organic compounds
1,4-Bis(4-chlorophenyl)-2-hydroxybutane-1,4-dione
aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: pubsliu@163.com
In the title compound, C16H12Cl2O3, the benzene rings form a dihedral angle of 2.0 (3)°. Within the central O=C—CH2C(H)OH—C=O unit, the carbonyl groups are coplanar and lie to opposite sides [O—C⋯C—O = −170.1 (6)°]. In the crystal, intermolecular O—H⋯O hydrogen bonds formed between the hydroxy groups lead to a supramolecular chain along the c axis. In addition, the crystal packing features some very weak C—H⋯π interactions.
Related literature
For the synthesis and applications of 1,4-dicarbonyl compounds, see: Ellison (1973); Hassner (1991); Ohno et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810018027/tk2670sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810018027/tk2670Isup2.hkl
The title compound was obtained as a by-product in the coupling reaction between 4-ClC6H4COCH2Br and benzaldehyde, a reaction which is being studied in our laboratory. Colourless single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution over a period of 20 days.
H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.95–0.99 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O) and Uiso(H) = 1.2 Ueq(C). In the absence of significant
effects, 1009 Friedel pairs were averaged in the final refinement.1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Hassner, 1991). For this reason, a number of methods for their synthesis have been developed and applied (Ellison, 1973; Ohno et al., 2001).
In the title compound, Fig. 1, the benzene rings form a dihedral angle of 2.0 (3) °. Intermolecular O2—H2A···O2 hydrogen bonds lead to the formation of a supramolecular chain along the c axis (Table 1, Fig. 2). In addition, the crystal packing is stabilized by intermolecular C—H···π interactions (Table 1) and short Cl···Cli contacts (3.434 (3) Å for i: 1/2+x, 1/2-y, -1/2+z).
For the synthesis and applications of 1,4-dicarbonyl compounds, see: Ellison (1973); Hassner (1991); Ohno et al. (2001).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing atom labels and 50% probability displacement ellipsoids. | |
Fig. 2. The packing diagram for the title compound, viewed down the a axis, showing the intermolecular hydrogen bonds (dashed lines). |
C16H12Cl2O3 | F(000) = 664 |
Mr = 323.16 | Dx = 1.478 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1044 reflections |
a = 34.800 (8) Å | θ = 2.4–24.4° |
b = 7.4221 (14) Å | µ = 0.45 mm−1 |
c = 5.6535 (13) Å | T = 273 K |
β = 95.925 (2)° | Column, colourless |
V = 1452.4 (5) Å3 | 0.12 × 0.10 × 0.08 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1256 independent reflections |
Radiation source: fine-focus sealed tube | 998 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
phi and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −38→40 |
Tmin = 0.947, Tmax = 0.964 | k = −7→8 |
3531 measured reflections | l = −6→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.1063P)2 + 0.4654P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1256 reflections | Δρmax = 0.40 e Å−3 |
190 parameters | Δρmin = −0.21 e Å−3 |
9 restraints | Absolute structure: nd |
Primary atom site location: structure-invariant direct methods |
C16H12Cl2O3 | V = 1452.4 (5) Å3 |
Mr = 323.16 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 34.800 (8) Å | µ = 0.45 mm−1 |
b = 7.4221 (14) Å | T = 273 K |
c = 5.6535 (13) Å | 0.12 × 0.10 × 0.08 mm |
β = 95.925 (2)° |
Bruker SMART CCD area-detector diffractometer | 1256 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 998 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 0.964 | Rint = 0.025 |
3531 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 9 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.40 e Å−3 |
1256 reflections | Δρmin = −0.21 e Å−3 |
190 parameters | Absolute structure: nd |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.04214 (18) | 0.1713 (8) | 0.3400 (11) | 0.0369 (15) | |
H1 | 1.0356 | 0.1204 | 0.4809 | 0.044* | |
C2 | 1.0810 (2) | 0.1845 (10) | 0.2991 (14) | 0.053 (2) | |
H2 | 1.1002 | 0.1385 | 0.4089 | 0.063* | |
C3 | 1.0905 (2) | 0.2672 (9) | 0.0921 (14) | 0.049 (2) | |
C4 | 1.0605 (2) | 0.3249 (10) | −0.0726 (13) | 0.049 (2) | |
H4 | 1.0664 | 0.3745 | −0.2154 | 0.058* | |
C5 | 1.0234 (2) | 0.3116 (8) | −0.0327 (12) | 0.0403 (16) | |
H5 | 1.0043 | 0.3556 | −0.1448 | 0.048* | |
C6 | 1.0133 (2) | 0.2332 (8) | 0.1732 (12) | 0.0357 (16) | |
C7 | 0.9724 (2) | 0.2035 (8) | 0.2253 (12) | 0.0374 (16) | |
C8 | 0.9403 (2) | 0.2685 (8) | 0.0412 (13) | 0.0383 (14) | |
H8 | 0.9443 | 0.2140 | −0.1121 | 0.046* | |
C9 | 0.9007 (2) | 0.2137 (9) | 0.1027 (12) | 0.0412 (15) | |
H9A | 0.8999 | 0.0839 | 0.1210 | 0.049* | |
H9B | 0.8961 | 0.2678 | 0.2533 | 0.049* | |
C10 | 0.8693 (2) | 0.2712 (9) | −0.0860 (13) | 0.0454 (18) | |
C11 | 0.8287 (2) | 0.2621 (8) | −0.0279 (12) | 0.0362 (16) | |
C12 | 0.8185 (2) | 0.1854 (9) | 0.1838 (11) | 0.0444 (18) | |
H12 | 0.8377 | 0.1432 | 0.2964 | 0.053* | |
C13 | 0.7794 (2) | 0.1712 (10) | 0.2287 (12) | 0.0465 (19) | |
H13 | 0.7725 | 0.1146 | 0.3649 | 0.056* | |
C14 | 0.7524 (2) | 0.2427 (10) | 0.0672 (14) | 0.053 (2) | |
C15 | 0.7606 (2) | 0.3157 (9) | −0.1456 (15) | 0.0489 (18) | |
H15 | 0.7409 | 0.3558 | −0.2564 | 0.059* | |
C16 | 0.7982 (2) | 0.3280 (9) | −0.1908 (12) | 0.0473 (18) | |
H16 | 0.8040 | 0.3809 | −0.3319 | 0.057* | |
Cl1 | 1.13745 (6) | 0.2822 (4) | 0.0298 (3) | 0.0922 (9) | |
Cl2 | 0.70386 (6) | 0.2245 (4) | 0.1208 (4) | 0.0948 (10) | |
O1 | 0.96490 (15) | 0.1328 (6) | 0.4095 (9) | 0.0515 (12) | |
O2 | 0.94303 (14) | 0.4587 (5) | 0.0178 (8) | 0.0501 (10) | |
H2A | 0.9434 | 0.5058 | 0.1492 | 0.075* | |
O3 | 0.87583 (16) | 0.3179 (10) | −0.2824 (10) | 0.084 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.043 (4) | 0.037 (3) | 0.030 (3) | −0.007 (3) | 0.002 (3) | −0.001 (3) |
C2 | 0.066 (5) | 0.056 (5) | 0.035 (4) | 0.005 (4) | 0.000 (4) | 0.001 (3) |
C3 | 0.060 (6) | 0.047 (4) | 0.040 (4) | −0.008 (3) | 0.000 (4) | −0.012 (3) |
C4 | 0.057 (6) | 0.053 (4) | 0.037 (4) | −0.006 (3) | 0.008 (4) | −0.001 (3) |
C5 | 0.047 (4) | 0.033 (3) | 0.040 (4) | −0.009 (3) | 0.001 (3) | 0.002 (3) |
C6 | 0.042 (4) | 0.033 (3) | 0.033 (4) | 0.009 (3) | 0.008 (3) | −0.001 (3) |
C7 | 0.057 (4) | 0.026 (3) | 0.030 (4) | 0.006 (3) | 0.009 (3) | −0.001 (3) |
C8 | 0.048 (3) | 0.033 (3) | 0.033 (3) | 0.011 (2) | 0.000 (3) | 0.002 (3) |
C9 | 0.047 (3) | 0.047 (4) | 0.031 (3) | −0.007 (3) | 0.008 (3) | 0.003 (3) |
C10 | 0.043 (4) | 0.057 (4) | 0.037 (4) | 0.006 (3) | 0.008 (3) | 0.003 (3) |
C11 | 0.047 (4) | 0.029 (3) | 0.032 (4) | −0.010 (2) | 0.003 (3) | −0.004 (3) |
C12 | 0.053 (5) | 0.055 (4) | 0.026 (3) | 0.013 (3) | 0.004 (3) | 0.006 (3) |
C13 | 0.054 (5) | 0.058 (4) | 0.029 (3) | −0.017 (4) | 0.013 (3) | 0.005 (3) |
C14 | 0.034 (4) | 0.069 (5) | 0.058 (6) | −0.011 (3) | 0.014 (4) | −0.004 (4) |
C15 | 0.027 (3) | 0.055 (4) | 0.062 (5) | −0.008 (3) | −0.011 (3) | 0.003 (4) |
C16 | 0.061 (5) | 0.042 (3) | 0.037 (4) | 0.001 (3) | −0.002 (4) | 0.004 (3) |
Cl1 | 0.0472 (14) | 0.147 (3) | 0.0842 (18) | −0.0177 (14) | 0.0152 (13) | 0.0093 (17) |
Cl2 | 0.0469 (15) | 0.150 (3) | 0.089 (2) | −0.0122 (14) | 0.0178 (13) | 0.0072 (17) |
O1 | 0.052 (3) | 0.057 (3) | 0.047 (3) | 0.002 (2) | 0.012 (2) | 0.019 (2) |
O2 | 0.064 (3) | 0.039 (2) | 0.048 (2) | 0.0037 (19) | 0.0072 (18) | 0.0049 (19) |
O3 | 0.048 (3) | 0.172 (6) | 0.033 (3) | 0.010 (3) | 0.011 (2) | 0.033 (3) |
C1—C6 | 1.384 (10) | C9—C10 | 1.507 (11) |
C1—C2 | 1.398 (10) | C9—H9A | 0.9700 |
C1—H1 | 0.9300 | C9—H9B | 0.9700 |
C2—C3 | 1.391 (12) | C10—O3 | 1.206 (9) |
C2—H2 | 0.9300 | C10—C11 | 1.485 (10) |
C3—C4 | 1.393 (11) | C11—C12 | 1.404 (9) |
C3—Cl1 | 1.711 (8) | C11—C16 | 1.419 (10) |
C4—C5 | 1.334 (9) | C12—C13 | 1.413 (9) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.380 (9) | C13—C14 | 1.349 (11) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—C7 | 1.499 (10) | C14—C15 | 1.376 (12) |
C7—O1 | 1.218 (8) | C14—Cl2 | 1.753 (8) |
C7—C8 | 1.525 (10) | C15—C16 | 1.361 (10) |
C8—O2 | 1.422 (7) | C15—H15 | 0.9300 |
C8—C9 | 1.509 (7) | C16—H16 | 0.9300 |
C8—H8 | 0.9800 | O2—H2A | 0.8200 |
C6—C1—C2 | 120.7 (6) | C10—C9—H9A | 109.3 |
C6—C1—H1 | 119.7 | C8—C9—H9A | 109.3 |
C2—C1—H1 | 119.7 | C10—C9—H9B | 109.3 |
C3—C2—C1 | 119.2 (7) | C8—C9—H9B | 109.3 |
C3—C2—H2 | 120.4 | H9A—C9—H9B | 107.9 |
C1—C2—H2 | 120.4 | O3—C10—C11 | 119.3 (6) |
C2—C3—C4 | 118.1 (8) | O3—C10—C9 | 122.8 (6) |
C2—C3—Cl1 | 121.1 (6) | C11—C10—C9 | 117.8 (6) |
C4—C3—Cl1 | 120.6 (6) | C12—C11—C16 | 117.0 (7) |
C5—C4—C3 | 122.3 (7) | C12—C11—C10 | 122.6 (6) |
C5—C4—H4 | 118.8 | C16—C11—C10 | 120.4 (6) |
C3—C4—H4 | 118.8 | C11—C12—C13 | 121.2 (6) |
C4—C5—C6 | 120.7 (7) | C11—C12—H12 | 119.4 |
C4—C5—H5 | 119.7 | C13—C12—H12 | 119.4 |
C6—C5—H5 | 119.7 | C14—C13—C12 | 117.7 (6) |
C5—C6—C1 | 118.9 (7) | C14—C13—H13 | 121.2 |
C5—C6—C7 | 124.0 (6) | C12—C13—H13 | 121.2 |
C1—C6—C7 | 117.1 (6) | C13—C14—C15 | 123.6 (7) |
O1—C7—C6 | 121.4 (6) | C13—C14—Cl2 | 117.9 (6) |
O1—C7—C8 | 120.9 (7) | C15—C14—Cl2 | 118.2 (6) |
C6—C7—C8 | 117.6 (6) | C16—C15—C14 | 118.8 (7) |
O2—C8—C9 | 111.2 (5) | C16—C15—H15 | 120.6 |
O2—C8—C7 | 109.0 (5) | C14—C15—H15 | 120.6 |
C9—C8—C7 | 112.3 (5) | C15—C16—C11 | 121.6 (7) |
O2—C8—H8 | 108.1 | C15—C16—H16 | 119.2 |
C9—C8—H8 | 108.1 | C11—C16—H16 | 119.2 |
C7—C8—H8 | 108.1 | C8—O2—H2A | 109.5 |
C10—C9—C8 | 111.8 (5) |
Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O2i | 0.82 | 2.10 | 2.894 (6) | 163 |
C1—H1···Cg1ii | 0.93 | 2.89 | 3.507 (6) | 125 |
C4—H4···Cg1iii | 0.93 | 2.97 | 3.600 (6) | 126 |
C13—H13···Cg2ii | 0.93 | 2.88 | 3.517 (6) | 127 |
C16—H16···Cg2iii | 0.93 | 2.90 | 3.544 (6) | 128 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, −y, z+1/2; (iii) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H12Cl2O3 |
Mr | 323.16 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 273 |
a, b, c (Å) | 34.800 (8), 7.4221 (14), 5.6535 (13) |
β (°) | 95.925 (2) |
V (Å3) | 1452.4 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.45 |
Crystal size (mm) | 0.12 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.947, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3531, 1256, 998 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.163, 1.05 |
No. of reflections | 1256 |
No. of parameters | 190 |
No. of restraints | 9 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.21 |
Absolute structure | Nd |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).
Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O2i | 0.82 | 2.10 | 2.894 (6) | 163 |
C1—H1···Cg1ii | 0.93 | 2.89 | 3.507 (6) | 125 |
C4—H4···Cg1iii | 0.93 | 2.97 | 3.600 (6) | 126 |
C13—H13···Cg2ii | 0.93 | 2.88 | 3.517 (6) | 127 |
C16—H16···Cg2iii | 0.93 | 2.90 | 3.544 (6) | 128 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, −y, z+1/2; (iii) x, −y+1, z−1/2. |
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ellison, R. A. (1973). Synthesis, pp. 397–412. CrossRef Google Scholar
Hassner, A. (1991). Comprehensive Organic Synthesis, Vol. 1, edited by B. M. Trost, pp. 541–577. Oxford: Pergamon. Google Scholar
Ohno, T., Sakai, M., Ishino, Y., Shibata, T., Maekawa, H. & Nishiguchi, I. (2001). Org. Lett. 3, 3439–3442. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Hassner, 1991). For this reason, a number of methods for their synthesis have been developed and applied (Ellison, 1973; Ohno et al., 2001).
In the title compound, Fig. 1, the benzene rings form a dihedral angle of 2.0 (3) °. Intermolecular O2—H2A···O2 hydrogen bonds lead to the formation of a supramolecular chain along the c axis (Table 1, Fig. 2). In addition, the crystal packing is stabilized by intermolecular C—H···π interactions (Table 1) and short Cl···Cli contacts (3.434 (3) Å for i: 1/2+x, 1/2-y, -1/2+z).