organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-Chloro-2-(2-chloro­benzoyl)phenyl]acetamide

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 May 2010; accepted 19 May 2010; online 22 May 2010)

In the title compound, C15H11Cl2NO2, the dihedral angle between the two benzene rings is 74.83 (5)°. The N-bound and terminal benzene rings are inclined at dihedral angles of 4.09 (10) and 78.38 (9)°, respectively, to the mean plane through the acetamide group. Intra­molecular C—H⋯O and N—H⋯O hydrogen bonds both generate S(6) rings.

Related literature

For the acetyl­ation reaction, see: Greene et al. (1999[Greene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley & Sons.]); Gupta et al. (2008[Gupta, R., Kumar, V., Gupta, M., Paul, S. & Gupta, R. (2008). Indian J. Chem. Sect. B, 47, 1739-1743.]). For solvent-free synthesis, see: Roopan et al. (2008[Roopan, S. M., Maiyalagan, T. & Khan, F. N. (2008). Can. J. Chem. 86, 1019-1025.], 2009[Roopan, S. M. & Khan, F. N. (2009). Arkivoc, xiii, 161-169.]). For reactions of acetic anhydride and acetyl chloride, see: Orita et al. (2000[Orita, A., Tanahashi, C., Kakuda, A. & Otera, J. (2000). Angew. Chem. Int. Ed. 39, 2877-2879.]); Procopiou et al. (1998[Procopiou, P. A., Baugh, S. P. D., Flack, S. S. & Inglis, G. G. A. (1998). J. Org. Chem. 63, 2342-2347.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11Cl2NO2

  • Mr = 308.15

  • Monoclinic, P 21 /c

  • a = 11.1371 (11) Å

  • b = 5.0661 (6) Å

  • c = 25.594 (3) Å

  • β = 100.672 (9)°

  • V = 1419.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.18 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • 14628 measured reflections

  • 2633 independent reflections

  • 1537 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.107

  • S = 0.98

  • 2633 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.660 (3) 138
C5—H5⋯O2 0.93 2.22 2.839 (4) 124

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The acetylation of phenol, alcohol and amine are important chemical reactions in organic synthesis (Greene et al., 1999, Gupta et al., 2008). Mainly, acylation of amines is used for the protection of an amino functionality in a multi-step synthetic process. Acetic anhydride and acetyl chloride are generally used in the presence of acidic or basic catalysts in an organic medium (Orita et al., 2000; Procopiou et al., 1998). One of the major factors for a green chemical processes are solvent-free reactions. In continuation of our our interest in this area (Roopan et al., 2008, 2009), we herein report the solvent-free acetylation of an amine, leading to the title compound, (I).

Compound (I), Fig. 1, has two chloro-phenyl groups (Cl2/C1–C6 and Cl1/C8–C13) which make a dihedral angle of 74.83 (5)° with each other. The chloro-phenyl groups are inclined at dihedral angles of 4.09 (10) and 78.38 (9) °, respectively, with the mean plane through the acetamide group (N1/O2/C14/C15). The torsion angles O1—C7—C8—C9, O1—C7—C8—C13, C2—C3—C7—O1 and C4—C3—C7—O1 are 109.0 (3), -68.5 (4), 172.8 (3) and -5.8 (4)°, respectively.

Two intramolecular, i.e. N1—H1···O1 and C5—H5···O2, hydrogen bonds form six-membered rings, producing S(6) ring motifs (Table 1, Fig. 1, Bernstein et al., 1995). In the crystal structure, there are no classical intermolecular hydrogen bonds.

Related literature top

For the acetylation reaction, see: Greene et al. (1999); Gupta et al. (2008). For solvent-free synthesis, see: Roopan et al. (2008, 2009). For reactions of acetic anhydride and acetyl chloride, see: Orita et al. (2000); Procopiou et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Amino-5-chloro-phenyl(2-chloro-phenyl)methanone (1 mmol) was stirred with acetyl-chloride (1 mmol) at room temperature for 1 h. The reaction was monitored by TLC. After the completion of the reaction, the contents were cooled and poured onto cold water with stirring. The solid which separated was separated by filtration and dried in air. The dried compound was dissolved in dichloromethane and subjected to slow evaporation to yield single crystals.

Refinement top

All the H atoms were discernible in the difference Fourier maps. However, H atoms were located geometrically with N—H = 0.86 and C—H = 0.93-0.96 Å and refined in the riding model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Structure description top

The acetylation of phenol, alcohol and amine are important chemical reactions in organic synthesis (Greene et al., 1999, Gupta et al., 2008). Mainly, acylation of amines is used for the protection of an amino functionality in a multi-step synthetic process. Acetic anhydride and acetyl chloride are generally used in the presence of acidic or basic catalysts in an organic medium (Orita et al., 2000; Procopiou et al., 1998). One of the major factors for a green chemical processes are solvent-free reactions. In continuation of our our interest in this area (Roopan et al., 2008, 2009), we herein report the solvent-free acetylation of an amine, leading to the title compound, (I).

Compound (I), Fig. 1, has two chloro-phenyl groups (Cl2/C1–C6 and Cl1/C8–C13) which make a dihedral angle of 74.83 (5)° with each other. The chloro-phenyl groups are inclined at dihedral angles of 4.09 (10) and 78.38 (9) °, respectively, with the mean plane through the acetamide group (N1/O2/C14/C15). The torsion angles O1—C7—C8—C9, O1—C7—C8—C13, C2—C3—C7—O1 and C4—C3—C7—O1 are 109.0 (3), -68.5 (4), 172.8 (3) and -5.8 (4)°, respectively.

Two intramolecular, i.e. N1—H1···O1 and C5—H5···O2, hydrogen bonds form six-membered rings, producing S(6) ring motifs (Table 1, Fig. 1, Bernstein et al., 1995). In the crystal structure, there are no classical intermolecular hydrogen bonds.

For the acetylation reaction, see: Greene et al. (1999); Gupta et al. (2008). For solvent-free synthesis, see: Roopan et al. (2008, 2009). For reactions of acetic anhydride and acetyl chloride, see: Orita et al. (2000); Procopiou et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
N-[4-Chloro-2-(2-chlorobenzoyl)phenyl]acetamide top
Crystal data top
C15H11Cl2NO2F(000) = 632
Mr = 308.15Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1298 reflections
a = 11.1371 (11) Åθ = 2.0–20.9°
b = 5.0661 (6) ŵ = 0.46 mm1
c = 25.594 (3) ÅT = 293 K
β = 100.672 (9)°Block, colourless
V = 1419.1 (3) Å30.28 × 0.24 × 0.18 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
1537 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.080
Graphite monochromatorθmax = 25.5°, θmin = 2.7°
ω scansh = 1313
14628 measured reflectionsk = 66
2633 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H11Cl2NO2V = 1419.1 (3) Å3
Mr = 308.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1371 (11) ŵ = 0.46 mm1
b = 5.0661 (6) ÅT = 293 K
c = 25.594 (3) Å0.28 × 0.24 × 0.18 mm
β = 100.672 (9)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
1537 reflections with I > 2σ(I)
14628 measured reflectionsRint = 0.080
2633 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.98Δρmax = 0.18 e Å3
2633 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01228 (8)0.21348 (16)0.05190 (3)0.0676 (3)
Cl20.68968 (8)0.97146 (17)0.00452 (3)0.0706 (3)
O10.94298 (18)0.2513 (5)0.19297 (8)0.0777 (9)
O20.5030 (2)0.0779 (5)0.17216 (10)0.0936 (11)
N10.7034 (2)0.1634 (5)0.17250 (9)0.0533 (9)
C10.6927 (2)0.7372 (6)0.05413 (10)0.0477 (10)
C20.8029 (2)0.6603 (5)0.08384 (10)0.0429 (9)
C30.8082 (2)0.4689 (5)0.12330 (10)0.0396 (9)
C40.6978 (2)0.3551 (5)0.13289 (10)0.0431 (10)
C50.5876 (3)0.4396 (6)0.10239 (12)0.0580 (11)
C60.5855 (3)0.6267 (6)0.06384 (12)0.0566 (11)
C70.9300 (2)0.3982 (6)0.15419 (11)0.0459 (10)
C81.0428 (2)0.5175 (5)0.13994 (10)0.0399 (9)
C91.0892 (2)0.4451 (5)0.09588 (10)0.0435 (10)
C101.1978 (3)0.5487 (6)0.08559 (12)0.0565 (11)
C111.2597 (3)0.7314 (7)0.11949 (14)0.0661 (13)
C121.2151 (3)0.8101 (7)0.16279 (13)0.0686 (12)
C131.1075 (3)0.7045 (6)0.17374 (11)0.0586 (11)
C140.6092 (3)0.0330 (6)0.18928 (13)0.0607 (12)
C150.6499 (3)0.1678 (7)0.23219 (13)0.0775 (16)
H10.775600.121300.188600.0640*
H20.874800.736800.077500.0510*
H50.514500.367600.108400.0700*
H60.511100.680500.043900.0680*
H101.228200.494100.055900.0680*
H111.332500.801900.112900.0790*
H121.257100.936600.185400.0820*
H131.078600.759000.203800.0700*
H15A0.631800.104500.265200.1160*
H15B0.736300.196100.235900.1160*
H15C0.607500.331000.222900.1160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0736 (6)0.0686 (6)0.0632 (5)0.0187 (5)0.0197 (4)0.0213 (4)
Cl20.0681 (6)0.0796 (6)0.0622 (5)0.0248 (5)0.0069 (4)0.0221 (5)
O10.0495 (13)0.117 (2)0.0670 (14)0.0078 (13)0.0115 (11)0.0456 (14)
O20.0531 (15)0.121 (2)0.109 (2)0.0246 (16)0.0209 (14)0.0138 (17)
N10.0417 (14)0.0620 (17)0.0590 (16)0.0031 (13)0.0164 (12)0.0079 (14)
C10.0450 (18)0.054 (2)0.0428 (16)0.0096 (15)0.0050 (14)0.0018 (14)
C20.0343 (15)0.0506 (18)0.0446 (16)0.0030 (13)0.0098 (13)0.0003 (15)
C30.0334 (15)0.0486 (18)0.0367 (15)0.0029 (13)0.0061 (12)0.0003 (14)
C40.0394 (16)0.0466 (18)0.0446 (16)0.0048 (14)0.0110 (13)0.0019 (15)
C50.0325 (16)0.077 (2)0.064 (2)0.0005 (16)0.0074 (15)0.0017 (19)
C60.0357 (17)0.075 (2)0.0552 (19)0.0166 (16)0.0017 (14)0.0033 (18)
C70.0460 (17)0.056 (2)0.0368 (16)0.0067 (15)0.0108 (13)0.0062 (15)
C80.0304 (14)0.0515 (19)0.0357 (15)0.0058 (14)0.0004 (12)0.0049 (14)
C90.0392 (16)0.0481 (18)0.0427 (16)0.0041 (14)0.0066 (13)0.0055 (14)
C100.0502 (19)0.064 (2)0.060 (2)0.0023 (17)0.0223 (16)0.0031 (17)
C110.0431 (18)0.081 (3)0.072 (2)0.0194 (19)0.0052 (17)0.001 (2)
C120.066 (2)0.071 (2)0.061 (2)0.022 (2)0.0085 (18)0.0118 (19)
C130.060 (2)0.071 (2)0.0425 (17)0.0004 (18)0.0032 (15)0.0111 (17)
C140.062 (2)0.066 (2)0.059 (2)0.0170 (19)0.0242 (18)0.0106 (18)
C150.098 (3)0.071 (3)0.071 (2)0.026 (2)0.035 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C91.738 (3)C8—C91.374 (3)
Cl2—C11.734 (3)C9—C101.388 (4)
O1—C71.228 (4)C10—C111.365 (5)
O2—C141.205 (4)C11—C121.356 (5)
N1—C41.397 (3)C12—C131.388 (5)
N1—C141.374 (4)C14—C151.504 (5)
N1—H10.8600C2—H20.9300
C1—C61.382 (4)C5—H50.9300
C1—C21.375 (3)C6—H60.9300
C2—C31.393 (4)C10—H100.9300
C3—C41.420 (3)C11—H110.9300
C3—C71.482 (3)C12—H120.9300
C4—C51.394 (4)C13—H130.9300
C5—C61.365 (4)C15—H15A0.9600
C7—C81.499 (3)C15—H15B0.9600
C8—C131.391 (4)C15—H15C0.9600
Cl1···C23.455 (3)C13···O1x3.407 (4)
Cl1···C33.423 (3)C7···H12.5000
Cl1···Cl1i3.3974 (12)C8···H22.4900
Cl2···C11ii3.650 (4)C9···H22.7700
Cl1···H2iii3.0000C12···H15Axi3.0900
Cl2···H6iv2.9400C14···H52.7300
Cl2···H10v3.0500C15···H12xii2.9500
O1···N12.660 (3)H1···O11.9600
O1···C13iii3.407 (4)H1···C72.5000
O2···C52.839 (4)H1···H15B2.1100
O2···C11vi3.300 (4)H2···Cl1x3.0000
O1···H13vii2.7000H2···C82.4900
O1···H11.9600H2···C92.7700
O1···H13iii2.9000H5···O22.2200
O2···H52.2200H5···C142.7300
O2···H11vi2.6100H6···Cl2iv2.9400
O2···H12vi2.9100H10···Cl2v3.0500
O2···H15Aviii2.8800H11···O2ix2.6100
N1···O12.660 (3)H12···O2ix2.9100
C2···Cl13.455 (3)H12···C15xiii2.9500
C2···C93.330 (3)H13···O1x2.9000
C3···Cl13.423 (3)H13···O1xi2.7000
C5···O22.839 (4)H15A···O2xiv2.8800
C9···C23.330 (3)H15A···C12vii3.0900
C11···O2ix3.300 (4)H15B···H12.1100
C11···Cl2ii3.650 (4)
C4—N1—C14128.8 (2)C11—C12—C13120.8 (3)
C14—N1—H1116.00C8—C13—C12120.3 (3)
C4—N1—H1116.00N1—C14—C15114.2 (3)
Cl2—C1—C6120.6 (2)O2—C14—N1123.4 (3)
C2—C1—C6119.9 (3)O2—C14—C15122.4 (3)
Cl2—C1—C2119.55 (19)C1—C2—H2120.00
C1—C2—C3120.8 (2)C3—C2—H2120.00
C2—C3—C7117.8 (2)C4—C5—H5120.00
C2—C3—C4119.1 (2)C6—C5—H5120.00
C4—C3—C7123.1 (2)C1—C6—H6120.00
N1—C4—C5122.4 (2)C5—C6—H6120.00
C3—C4—C5118.6 (2)C9—C10—H10120.00
N1—C4—C3119.0 (2)C11—C10—H10120.00
C4—C5—C6120.9 (3)C10—C11—H11120.00
C1—C6—C5120.8 (3)C12—C11—H11120.00
O1—C7—C3122.5 (2)C11—C12—H12120.00
C3—C7—C8119.9 (2)C13—C12—H12120.00
O1—C7—C8117.6 (2)C8—C13—H13120.00
C7—C8—C13119.0 (2)C12—C13—H13120.00
C9—C8—C13117.5 (2)C14—C15—H15A109.00
C7—C8—C9123.5 (2)C14—C15—H15B110.00
C8—C9—C10121.9 (2)C14—C15—H15C109.00
Cl1—C9—C8119.76 (18)H15A—C15—H15B109.00
Cl1—C9—C10118.4 (2)H15A—C15—H15C109.00
C9—C10—C11119.4 (3)H15B—C15—H15C110.00
C10—C11—C12120.0 (3)
C14—N1—C4—C3178.3 (3)N1—C4—C5—C6179.7 (3)
C14—N1—C4—C51.6 (4)C3—C4—C5—C60.4 (4)
C4—N1—C14—O23.1 (5)C4—C5—C6—C10.1 (5)
C4—N1—C14—C15178.4 (3)O1—C7—C8—C9109.0 (3)
Cl2—C1—C2—C3178.8 (2)O1—C7—C8—C1368.5 (4)
C6—C1—C2—C30.9 (4)C3—C7—C8—C973.8 (4)
Cl2—C1—C6—C5179.1 (2)C3—C7—C8—C13108.7 (3)
C2—C1—C6—C50.6 (4)C7—C8—C9—Cl12.8 (4)
C1—C2—C3—C40.6 (4)C7—C8—C9—C10176.2 (3)
C1—C2—C3—C7179.3 (2)C13—C8—C9—Cl1179.7 (2)
C2—C3—C4—N1180.0 (2)C13—C8—C9—C101.4 (4)
C2—C3—C4—C50.1 (4)C7—C8—C13—C12177.2 (3)
C7—C3—C4—N11.3 (4)C9—C8—C13—C120.4 (4)
C7—C3—C4—C5178.5 (3)Cl1—C9—C10—C11179.8 (2)
C2—C3—C7—O1172.8 (3)C8—C9—C10—C111.2 (4)
C2—C3—C7—C84.3 (4)C9—C10—C11—C120.0 (5)
C4—C3—C7—O15.8 (4)C10—C11—C12—C130.9 (5)
C4—C3—C7—C8177.1 (2)C11—C12—C13—C80.7 (5)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+2, z; (iii) x, y1, z; (iv) x+1, y+2, z; (v) x+2, y+1, z; (vi) x1, y1, z; (vii) x+2, y1/2, z+1/2; (viii) x+1, y+1/2, z+1/2; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) x+2, y+1/2, z+1/2; (xii) x+2, y3/2, z+1/2; (xiii) x+2, y+3/2, z+1/2; (xiv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.660 (3)138
C5—H5···O20.932.222.839 (4)124

Experimental details

Crystal data
Chemical formulaC15H11Cl2NO2
Mr308.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.1371 (11), 5.0661 (6), 25.594 (3)
β (°) 100.672 (9)
V3)1419.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.28 × 0.24 × 0.18
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14628, 2633, 1537
Rint0.080
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.107, 0.98
No. of reflections2633
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.660 (3)138
C5—H5···O20.932.222.839 (4)124
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley & Sons.  Google Scholar
First citationGupta, R., Kumar, V., Gupta, M., Paul, S. & Gupta, R. (2008). Indian J. Chem. Sect. B, 47, 1739–1743.  Google Scholar
First citationOrita, A., Tanahashi, C., Kakuda, A. & Otera, J. (2000). Angew. Chem. Int. Ed. 39, 2877–2879.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationProcopiou, P. A., Baugh, S. P. D., Flack, S. S. & Inglis, G. G. A. (1998). J. Org. Chem. 63, 2342–2347.  Web of Science CrossRef CAS Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). Arkivoc, xiii, 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Maiyalagan, T. & Khan, F. N. (2008). Can. J. Chem. 86, 1019–1025.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds