6)
C5—C6—C1118.9 (7)C14—C13—H13121.2
C5—C6—C7124.0 (6)C12—C13—H13121.2
C1—C6—C7117.1 (6)C13—C14—C15123.6 (7)
O1—C7—C6121.4 (6)C13—C14—Cl2117.9 (6)
O1—C7—C8120.9 (7)C15—C14—Cl2118.2 (6)
C6—C7—C8117.6 (6)C16—C15—C14118.8 (7)
O2—C8—C9111.2 (5)C16—C15—H15120.6
O2—C8—C7109.0 (5)C14—C15—H15120.6
C9—C8—C7112.3 (5)C15—C16—C11121.6 (7)
O2—C8—H8108.1C15—C16—H16119.2
C9—C8—H8108.1C11—C16—H16119.2
C7—C8—H8108.1C8—O2—H2A109.5
C10—C9—C8111.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.822.102.894 (6)163
C1—H1···Cg1ii0.932.893.507 (6)125
C4—H4···Cg1iii0.932.973.600 (6)126
C13—H13···Cg2ii0.932.883.517 (6)127
C16—H16···Cg2iii0.932.903.544 (6)128
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H12Cl2O3
Mr323.16
Crystal system, space groupMonoclinic, Cc
Temperature (K)273
a, b, c (Å)34.800 (8), 7.4221 (14), 5.6535 (13)
β (°) 95.925 (2)
V3)1452.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3531, 1256, 998
Rint0.025
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.163, 1.05
No. of reflections1256
No. of parameters190
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.21
Absolute structureNd

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.822.102.894 (6)163
C1—H1···Cg1ii0.932.893.507 (6)125
C4—H4···Cg1iii0.932.973.600 (6)126
C13—H13···Cg2ii0.932.883.517 (6)127
C16—H16···Cg2iii0.932.903.544 (6)128
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2; (iii) x, y+1, z1/2.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllison, R. A. (1973). Synthesis, pp. 397–412.  CrossRef Google Scholar
First citationHassner, A. (1991). Comprehensive Organic Synthesis, Vol. 1, edited by B. M. Trost, pp. 541–577. Oxford: Pergamon.  Google Scholar
First citationOhno, T., Sakai, M., Ishino, Y., Shibata, T., Maekawa, H. & Nishiguchi, I. (2001). Org. Lett. 3, 3439–3442.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds