metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(3,5-di-tert-butyl-2-hy­droxy­benz­yl)-3-iso­propyl­imidazolium] penta­chlorido(tetra­hydro­furan)samarate(III)–tetra­hydro­furan–toluene (1/1/1)

aDepartment of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, People's Republic of China
*Correspondence e-mail: wangzhiguo224865@163.com

(Received 2 December 2009; accepted 13 May 2010; online 22 May 2010)

The title compound, (C21H33N2O)2[SmCl5(C4H8O)]·C7H8·C4H8O, has a layered structure in which each distorted octa­hedral [SmCl5(THF)]2− unit (THF is tetra­hydro­furan) is capped by two cations. The central metal SmIII atom of the [SmCl5(THF)]2− anionic unit is coordinated by five Cl atoms and one THF O atom, forming a distorted octa­hedral geometry. The crystal structure displays C—H⋯Cl and O—H⋯Cl hydrogen bonding. The structure exhibits disorder of the solvent.

Related literature

For general background to the use of anionic functionalized N-heterocyclic carbenes (NHCs) as anionic tethers in the field of rare earth metals, see: Arnold & Casely (2009[Arnold, P. L. & Casely, I. J. (2009). Chem. Rev. 109, 3599-3611.]); Arnold & Liddle (2005[Arnold, P. L. & Liddle, S. T. (2005). Organometallics, 24, 2597-2605.], 2006[Arnold, P. L. & Liddle, S. T. (2006). Chem. Commun. pp. 3959-3971.]); Babai & Mudring (2005[Babai, A. & Mudring, A. V. (2005). Inorg. Chem. 44, 8168-8169.]); Liddle et al. (2007[Liddle, S. T., Edworthy, I. S. & Arnold, P. L. (2007). Chem. Soc. Rev. 36, 1732-1744.]). For related structures, see: Lu et al. (2001[Lu, Z. P., Yap, G. P. A. & Richeson, D. S. (2001). Organometallics, 20, 706-712.]); Wang et al. (2006a[Wang, Z. G., Sun, H. M., Yao, H. S., Yao, Y. M., Shen, Q. & Zhang, Y. (2006a). J. Organomet. Chem. 691, 3383-3390.],b[Wang, Z. G., Sun, H. M., Yao, H. S., Shen, Q. & Zhang, Y. (2006b). Organometallics, 25, 4436-4438.]); Yao et al. (2004[Yao, Y. M., Luo, Y. J., Shen, Q. & Yu, K. B. (2004). Chin. J. Struct. Chem. 23, 391-394.], 2007[Yao, H. S., Zhang, J. G., Xu, F., Shen, O. & Zhang, Y. (2007). Chin. J. Struct. Chem. 26, 1391-1394.]); Li et al. (2005[Li, W. F., Sun, H. M., Wang, Z. G., Chen, M. Z., Shen, Q. & Zhang, Y. (2005). J. Organomet. Chem. 690, 6227-6232.]).

[Scheme 1]

Experimental

Crystal data
  • (C21H33N2O)2[SmCl5(C4H8O)]·C7H8·C4H8O

  • Mr = 1222.93

  • Triclinic, [P \overline 1]

  • a = 10.2252 (11) Å

  • b = 17.6968 (18) Å

  • c = 18.3806 (19) Å

  • α = 76.954 (5)°

  • β = 86.077 (6)°

  • γ = 82.789 (6)°

  • V = 3211.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 192 K

  • 0.34 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.695, Tmax = 0.846

  • 32162 measured reflections

  • 11687 independent reflections

  • 10327 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.09

  • 11687 reflections

  • 550 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.84 2.30 3.143 (3) 178
O2—H2⋯Cl3 0.84 2.30 3.136 (3) 174
C29—H29⋯Cl5i 0.95 2.54 3.486 (3) 173
C10—H10⋯Cl1ii 0.95 2.81 3.681 (4) 153
C9—H9⋯Cl2iii 0.95 2.64 3.476 (4) 146
C8—H8⋯Cl5 0.95 2.73 3.655 (4) 164
C5—H5⋯Cl2iii 0.95 2.84 3.736 (3) 158
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the anionic functionalized N-heterocyclic carbenes( NHCs), such as amino- or phenoxo(alkoxo)-NHCs, have attracted much more attention particularly in the field of rare earth metals as the anionic tether can be used as anchor to enhance the bond of NHC to these electropositive metals (Arnold et al.,2006; Liddle et al., 2007). A series of anionic functionalized NHCs have been synthesized and structurally characterized (Arnold et al., 2009; Wang et al., 2006a ). However, the reaction of ligands with cerium triiodide (Arnold et al.,2005) or ytterbium trichloride (Wang et al., 2006a) in the presence of organic base gives no desired product. Especially noteworthy is the cleavage reaction of the ligand that occurs during the reaction process ( Wang et al., 2006b ). For a better understanding of the reason, the complex [NdCl5(THF)]2-[HO-3,5-di-tBu—C6H2-2-CH2{CH(NCHCHNiPr)]2+ (Yao et al., 2007) has been studied. In order to further study these compounds, the title complex has been synthesized. Although the ion-pair structure has recently been reported for LnI3 in sulfonium-based ionic liquids (Babai et al.,2005), its structural feature is different from that of the title complex. In [SEt3]3[NdI6], SEt3 is a triethylsulfonium cation; an octahedron [NdI6]3- is capped by triethylsulfonium cations (SEt3) via the coordination of Nd3+to SEt3. The X-ray crystal analysis of the title complex indicates that the bis-[(3,5-ditertbutyl-2-hydroxybenzyl)N-isopropylimidazolyl] samarium pentachloride consists of an anion [SmCl5(THF)]2-and two cations [HO-3,5-di-tBu—C6H2-2-CH2{CH(iPrNCHCHN)}]2+. The central metal Sm in the anionic unit [SmCl5(THF)]2- coordinates to five Cl atoms and one oxygen atom from a solvent THF molecule to form a six-coordinated distorted octahedron geometry, which is similar to the reported complex (Yao et al., 2007). The four chlorines Cl(1), Cl(2), Cl(3) and Cl(4) can be considered to occupy the equatorial positions within the octahedron about the lanthanide center. The O(3) and Cl(5) occupy the two axial sites. The angle O(3)—Sm—Cl(5) is slightly distorted from the ideal value of 180° to 174.99 (8)°. The Sm—Cl average bond lengths of 2.6743Å in the title complex are somewhat shorter than 2.789 (2)Å and 2.827Å found in the complex [(SiMe3)2NC(NC6H11)2]Sm(µ-Cl)2Li(THF)2 (Yao et al., 2004). The Sm—O(3) bond of 2.452 (3)Å is comparable to 2.448 Å found in the complex [CH3C5H4]2Sm[SC(SPh)NPh](THF)]2 (Lu et al., 2001). Especially noteworthy is the difference in the network of intermolecular and intramolecular hydrogen bonds. In the complex reported by Yao et al. (2007) the hydrogen bonds only exist between the O—H of phenol and Cl. However, in the title complex the hydrogen bonds not only exist in between the O—H of phenol and Cl, but also occur between C—H of imidazole ring, benzyl and isopropyl from the imidazolium ring.

Related literature top

For general background to the use of anionic functionalized N-heterocyclic carbenes (NHCs) as anionic tethers in the field of rare earth metals, see: Arnold & Casely (2009); Arnold & Liddle (2005, 2006); Babai & Mudring (2005); Liddle et al. (2007); For related structures, see: Lu et al. (2001); Wang et al. (2006a,b); Yao et al. (2004,2007); Li et al. (2005).

Experimental top

All manipulations were performed under pure argon with rigorous exclusion of air and moisture by using standard Schlenk techniques.THF was degassed and distilled from sodium benzophenone ketyl under argon prior to use. N-aryloxo imidazolium chloride [HO-3,5-di-tBu—C6H2-2-CH2{CH(iPrNCHCHN)}]Cl was prepared according to the literature (Li et al.,2005). A suspension of N-aryloxoimidazolium chloride [HO-3,5-di-tBu—C6H2-2-CH2{CH(iPrNCHCHN)}]Cl (1.46 g, 4 mol) in THF was added to a suspension of SmCl3 (0.52 g, 2 mol) in THF at room temperature. A clean solution was obtained after 10 min under stirring. After concentration and centrifugion, the resulting solution was kept at room temperature in order to obtain colorless crystals (2.05 g, 84% yield). Anal.Calcd. (%) for C57H90Cl5N4O4Sm: C, 55.93; H, 7.35; N, 4.57; Sm, 12.29. Found: C, 55.76; H, 7.21; N, 4.62; Sm, 12. 32. IR (KBr pellet, cm-1): 3318 (s, v-OH); 3125 (s, vAr—H); 3079 (m, v—C=C—H); 2958 (s,v—CH3); 2868 (m, v—CH2-); 1607, 1553, 1482 (m,s, s, vPh); 1457 (s, δ—CH3); 1365 (s, δ—C(CH3)3); 1224 (s, v-C—O); 1149 (s, vC—N).

Refinement top

H atoms were positioned geometrically (C—H = 0.95–1.00 A\%) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 or 1.5 times Ueq(C). The highest electron-density peak is 0.97 A \% from atom H24. The program SQUEEZE was used to handle the disordered THF and toluene molecules.

Structure description top

Recently, the anionic functionalized N-heterocyclic carbenes( NHCs), such as amino- or phenoxo(alkoxo)-NHCs, have attracted much more attention particularly in the field of rare earth metals as the anionic tether can be used as anchor to enhance the bond of NHC to these electropositive metals (Arnold et al.,2006; Liddle et al., 2007). A series of anionic functionalized NHCs have been synthesized and structurally characterized (Arnold et al., 2009; Wang et al., 2006a ). However, the reaction of ligands with cerium triiodide (Arnold et al.,2005) or ytterbium trichloride (Wang et al., 2006a) in the presence of organic base gives no desired product. Especially noteworthy is the cleavage reaction of the ligand that occurs during the reaction process ( Wang et al., 2006b ). For a better understanding of the reason, the complex [NdCl5(THF)]2-[HO-3,5-di-tBu—C6H2-2-CH2{CH(NCHCHNiPr)]2+ (Yao et al., 2007) has been studied. In order to further study these compounds, the title complex has been synthesized. Although the ion-pair structure has recently been reported for LnI3 in sulfonium-based ionic liquids (Babai et al.,2005), its structural feature is different from that of the title complex. In [SEt3]3[NdI6], SEt3 is a triethylsulfonium cation; an octahedron [NdI6]3- is capped by triethylsulfonium cations (SEt3) via the coordination of Nd3+to SEt3. The X-ray crystal analysis of the title complex indicates that the bis-[(3,5-ditertbutyl-2-hydroxybenzyl)N-isopropylimidazolyl] samarium pentachloride consists of an anion [SmCl5(THF)]2-and two cations [HO-3,5-di-tBu—C6H2-2-CH2{CH(iPrNCHCHN)}]2+. The central metal Sm in the anionic unit [SmCl5(THF)]2- coordinates to five Cl atoms and one oxygen atom from a solvent THF molecule to form a six-coordinated distorted octahedron geometry, which is similar to the reported complex (Yao et al., 2007). The four chlorines Cl(1), Cl(2), Cl(3) and Cl(4) can be considered to occupy the equatorial positions within the octahedron about the lanthanide center. The O(3) and Cl(5) occupy the two axial sites. The angle O(3)—Sm—Cl(5) is slightly distorted from the ideal value of 180° to 174.99 (8)°. The Sm—Cl average bond lengths of 2.6743Å in the title complex are somewhat shorter than 2.789 (2)Å and 2.827Å found in the complex [(SiMe3)2NC(NC6H11)2]Sm(µ-Cl)2Li(THF)2 (Yao et al., 2004). The Sm—O(3) bond of 2.452 (3)Å is comparable to 2.448 Å found in the complex [CH3C5H4]2Sm[SC(SPh)NPh](THF)]2 (Lu et al., 2001). Especially noteworthy is the difference in the network of intermolecular and intramolecular hydrogen bonds. In the complex reported by Yao et al. (2007) the hydrogen bonds only exist between the O—H of phenol and Cl. However, in the title complex the hydrogen bonds not only exist in between the O—H of phenol and Cl, but also occur between C—H of imidazole ring, benzyl and isopropyl from the imidazolium ring.

For general background to the use of anionic functionalized N-heterocyclic carbenes (NHCs) as anionic tethers in the field of rare earth metals, see: Arnold & Casely (2009); Arnold & Liddle (2005, 2006); Babai & Mudring (2005); Liddle et al. (2007); For related structures, see: Lu et al. (2001); Wang et al. (2006a,b); Yao et al. (2004,2007); Li et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and atom-numbering scheme.
Bis[1-(3,5-di-tert-butyl-2-hydroxybenzyl)-3-isopropylimidazolium] pentachlorido(tetrahydrofuran)samarate(III)–teterahydrofuran–toluene (1/1/1) top
Crystal data top
(C21H33N2O)2[SmCl5(C4H8O)]·C7H8·C4H8OZ = 2
Mr = 1222.93F(000) = 1098
Triclinic, P1Dx = 1.264 Mg m3
Hall symbol: -P 1Melting point: 451 K
a = 10.2252 (11) ÅMo Kα radiation, λ = 0.71070 Å
b = 17.6968 (18) ÅCell parameters from 13058 reflections
c = 18.3806 (19) Åθ = 3.1–25.3°
α = 76.954 (5)°µ = 1.16 mm1
β = 86.077 (6)°T = 192 K
γ = 82.789 (6)°Block, colourless
V = 3211.8 (6) Å30.34 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury
diffractometer
11687 independent reflections
Radiation source: fine-focus sealed tube10327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2021
Tmin = 0.695, Tmax = 0.846l = 022
32162 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0499P)2 + 1.7866P]
where P = (Fo2 + 2Fc2)/3
11687 reflections(Δ/σ)max = 0.001
550 parametersΔρmax = 1.03 e Å3
54 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C21H33N2O)2[SmCl5(C4H8O)]·C7H8·C4H8Oγ = 82.789 (6)°
Mr = 1222.93V = 3211.8 (6) Å3
Triclinic, P1Z = 2
a = 10.2252 (11) ÅMo Kα radiation
b = 17.6968 (18) ŵ = 1.16 mm1
c = 18.3806 (19) ÅT = 192 K
α = 76.954 (5)°0.34 × 0.25 × 0.15 mm
β = 86.077 (6)°
Data collection top
Rigaku Mercury
diffractometer
11687 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
10327 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.846Rint = 0.031
32162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03554 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.09Δρmax = 1.03 e Å3
11687 reflectionsΔρmin = 0.52 e Å3
550 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.175109 (16)0.492211 (9)0.245502 (9)0.02514 (7)
Cl10.09739 (9)0.41253 (6)0.14936 (5)0.0424 (2)
Cl20.36522 (9)0.54296 (5)0.14623 (5)0.0385 (2)
Cl30.23929 (10)0.58673 (7)0.32928 (6)0.0518 (3)
Cl40.03398 (8)0.46660 (5)0.33769 (5)0.0369 (2)
Cl50.33197 (8)0.36853 (5)0.31233 (4)0.03306 (19)
O10.3259 (3)0.27589 (16)0.14977 (13)0.0406 (6)
H10.26420.31220.14880.061*
O20.0206 (3)0.70203 (15)0.32649 (13)0.0381 (6)
H20.05040.67300.32410.057*
O30.0360 (3)0.60325 (15)0.17351 (16)0.0510 (7)
N10.5561 (3)0.38793 (16)0.07765 (15)0.0276 (6)
N20.6853 (3)0.39034 (17)0.16481 (15)0.0320 (6)
N30.2386 (3)0.61566 (15)0.45054 (15)0.0267 (6)
N40.4509 (3)0.63699 (16)0.46579 (15)0.0294 (6)
C10.3481 (3)0.2606 (2)0.07945 (18)0.0279 (7)
C20.3169 (3)0.1900 (2)0.06592 (19)0.0318 (8)
C30.3536 (4)0.1754 (2)0.0041 (2)0.0349 (8)
H30.33550.12740.01380.042*
C40.4156 (3)0.2270 (2)0.06159 (19)0.0313 (8)
C50.4415 (3)0.2961 (2)0.04605 (18)0.0297 (7)
H50.48270.33280.08360.036*
C60.4082 (3)0.31323 (19)0.02373 (18)0.0280 (7)
C70.4343 (3)0.39133 (19)0.03719 (19)0.0302 (7)
H7A0.44080.42860.01160.036*
H7B0.35830.41170.06620.036*
C80.5621 (3)0.3839 (2)0.14991 (19)0.0304 (7)
H80.49020.37750.18550.036*
C90.6802 (3)0.3967 (2)0.0447 (2)0.0385 (9)
H90.70450.40080.00670.046*
C100.7603 (4)0.3983 (2)0.0993 (2)0.0403 (9)
H100.85180.40390.09350.048*
C110.7314 (4)0.3975 (2)0.2377 (2)0.0406 (9)
H110.82740.40450.23150.049*
C120.7150 (5)0.3238 (3)0.2962 (2)0.0550 (11)
H12A0.62080.31890.30680.083*
H12B0.75620.32620.34200.083*
H12C0.75720.27860.27760.083*
C130.6572 (4)0.4694 (3)0.2600 (2)0.0473 (10)
H13A0.66660.51530.21960.071*
H13B0.69350.47690.30550.071*
H13C0.56350.46220.26940.071*
C140.2428 (4)0.1327 (2)0.1249 (2)0.0459 (10)
C150.2191 (6)0.0613 (3)0.0949 (3)0.0696 (15)
H15A0.17420.02490.13400.104*
H15B0.30390.03520.08040.104*
H15C0.16400.07830.05130.104*
C160.1067 (4)0.1733 (3)0.1435 (2)0.0540 (11)
H16A0.05890.13660.18070.081*
H16B0.05640.19040.09810.081*
H16C0.11800.21870.16370.081*
C170.3211 (5)0.1035 (3)0.1955 (3)0.0654 (13)
H17A0.33650.14800.21600.098*
H17B0.40590.07580.18320.098*
H17C0.27110.06790.23250.098*
C180.4527 (4)0.2058 (2)0.1367 (2)0.0413 (9)
C190.5337 (6)0.1263 (3)0.1269 (3)0.0852 (18)
H19A0.61210.12600.09900.128*
H19B0.56100.11570.17620.128*
H19C0.48030.08600.09940.128*
C200.5299 (6)0.2648 (3)0.1893 (3)0.0758 (16)
H20A0.47620.31560.19990.114*
H20B0.55250.24730.23600.114*
H20C0.61090.26950.16590.114*
C210.3270 (6)0.2028 (5)0.1756 (3)0.112 (3)
H21A0.27740.16190.14540.168*
H21B0.35020.19100.22480.168*
H21C0.27270.25330.18170.168*
C220.0222 (3)0.73476 (19)0.38847 (18)0.0272 (7)
C230.0019 (3)0.81275 (19)0.37987 (19)0.0300 (7)
C240.0044 (3)0.84102 (19)0.44508 (19)0.0299 (7)
H240.01190.89360.44060.036*
C250.0329 (3)0.79773 (18)0.51609 (19)0.0265 (7)
C260.0586 (3)0.72138 (18)0.52153 (18)0.0252 (7)
H260.07870.69000.56920.030*
C270.0556 (3)0.69004 (18)0.45866 (19)0.0271 (7)
C280.0970 (3)0.60947 (19)0.46620 (19)0.0287 (7)
H28A0.04340.58250.43070.034*
H28B0.08160.57830.51750.034*
C290.3369 (3)0.62546 (18)0.49964 (18)0.0283 (7)
H290.32740.62440.55090.034*
C300.2911 (4)0.6212 (2)0.38242 (19)0.0326 (8)
H300.24300.61710.33710.039*
C310.4243 (4)0.6337 (2)0.39176 (19)0.0342 (8)
H310.48710.63910.35460.041*
C320.5827 (3)0.6498 (2)0.5040 (2)0.0381 (8)
H320.56910.66500.55190.046*
C330.6680 (4)0.7156 (2)0.4566 (3)0.0474 (10)
H33A0.62220.76250.44450.071*
H33B0.75140.72610.48410.071*
H33C0.68610.70090.41020.071*
C340.6456 (4)0.5744 (2)0.5227 (2)0.0506 (10)
H34A0.65730.55760.47650.076*
H34B0.73170.58280.54830.076*
H34C0.58860.53410.55530.076*
C350.0346 (4)0.8641 (2)0.3029 (2)0.0384 (9)
C360.0482 (5)0.9481 (2)0.3087 (2)0.0618 (13)
H36A0.03280.96970.33190.093*
H36B0.06290.98020.25860.093*
H36C0.12320.94780.33930.093*
C370.0761 (5)0.8674 (3)0.2496 (2)0.0575 (12)
H37A0.08230.81490.24220.086*
H37B0.05670.90200.20150.086*
H37C0.16000.88750.27120.086*
C380.1659 (4)0.8317 (3)0.2707 (2)0.0561 (11)
H38A0.23710.83420.30290.084*
H38B0.18290.86280.22040.084*
H38C0.16200.77730.26820.084*
C390.0354 (3)0.8352 (2)0.5834 (2)0.0322 (8)
C400.1380 (4)0.9075 (2)0.5728 (3)0.0497 (11)
H40A0.11470.94510.52730.075*
H40B0.13950.93160.61590.075*
H40C0.22530.89210.56830.075*
C410.1010 (4)0.8604 (2)0.5890 (2)0.0409 (9)
H41A0.16760.81480.59440.061*
H41B0.10060.88380.63250.061*
H41C0.12190.89890.54360.061*
C420.0708 (5)0.7789 (2)0.6562 (2)0.0496 (11)
H42A0.15920.76400.65360.074*
H42B0.06950.80450.69820.074*
H42C0.00650.73210.66370.074*
C430.0734 (5)0.6803 (3)0.1423 (3)0.0660 (13)
H43A0.17060.67850.13600.079*
H43B0.04130.71610.17570.079*
C440.0120 (7)0.7071 (4)0.0691 (3)0.106 (2)
H44A0.04470.75720.06700.128*
H44B0.08050.71470.02820.128*
C450.0673 (7)0.6455 (5)0.0621 (4)0.112 (2)
H45A0.02090.61250.02940.135*
H45B0.15390.66830.04130.135*
C460.0841 (5)0.5992 (3)0.1404 (4)0.0826 (17)
H46A0.16080.62250.16690.099*
H46B0.09640.54450.14080.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.02691 (10)0.02751 (10)0.02159 (10)0.00187 (7)0.00170 (7)0.00708 (7)
Cl10.0316 (4)0.0573 (6)0.0482 (5)0.0004 (4)0.0091 (4)0.0332 (5)
Cl20.0455 (5)0.0389 (5)0.0300 (5)0.0132 (4)0.0076 (4)0.0033 (4)
Cl30.0448 (5)0.0655 (7)0.0602 (7)0.0075 (5)0.0042 (5)0.0441 (6)
Cl40.0286 (4)0.0490 (5)0.0344 (5)0.0044 (4)0.0039 (4)0.0136 (4)
Cl50.0324 (4)0.0363 (5)0.0263 (4)0.0023 (4)0.0007 (3)0.0018 (3)
O10.0477 (16)0.0485 (16)0.0253 (13)0.0031 (12)0.0005 (11)0.0126 (11)
O20.0451 (15)0.0405 (15)0.0331 (14)0.0058 (12)0.0042 (11)0.0185 (11)
O30.0542 (17)0.0378 (15)0.0549 (18)0.0029 (13)0.0158 (14)0.0020 (13)
N10.0287 (14)0.0289 (15)0.0275 (15)0.0038 (12)0.0045 (12)0.0100 (11)
N20.0308 (15)0.0393 (17)0.0280 (15)0.0036 (13)0.0025 (12)0.0116 (13)
N30.0344 (15)0.0203 (13)0.0270 (15)0.0060 (12)0.0034 (12)0.0063 (11)
N40.0334 (15)0.0289 (15)0.0279 (15)0.0066 (12)0.0017 (12)0.0087 (12)
C10.0274 (17)0.0343 (18)0.0222 (16)0.0022 (14)0.0018 (13)0.0095 (14)
C20.0322 (18)0.0289 (18)0.0314 (19)0.0023 (15)0.0009 (15)0.0015 (14)
C30.038 (2)0.0291 (18)0.040 (2)0.0082 (16)0.0028 (16)0.0121 (15)
C40.0285 (17)0.0353 (19)0.0329 (19)0.0039 (15)0.0003 (14)0.0135 (15)
C50.0298 (17)0.0347 (19)0.0263 (17)0.0071 (15)0.0009 (14)0.0088 (14)
C60.0255 (16)0.0311 (18)0.0290 (18)0.0009 (14)0.0073 (14)0.0093 (14)
C70.0313 (18)0.0326 (18)0.0291 (18)0.0022 (15)0.0091 (14)0.0103 (14)
C80.0257 (17)0.0390 (19)0.0293 (18)0.0045 (15)0.0016 (14)0.0127 (15)
C90.0336 (19)0.055 (2)0.0280 (19)0.0060 (18)0.0051 (15)0.0138 (17)
C100.0300 (19)0.064 (3)0.0293 (19)0.0111 (18)0.0011 (15)0.0120 (18)
C110.0314 (19)0.063 (3)0.032 (2)0.0049 (18)0.0089 (16)0.0187 (18)
C120.068 (3)0.059 (3)0.036 (2)0.006 (2)0.018 (2)0.009 (2)
C130.039 (2)0.064 (3)0.049 (2)0.006 (2)0.0100 (18)0.031 (2)
C140.057 (3)0.040 (2)0.038 (2)0.0143 (19)0.0073 (19)0.0015 (17)
C150.100 (4)0.045 (3)0.064 (3)0.034 (3)0.026 (3)0.006 (2)
C160.051 (2)0.068 (3)0.043 (2)0.023 (2)0.0135 (19)0.006 (2)
C170.076 (3)0.059 (3)0.049 (3)0.010 (3)0.004 (2)0.015 (2)
C180.047 (2)0.045 (2)0.038 (2)0.0101 (18)0.0055 (17)0.0205 (17)
C190.124 (5)0.058 (3)0.069 (3)0.004 (3)0.036 (3)0.025 (3)
C200.114 (5)0.074 (3)0.044 (3)0.022 (3)0.023 (3)0.025 (2)
C210.073 (4)0.214 (8)0.076 (4)0.016 (5)0.003 (3)0.093 (5)
C220.0245 (16)0.0288 (17)0.0296 (18)0.0026 (14)0.0030 (14)0.0108 (14)
C230.0261 (17)0.0308 (18)0.0334 (19)0.0058 (14)0.0005 (14)0.0068 (14)
C240.0301 (17)0.0215 (16)0.039 (2)0.0045 (14)0.0008 (15)0.0091 (14)
C250.0221 (16)0.0245 (16)0.0344 (18)0.0013 (13)0.0016 (14)0.0102 (14)
C260.0216 (15)0.0270 (17)0.0263 (17)0.0015 (13)0.0001 (13)0.0051 (13)
C270.0225 (16)0.0253 (17)0.0350 (19)0.0004 (13)0.0040 (14)0.0101 (14)
C280.0279 (17)0.0243 (17)0.0347 (19)0.0017 (14)0.0037 (14)0.0084 (14)
C290.0363 (19)0.0267 (17)0.0237 (17)0.0036 (14)0.0031 (14)0.0085 (13)
C300.041 (2)0.0348 (19)0.0245 (18)0.0092 (16)0.0002 (15)0.0096 (14)
C310.041 (2)0.038 (2)0.0252 (18)0.0090 (16)0.0018 (15)0.0068 (15)
C320.0325 (19)0.050 (2)0.036 (2)0.0058 (17)0.0013 (16)0.0195 (17)
C330.034 (2)0.036 (2)0.075 (3)0.0008 (17)0.004 (2)0.021 (2)
C340.049 (2)0.049 (2)0.050 (3)0.012 (2)0.017 (2)0.0042 (19)
C350.047 (2)0.037 (2)0.0304 (19)0.0135 (17)0.0014 (16)0.0028 (15)
C360.099 (4)0.041 (2)0.044 (2)0.026 (3)0.011 (2)0.0002 (19)
C370.070 (3)0.057 (3)0.042 (2)0.008 (2)0.011 (2)0.002 (2)
C380.053 (3)0.070 (3)0.045 (2)0.019 (2)0.013 (2)0.009 (2)
C390.0322 (18)0.0303 (18)0.038 (2)0.0067 (15)0.0005 (15)0.0150 (15)
C400.042 (2)0.047 (2)0.070 (3)0.0010 (19)0.001 (2)0.037 (2)
C410.041 (2)0.044 (2)0.044 (2)0.0092 (18)0.0072 (17)0.0181 (18)
C420.069 (3)0.054 (3)0.035 (2)0.028 (2)0.008 (2)0.0187 (19)
C430.082 (3)0.037 (2)0.072 (3)0.006 (2)0.018 (3)0.000 (2)
C440.090 (4)0.127 (6)0.066 (4)0.017 (4)0.000 (3)0.038 (4)
C450.091 (4)0.167 (7)0.075 (4)0.021 (5)0.050 (4)0.024 (4)
C460.050 (3)0.069 (3)0.126 (5)0.013 (3)0.037 (3)0.015 (3)
Geometric parameters (Å, º) top
Sm1—O32.453 (3)C20—H20A0.9800
Sm1—Cl52.6546 (9)C20—H20B0.9800
Sm1—Cl42.6549 (9)C20—H20C0.9800
Sm1—Cl22.6698 (9)C21—H21A0.9800
Sm1—Cl32.6789 (9)C21—H21B0.9800
Sm1—Cl12.7095 (9)C21—H21C0.9800
O1—C11.377 (4)C22—C271.398 (5)
O1—H10.8400C22—C231.404 (5)
O2—C221.388 (4)C23—C241.394 (5)
O2—H20.8400C23—C351.539 (5)
O3—C461.425 (5)C24—C251.388 (5)
O3—C431.443 (5)C24—H240.9500
N1—C81.319 (4)C25—C261.389 (4)
N1—C91.379 (4)C25—C391.526 (4)
N1—C71.482 (4)C26—C271.387 (4)
N2—C81.331 (4)C26—H260.9500
N2—C101.372 (4)C27—C281.512 (4)
N2—C111.487 (4)C28—H28A0.9900
N3—C291.326 (4)C28—H28B0.9900
N3—C301.374 (4)C29—H290.9500
N3—C281.481 (4)C30—C311.358 (5)
N4—C291.330 (4)C30—H300.9500
N4—C311.382 (4)C31—H310.9500
N4—C321.492 (4)C32—C331.506 (5)
C1—C61.386 (5)C32—C341.513 (5)
C1—C21.406 (5)C32—H321.0000
C2—C31.388 (5)C33—H33A0.9800
C2—C141.537 (5)C33—H33B0.9800
C3—C41.403 (5)C33—H33C0.9800
C3—H30.9500C34—H34A0.9800
C4—C51.377 (5)C34—H34B0.9800
C4—C181.522 (5)C34—H34C0.9800
C5—C61.394 (5)C35—C381.528 (6)
C5—H50.9500C35—C371.534 (6)
C6—C71.516 (4)C35—C361.537 (5)
C7—H7A0.9900C36—H36A0.9800
C7—H7B0.9900C36—H36B0.9800
C8—H80.9500C36—H36C0.9800
C9—C101.344 (5)C37—H37A0.9800
C9—H90.9500C37—H37B0.9800
C10—H100.9500C37—H37C0.9800
C11—C121.510 (6)C38—H38A0.9800
C11—C131.520 (5)C38—H38B0.9800
C11—H111.0000C38—H38C0.9800
C12—H12A0.9800C39—C421.529 (5)
C12—H12B0.9800C39—C411.533 (5)
C12—H12C0.9800C39—C401.535 (5)
C13—H13A0.9800C40—H40A0.9800
C13—H13B0.9800C40—H40B0.9800
C13—H13C0.9800C40—H40C0.9800
C14—C171.526 (6)C41—H41A0.9800
C14—C161.538 (6)C41—H41B0.9800
C14—C151.539 (6)C41—H41C0.9800
C15—H15A0.9800C42—H42A0.9800
C15—H15B0.9800C42—H42B0.9800
C15—H15C0.9800C42—H42C0.9800
C16—H16A0.9800C43—C441.478 (7)
C16—H16B0.9800C43—H43A0.9900
C16—H16C0.9800C43—H43B0.9900
C17—H17A0.9800C44—C451.470 (10)
C17—H17B0.9800C44—H44A0.9900
C17—H17C0.9800C44—H44B0.9900
C18—C201.514 (6)C45—C461.496 (9)
C18—C191.521 (6)C45—H45A0.9900
C18—C211.526 (6)C45—H45B0.9900
C19—H19A0.9800C46—H46A0.9900
C19—H19B0.9800C46—H46B0.9900
C19—H19C0.9800
O3—Sm1—Cl5175.06 (7)H21A—C21—H21B109.5
O3—Sm1—Cl486.67 (7)C18—C21—H21C109.5
Cl5—Sm1—Cl496.65 (3)H21A—C21—H21C109.5
O3—Sm1—Cl284.24 (7)H21B—C21—H21C109.5
Cl5—Sm1—Cl292.66 (3)O2—C22—C27118.7 (3)
Cl4—Sm1—Cl2170.17 (3)O2—C22—C23120.3 (3)
O3—Sm1—Cl388.66 (7)C27—C22—C23120.9 (3)
Cl5—Sm1—Cl395.11 (3)C24—C23—C22116.2 (3)
Cl4—Sm1—Cl387.62 (3)C24—C23—C35121.7 (3)
Cl2—Sm1—Cl388.43 (3)C22—C23—C35122.0 (3)
O3—Sm1—Cl184.52 (7)C25—C24—C23124.6 (3)
Cl5—Sm1—Cl191.62 (3)C25—C24—H24117.7
Cl4—Sm1—Cl193.39 (3)C23—C24—H24117.7
Cl2—Sm1—Cl189.47 (3)C24—C25—C26117.0 (3)
Cl3—Sm1—Cl1173.03 (3)C24—C25—C39119.6 (3)
C1—O1—H1109.5C26—C25—C39123.4 (3)
C22—O2—H2109.5C27—C26—C25121.3 (3)
C46—O3—C43106.3 (3)C27—C26—H26119.4
C46—O3—Sm1125.8 (3)C25—C26—H26119.4
C43—O3—Sm1126.5 (3)C26—C27—C22119.9 (3)
C8—N1—C9108.5 (3)C26—C27—C28119.4 (3)
C8—N1—C7125.8 (3)C22—C27—C28120.6 (3)
C9—N1—C7125.4 (3)N3—C28—C27109.9 (3)
C8—N2—C10108.3 (3)N3—C28—H28A109.7
C8—N2—C11126.2 (3)C27—C28—H28A109.7
C10—N2—C11125.2 (3)N3—C28—H28B109.7
C29—N3—C30108.4 (3)C27—C28—H28B109.7
C29—N3—C28124.4 (3)H28A—C28—H28B108.2
C30—N3—C28126.8 (3)N3—C29—N4109.3 (3)
C29—N4—C31108.3 (3)N3—C29—H29125.4
C29—N4—C32124.2 (3)N4—C29—H29125.4
C31—N4—C32127.6 (3)C31—C30—N3107.4 (3)
O1—C1—C6119.5 (3)C31—C30—H30126.3
O1—C1—C2119.9 (3)N3—C30—H30126.3
C6—C1—C2120.5 (3)C30—C31—N4106.7 (3)
C3—C2—C1116.6 (3)C30—C31—H31126.6
C3—C2—C14121.5 (3)N4—C31—H31126.6
C1—C2—C14121.8 (3)N4—C32—C33110.5 (3)
C2—C3—C4124.3 (3)N4—C32—C34109.6 (3)
C2—C3—H3117.8C33—C32—C34112.4 (3)
C4—C3—H3117.8N4—C32—H32108.1
C5—C4—C3116.8 (3)C33—C32—H32108.1
C5—C4—C18122.6 (3)C34—C32—H32108.1
C3—C4—C18120.6 (3)C32—C33—H33A109.5
C4—C5—C6121.2 (3)C32—C33—H33B109.5
C4—C5—H5119.4H33A—C33—H33B109.5
C6—C5—H5119.4C32—C33—H33C109.5
C1—C6—C5120.5 (3)H33A—C33—H33C109.5
C1—C6—C7120.3 (3)H33B—C33—H33C109.5
C5—C6—C7119.2 (3)C32—C34—H34A109.5
N1—C7—C6113.9 (3)C32—C34—H34B109.5
N1—C7—H7A108.8H34A—C34—H34B109.5
C6—C7—H7A108.8C32—C34—H34C109.5
N1—C7—H7B108.8H34A—C34—H34C109.5
C6—C7—H7B108.8H34B—C34—H34C109.5
H7A—C7—H7B107.7C38—C35—C37110.2 (3)
N1—C8—N2108.9 (3)C38—C35—C36107.2 (3)
N1—C8—H8125.6C37—C35—C36108.0 (4)
N2—C8—H8125.6C38—C35—C23110.2 (3)
C10—C9—N1107.0 (3)C37—C35—C23109.8 (3)
C10—C9—H9126.5C36—C35—C23111.4 (3)
N1—C9—H9126.5C35—C36—H36A109.5
C9—C10—N2107.3 (3)C35—C36—H36B109.5
C9—C10—H10126.3H36A—C36—H36B109.5
N2—C10—H10126.3C35—C36—H36C109.5
N2—C11—C12110.0 (3)H36A—C36—H36C109.5
N2—C11—C13109.6 (3)H36B—C36—H36C109.5
C12—C11—C13112.1 (3)C35—C37—H37A109.5
N2—C11—H11108.3C35—C37—H37B109.5
C12—C11—H11108.3H37A—C37—H37B109.5
C13—C11—H11108.3C35—C37—H37C109.5
C11—C12—H12A109.5H37A—C37—H37C109.5
C11—C12—H12B109.5H37B—C37—H37C109.5
H12A—C12—H12B109.5C35—C38—H38A109.5
C11—C12—H12C109.5C35—C38—H38B109.5
H12A—C12—H12C109.5H38A—C38—H38B109.5
H12B—C12—H12C109.5C35—C38—H38C109.5
C11—C13—H13A109.5H38A—C38—H38C109.5
C11—C13—H13B109.5H38B—C38—H38C109.5
H13A—C13—H13B109.5C25—C39—C42111.8 (3)
C11—C13—H13C109.5C25—C39—C41109.0 (3)
H13A—C13—H13C109.5C42—C39—C41109.2 (3)
H13B—C13—H13C109.5C25—C39—C40109.5 (3)
C17—C14—C2111.0 (3)C42—C39—C40108.5 (3)
C17—C14—C16110.2 (4)C41—C39—C40108.9 (3)
C2—C14—C16109.4 (3)C39—C40—H40A109.5
C17—C14—C15107.9 (4)C39—C40—H40B109.5
C2—C14—C15111.0 (3)H40A—C40—H40B109.5
C16—C14—C15107.2 (4)C39—C40—H40C109.5
C14—C15—H15A109.5H40A—C40—H40C109.5
C14—C15—H15B109.5H40B—C40—H40C109.5
H15A—C15—H15B109.5C39—C41—H41A109.5
C14—C15—H15C109.5C39—C41—H41B109.5
H15A—C15—H15C109.5H41A—C41—H41B109.5
H15B—C15—H15C109.5C39—C41—H41C109.5
C14—C16—H16A109.5H41A—C41—H41C109.5
C14—C16—H16B109.5H41B—C41—H41C109.5
H16A—C16—H16B109.5C39—C42—H42A109.5
C14—C16—H16C109.5C39—C42—H42B109.5
H16A—C16—H16C109.5H42A—C42—H42B109.5
H16B—C16—H16C109.5C39—C42—H42C109.5
C14—C17—H17A109.5H42A—C42—H42C109.5
C14—C17—H17B109.5H42B—C42—H42C109.5
H17A—C17—H17B109.5O3—C43—C44106.5 (5)
C14—C17—H17C109.5O3—C43—H43A110.4
H17A—C17—H17C109.5C44—C43—H43A110.4
H17B—C17—H17C109.5O3—C43—H43B110.4
C20—C18—C19108.1 (4)C44—C43—H43B110.4
C20—C18—C4113.3 (3)H43A—C43—H43B108.6
C19—C18—C4111.2 (3)C45—C44—C43106.0 (5)
C20—C18—C21106.7 (5)C45—C44—H44A110.5
C19—C18—C21108.2 (5)C43—C44—H44A110.5
C4—C18—C21109.1 (3)C45—C44—H44B110.5
C18—C19—H19A109.5C43—C44—H44B110.5
C18—C19—H19B109.5H44A—C44—H44B108.7
H19A—C19—H19B109.5C44—C45—C46104.4 (5)
C18—C19—H19C109.5C44—C45—H45A110.9
H19A—C19—H19C109.5C46—C45—H45A110.9
H19B—C19—H19C109.5C44—C45—H45B110.9
C18—C20—H20A109.5C46—C45—H45B110.9
C18—C20—H20B109.5H45A—C45—H45B108.9
H20A—C20—H20B109.5O3—C46—C45103.6 (5)
C18—C20—H20C109.5O3—C46—H46A111.0
H20A—C20—H20C109.5C45—C46—H46A111.0
H20B—C20—H20C109.5O3—C46—H46B111.0
C18—C21—H21A109.5C45—C46—H46B111.0
C18—C21—H21B109.5H46A—C46—H46B109.0
Cl4—Sm1—O3—C4659.2 (4)O2—C22—C23—C24178.7 (3)
Cl2—Sm1—O3—C46124.6 (4)C27—C22—C23—C242.4 (5)
Cl3—Sm1—O3—C46146.9 (4)O2—C22—C23—C351.7 (5)
Cl1—Sm1—O3—C4634.5 (4)C27—C22—C23—C35178.0 (3)
Cl4—Sm1—O3—C43136.1 (3)C22—C23—C24—C250.2 (5)
Cl2—Sm1—O3—C4340.1 (3)C35—C23—C24—C25179.8 (3)
Cl3—Sm1—O3—C4348.4 (3)C23—C24—C25—C261.1 (5)
Cl1—Sm1—O3—C43130.1 (3)C23—C24—C25—C39179.3 (3)
O1—C1—C2—C3174.0 (3)C24—C25—C26—C270.2 (5)
C6—C1—C2—C32.2 (5)C39—C25—C26—C27179.8 (3)
O1—C1—C2—C147.5 (5)C25—C26—C27—C222.0 (5)
C6—C1—C2—C14176.3 (3)C25—C26—C27—C28174.2 (3)
C1—C2—C3—C41.7 (5)O2—C22—C27—C26179.7 (3)
C14—C2—C3—C4176.8 (3)C23—C22—C27—C263.3 (5)
C2—C3—C4—C50.4 (5)O2—C22—C27—C283.6 (5)
C2—C3—C4—C18179.8 (3)C23—C22—C27—C28172.8 (3)
C3—C4—C5—C60.5 (5)C29—N3—C28—C2781.4 (4)
C18—C4—C5—C6178.9 (3)C30—N3—C28—C2790.7 (4)
O1—C1—C6—C5174.8 (3)C26—C27—C28—N393.6 (3)
C2—C1—C6—C51.5 (5)C22—C27—C28—N382.5 (4)
O1—C1—C6—C77.4 (5)C30—N3—C29—N40.1 (4)
C2—C1—C6—C7176.4 (3)C28—N3—C29—N4173.5 (3)
C4—C5—C6—C10.1 (5)C31—N4—C29—N30.6 (4)
C4—C5—C6—C7177.8 (3)C32—N4—C29—N3179.7 (3)
C8—N1—C7—C698.4 (4)C29—N3—C30—C310.8 (4)
C9—N1—C7—C688.8 (4)C28—N3—C30—C31173.9 (3)
C1—C6—C7—N182.3 (4)N3—C30—C31—N41.1 (4)
C5—C6—C7—N199.8 (4)C29—N4—C31—C301.0 (4)
C9—N1—C8—N20.4 (4)C32—N4—C31—C30179.9 (3)
C7—N1—C8—N2173.3 (3)C29—N4—C32—C33135.9 (3)
C10—N2—C8—N10.3 (4)C31—N4—C32—C3345.2 (5)
C11—N2—C8—N1172.8 (3)C29—N4—C32—C3499.8 (4)
C8—N1—C9—C100.4 (4)C31—N4—C32—C3479.2 (4)
C7—N1—C9—C10173.4 (3)C24—C23—C35—C38115.0 (4)
N1—C9—C10—N20.2 (4)C22—C23—C35—C3864.6 (4)
C8—N2—C10—C90.1 (4)C24—C23—C35—C37123.5 (4)
C11—N2—C10—C9173.1 (3)C22—C23—C35—C3757.0 (5)
C8—N2—C11—C1265.0 (5)C24—C23—C35—C363.9 (5)
C10—N2—C11—C12123.0 (4)C22—C23—C35—C36176.6 (3)
C8—N2—C11—C1358.7 (5)C24—C25—C39—C42179.0 (3)
C10—N2—C11—C13113.3 (4)C26—C25—C39—C420.6 (5)
C3—C2—C14—C17120.4 (4)C24—C25—C39—C4160.2 (4)
C1—C2—C14—C1761.2 (5)C26—C25—C39—C41120.2 (3)
C3—C2—C14—C16117.7 (4)C24—C25—C39—C4058.8 (4)
C1—C2—C14—C1660.7 (5)C26—C25—C39—C40120.9 (3)
C3—C2—C14—C150.4 (5)C46—O3—C43—C4425.1 (6)
C1—C2—C14—C15178.8 (4)Sm1—O3—C43—C44142.0 (4)
C5—C4—C18—C204.8 (5)O3—C43—C44—C453.5 (7)
C3—C4—C18—C20174.6 (4)C43—C44—C45—C4618.0 (7)
C5—C4—C18—C19126.7 (4)C43—O3—C46—C4536.1 (6)
C3—C4—C18—C1952.7 (5)Sm1—O3—C46—C45131.1 (4)
C5—C4—C18—C21113.9 (5)C44—C45—C46—O333.3 (7)
C3—C4—C18—C2166.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.842.303.143 (3)178
O2—H2···Cl30.842.303.136 (3)174
C29—H29···Cl5i0.952.543.486 (3)173
C10—H10···Cl1ii0.952.813.681 (4)153
C9—H9···Cl2iii0.952.643.476 (4)146
C8—H8···Cl50.952.733.655 (4)164
C5—H5···Cl2iii0.952.843.736 (3)158
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C21H33N2O)2[SmCl5(C4H8O)]·C7H8·C4H8O
Mr1222.93
Crystal system, space groupTriclinic, P1
Temperature (K)192
a, b, c (Å)10.2252 (11), 17.6968 (18), 18.3806 (19)
α, β, γ (°)76.954 (5), 86.077 (6), 82.789 (6)
V3)3211.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.34 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.695, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
32162, 11687, 10327
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.09
No. of reflections11687
No. of parameters550
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.52

Computer programs: CrystalClear (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.842.303.143 (3)178.3
O2—H2···Cl30.842.303.136 (3)174.3
C29—H29···Cl5i0.952.543.486 (3)172.5
C10—H10···Cl1ii0.952.813.681 (4)152.7
C9—H9···Cl2iii0.952.643.476 (4)146.4
C8—H8···Cl50.952.733.655 (4)164.2
C5—H5···Cl2iii0.952.843.736 (3)158.3
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Sichuan Province Youth Foundation of Science and Technology (09 J J0088) for financial support.

References

First citationArnold, P. L. & Casely, I. J. (2009). Chem. Rev. 109, 3599–3611.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArnold, P. L. & Liddle, S. T. (2005). Organometallics, 24, 2597–2605.  Google Scholar
First citationArnold, P. L. & Liddle, S. T. (2006). Chem. Commun. pp. 3959–3971.  Web of Science CrossRef Google Scholar
First citationBabai, A. & Mudring, A. V. (2005). Inorg. Chem. 44, 8168–8169.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, W. F., Sun, H. M., Wang, Z. G., Chen, M. Z., Shen, Q. & Zhang, Y. (2005). J. Organomet. Chem. 690, 6227–6232.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiddle, S. T., Edworthy, I. S. & Arnold, P. L. (2007). Chem. Soc. Rev. 36, 1732–1744.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, Z. P., Yap, G. P. A. & Richeson, D. S. (2001). Organometallics, 20, 706–712.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. G., Sun, H. M., Yao, H. S., Shen, Q. & Zhang, Y. (2006b). Organometallics, 25, 4436–4438.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Z. G., Sun, H. M., Yao, H. S., Yao, Y. M., Shen, Q. & Zhang, Y. (2006a). J. Organomet. Chem. 691, 3383–3390.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, Y. M., Luo, Y. J., Shen, Q. & Yu, K. B. (2004). Chin. J. Struct. Chem. 23, 391–394.  CAS Google Scholar
First citationYao, H. S., Zhang, J. G., Xu, F., Shen, O. & Zhang, Y. (2007). Chin. J. Struct. Chem. 26, 1391–1394.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds