metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

meso-[5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-1(14),7-diene]nickel(II) dibromide dihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 3 April 2010; accepted 7 May 2010; online 19 May 2010)

The asymmetric unit of the title complex, [Ni(C16H32N4)]Br2·2H2O, contains two [Ni(C16H32N4)]2+ cations, four Br anions and four uncoordinated H2O mol­ecules. The Ni atoms are in a slightly distorted square-planar coordination by the four macrocyclic N atoms, which are almost coplanar [N—N—N—N torsion angles of 2.97 (6) and 3.12 (7)°]. In the crystal, a network of N—H⋯Br, O—H⋯Br and N—H⋯O hydrogen bonds leads to the formation of a chain structure.

Related literature

The nickel (II) tetra­azamacrocyclic complex cation, [Ni(C16H32N4)]2+, has both meso and enanti­omeric forms, see: Warner et al. (1968[Warner, L. G., Rose, N. J. & Busch, D. H. (1968). J. Am. Chem. Soc. 90, 6938-6946.]). For the structures of related macrocyclic complexes, see: Whimp et al. (1970[Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956-1963]). For Ni—N(amine) and Ni—N(imine) bond distances, see: Szalda et al. (1991[Szalda, D. J., Schwarz, C. L. & Creutz, C. (1991). Inorg. Chem. 30, 586-588.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H32N4)]Br2·2H2O

  • Mr = 535.02

  • Monoclinic, P 21 /c

  • a = 17.8712 (15) Å

  • b = 15.5028 (12) Å

  • c = 17.2324 (17) Å

  • β = 112.077 (1)°

  • V = 4424.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.51 mm−1

  • T = 293 K

  • 0.27 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.831, Tmax = 0.862

  • 22003 measured reflections

  • 7779 independent reflections

  • 4053 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.059

  • S = 0.96

  • 7779 reflections

  • 463 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni2—N6 1.976 (4)
Ni2—N8 1.983 (3)
Ni2—N7 2.003 (3)
Ni2—N5 2.029 (3)
Ni1—N2 1.985 (4)
Ni1—N4 1.993 (4)
Ni1—N1 2.007 (3)
Ni1—N3 2.020 (3)
N6—Ni2—N8 172.20 (16)
N6—Ni2—N7 84.38 (14)
N8—Ni2—N7 94.04 (14)
N6—Ni2—N5 94.20 (14)
N8—Ni2—N5 85.74 (14)
N7—Ni2—N5 167.87 (17)
N2—Ni1—N4 174.32 (16)
N2—Ni1—N1 94.09 (14)
N4—Ni1—N1 85.03 (14)
N2—Ni1—N3 85.80 (14)
N4—Ni1—N3 94.09 (14)
N1—Ni1—N3 170.06 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br3 0.91 2.55 3.444 (4) 167
O2—H2F⋯Br2 0.85 2.60 3.437 (3) 171
O3—H3D⋯Br3 0.85 2.63 3.473 (3) 171
N5—H5⋯O4i 0.91 2.41 3.269 (5) 158
O1—H1C⋯Br1i 0.85 2.55 3.390 (3) 170
N7—H7⋯Br2ii 0.91 2.54 3.436 (4) 169
N3—H3⋯O1ii 0.91 2.45 3.328 (5) 161
O2—H2E⋯Br3iii 0.85 2.50 3.339 (4) 171
O1—H1D⋯Br4iii 0.85 2.44 3.280 (3) 169
O3—H3C⋯Br2ii 0.85 2.48 3.316 (3) 170
O4—H4G⋯Br4ii 0.85 2.49 3.335 (4) 171
O4—H4F⋯Br1iv 0.85 2.39 3.228 (3) 171
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x-1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x-1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of several related macrocyclic complexes have been reported (Whimp et al., 1970). The nickel (II) tetraazamacrocyclic complex cation, [Ni(C16H32N4)]2+, has both meso and enantiomeric forms (Warner et al., 1968) and can combine with different anions to form many kinds of structures.

We herein report the crystal structure of a new compound synthesized by the reaction of Ni(NO3)2.6H2O and the complex C18H32N4.2HBr.2H2O. Two similar macrocycles are included in the asymmetric unit, and the crystal structure is stabilized by intermolecular hydrogen bonds. As the two macrocycles are in similar coordination with nickel(II), only one of them will be described. As shown in Fig.1, the NiII atom is coordinated by four N atoms from the tetraazamacrocycle in a square-planar geometry, the average Ni—N(amine) bond distance of 2.0132 (4) Å and Ni—N(imine) bond distance of 1.9899 (4)Å are similar to those previously reported (Szalda et al.,1991). The dihedral "fold" angle between the planes formed by N1, N2, N3 and N1, N3, N4 is 4.343 (1)°. The macrocycle is in the N-meso configuration with the amine hydrogens of N1 and N4 on opposite sides of the macrocycle plane. The combination of [Ni(C16H32N4)]2+with two Br- anions and two isolated H2O established the title compound.

Related literature top

The nickel (II) tetraazamacrocyclic complex cation, [Ni(C16H32N4)]2+, has both meso and enantiomeric forms, see: Warner et al. (1968). For the structures of related macrocyclic complexes, see: Whimp et al. (1970). For Ni—N(amine) and Ni—N(imine) bond distances, see: Szalda et al. (1991).

Experimental top

All chemicals were of reagent grade and were used as received without further purification. The precursor complex C18H32N4.2HBr.2H2O was prepared previously. To a 10 ml methanol solution of Ni(NO3)2.6H2O (0.2 mmol, 0.344 g), a 5 ml methanol solution of C18H32N4.2HBr.2H2O (0.2 mmol, 0.0957 g) was added dropwise with stirring. The resulting solution was stirred continuously for about 30 min. Brown crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

(type here to add refinement details)

Structure description top

The structures of several related macrocyclic complexes have been reported (Whimp et al., 1970). The nickel (II) tetraazamacrocyclic complex cation, [Ni(C16H32N4)]2+, has both meso and enantiomeric forms (Warner et al., 1968) and can combine with different anions to form many kinds of structures.

We herein report the crystal structure of a new compound synthesized by the reaction of Ni(NO3)2.6H2O and the complex C18H32N4.2HBr.2H2O. Two similar macrocycles are included in the asymmetric unit, and the crystal structure is stabilized by intermolecular hydrogen bonds. As the two macrocycles are in similar coordination with nickel(II), only one of them will be described. As shown in Fig.1, the NiII atom is coordinated by four N atoms from the tetraazamacrocycle in a square-planar geometry, the average Ni—N(amine) bond distance of 2.0132 (4) Å and Ni—N(imine) bond distance of 1.9899 (4)Å are similar to those previously reported (Szalda et al.,1991). The dihedral "fold" angle between the planes formed by N1, N2, N3 and N1, N3, N4 is 4.343 (1)°. The macrocycle is in the N-meso configuration with the amine hydrogens of N1 and N4 on opposite sides of the macrocycle plane. The combination of [Ni(C16H32N4)]2+with two Br- anions and two isolated H2O established the title compound.

The nickel (II) tetraazamacrocyclic complex cation, [Ni(C16H32N4)]2+, has both meso and enantiomeric forms, see: Warner et al. (1968). For the structures of related macrocyclic complexes, see: Whimp et al. (1970). For Ni—N(amine) and Ni—N(imine) bond distances, see: Szalda et al. (1991).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the compound (I) (viewed along the b axis). Hydrogen bonds are shown as dashed lines.
meso-[5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca- 1(14),7-diene]nickel(II) dibromide dihydrate top
Crystal data top
[Ni(C16H32N4)]Br2·2H2OF(000) = 2192
Mr = 535.02Dx = 1.606 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3476 reflections
a = 17.8712 (15) Åθ = 2.3–27.5°
b = 15.5028 (12) ŵ = 4.51 mm1
c = 17.2324 (17) ÅT = 293 K
β = 112.077 (1)°Prism, brown
V = 4424.2 (7) Å30.27 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
7779 independent reflections
Radiation source: fine-focus sealed tube4053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 1.8°
Thin–slice ω scansh = 2121
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1815
Tmin = 0.831, Tmax = 0.862l = 1920
22003 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
7779 reflections(Δ/σ)max = 0.040
463 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ni(C16H32N4)]Br2·2H2OV = 4424.2 (7) Å3
Mr = 535.02Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.8712 (15) ŵ = 4.51 mm1
b = 15.5028 (12) ÅT = 293 K
c = 17.2324 (17) Å0.27 × 0.20 × 0.20 mm
β = 112.077 (1)°
Data collection top
Rigaku SCXmini
diffractometer
7779 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4053 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.862Rint = 0.058
22003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.96Δρmax = 0.64 e Å3
7779 reflectionsΔρmin = 0.66 e Å3
463 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.06334 (3)0.57394 (3)0.16013 (4)0.06124 (18)
Ni20.10293 (3)0.51327 (3)0.23954 (4)0.02985 (17)
N50.0695 (2)0.4164 (2)0.2988 (2)0.0339 (10)
H50.01460.41820.27890.041*
N60.1135 (2)0.5992 (2)0.3277 (2)0.0352 (11)
N70.1596 (2)0.6021 (2)0.1971 (2)0.0357 (10)
H70.21270.59730.23070.043*
N80.1079 (2)0.4233 (2)0.1599 (2)0.0355 (10)
C170.0961 (3)0.4235 (3)0.3918 (3)0.0394 (14)
C180.0609 (3)0.5076 (3)0.4096 (3)0.0427 (14)
H18A0.00290.50540.37920.051*
H18B0.07000.50820.46870.051*
C190.0903 (3)0.5929 (3)0.3893 (3)0.0343 (13)
C200.0899 (3)0.6657 (3)0.4463 (3)0.0555 (16)
H20A0.11790.71420.43550.083*
H20B0.11640.64780.50350.083*
H20C0.03520.68170.43640.083*
C210.1883 (3)0.4229 (3)0.4317 (3)0.0529 (15)
H21A0.20780.36600.42750.079*
H21B0.20540.43890.48960.079*
H21C0.20960.46320.40300.079*
C220.0610 (3)0.3490 (3)0.4255 (3)0.0613 (17)
H22A0.00310.35100.40070.092*
H22B0.07830.35400.48520.092*
H22C0.07960.29520.41180.092*
C230.1436 (3)0.6823 (3)0.3104 (3)0.0514 (15)
H23A0.20030.68880.34560.062*
H23B0.11390.72920.32270.062*
C240.1332 (3)0.6852 (3)0.2194 (3)0.0501 (15)
H24A0.07690.69540.18460.060*
H24B0.16510.73170.21010.060*
C250.1571 (3)0.5927 (3)0.1092 (3)0.0341 (13)
C260.1918 (3)0.5040 (3)0.1031 (3)0.0439 (15)
H26A0.19530.50030.04840.053*
H26B0.24660.50240.14420.053*
C270.1502 (3)0.4240 (3)0.1146 (3)0.0369 (13)
C280.1643 (3)0.3468 (3)0.0697 (3)0.0574 (16)
H28A0.15860.29530.09800.086*
H28B0.21770.34930.06920.086*
H28C0.12550.34630.01320.086*
C290.0720 (3)0.6024 (3)0.0467 (3)0.0507 (15)
H29A0.03740.56260.05990.076*
H29B0.07060.59040.00850.076*
H29C0.05370.66020.04860.076*
C300.2117 (3)0.6610 (3)0.0929 (3)0.0535 (16)
H30A0.19390.71750.10110.080*
H30B0.20890.65570.03640.080*
H30C0.26640.65250.13100.080*
C310.0680 (3)0.3446 (3)0.1725 (3)0.0435 (14)
H31A0.08610.29500.15010.052*
H31B0.01000.34960.14420.052*
C320.0902 (3)0.3340 (3)0.2661 (3)0.0459 (14)
H32A0.06020.28640.27700.055*
H32B0.14740.32200.29360.055*
Br40.81792 (3)0.44516 (3)0.34183 (4)0.06261 (18)
Ni10.64399 (4)0.49111 (3)0.26081 (4)0.03044 (17)
N10.5901 (2)0.3918 (2)0.2936 (2)0.0354 (11)
H10.53680.39630.26060.043*
N20.6377 (2)0.5683 (2)0.3500 (2)0.0368 (11)
N30.6786 (2)0.5972 (2)0.2150 (2)0.0353 (10)
H30.73360.59630.23720.042*
N40.6390 (2)0.4167 (2)0.1647 (2)0.0359 (11)
C10.5930 (3)0.3873 (3)0.3819 (3)0.0313 (12)
C20.5582 (3)0.4715 (3)0.3992 (3)0.0380 (14)
H2A0.50320.47580.35890.046*
H2B0.55510.46620.45400.046*
C30.5990 (3)0.5561 (3)0.3978 (3)0.0354 (13)
C40.5878 (3)0.6236 (3)0.4561 (3)0.0611 (17)
H4A0.62620.61390.51190.092*
H4B0.53410.61990.45570.092*
H4C0.59620.68000.43770.092*
C50.6790 (3)0.3733 (3)0.4429 (3)0.0454 (14)
H5A0.69640.31640.43550.068*
H5B0.68130.37960.49910.068*
H5C0.71380.41520.43260.068*
C60.5388 (3)0.3142 (3)0.3897 (3)0.0508 (15)
H6A0.48430.32440.35170.076*
H6B0.54060.31210.44600.076*
H6C0.55750.26040.37610.076*
C70.6760 (3)0.6513 (3)0.3461 (3)0.0472 (14)
H7A0.73410.64720.37520.057*
H7B0.65600.69620.37240.057*
C80.6554 (3)0.6722 (3)0.2541 (3)0.0432 (14)
H8A0.59800.68330.22670.052*
H8B0.68460.72310.24880.052*
C90.6561 (3)0.6020 (3)0.1223 (3)0.0371 (13)
C100.6925 (3)0.5229 (3)0.0965 (3)0.0429 (15)
H10A0.68610.53060.03850.051*
H10B0.75010.52300.12950.051*
C110.6607 (3)0.4350 (3)0.1044 (3)0.0351 (13)
C120.6587 (3)0.3714 (3)0.0382 (3)0.0623 (17)
H12A0.71270.35290.04760.094*
H12B0.63540.39810.01590.094*
H12C0.62670.32250.04050.094*
C130.5648 (3)0.6037 (3)0.0775 (3)0.0556 (15)
H13A0.54130.55830.09880.083*
H13B0.55110.59550.01860.083*
H13C0.54430.65830.08690.083*
C140.6937 (3)0.6820 (3)0.0992 (3)0.0593 (17)
H14A0.67070.73300.11290.089*
H14B0.68290.68140.04030.089*
H14C0.75090.68180.13000.089*
C150.6085 (3)0.3292 (3)0.1724 (3)0.0501 (15)
H15A0.63810.28600.15480.060*
H15B0.55180.32470.13670.060*
C160.6193 (3)0.3139 (3)0.2628 (3)0.0491 (16)
H16A0.58870.26360.26690.059*
H16B0.67580.30380.29650.059*
O10.1258 (2)0.14016 (19)0.1866 (2)0.0825 (13)
H1C0.10850.13050.22550.124*
H1D0.14240.09270.17410.124*
O20.5584 (2)0.0948 (2)0.2991 (2)0.0977 (15)
H2E0.56700.04350.31760.147*
H2F0.57890.10060.26220.147*
O30.3103 (2)0.3868 (2)0.2944 (2)0.0893 (13)
H3C0.31830.43850.31210.134*
H3D0.32990.38110.25680.134*
O40.1221 (2)0.8839 (2)0.3111 (3)0.1020 (16)
H4F0.10490.93110.32320.153*
H4G0.13880.89350.27180.153*
Br20.64785 (4)0.09231 (3)0.15400 (4)0.06252 (18)
Br30.39677 (4)0.38931 (4)0.14455 (4)0.06808 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0463 (4)0.0723 (4)0.0632 (5)0.0046 (3)0.0184 (4)0.0208 (3)
Ni20.0436 (5)0.0205 (3)0.0252 (4)0.0034 (3)0.0127 (4)0.0004 (3)
N50.032 (3)0.034 (2)0.031 (3)0.0005 (18)0.006 (2)0.0054 (19)
N60.045 (3)0.025 (2)0.035 (3)0.0054 (18)0.015 (2)0.001 (2)
N70.040 (3)0.031 (2)0.035 (3)0.0004 (18)0.013 (2)0.003 (2)
N80.041 (3)0.029 (2)0.033 (3)0.0009 (19)0.011 (2)0.0011 (19)
C170.050 (4)0.041 (3)0.021 (3)0.000 (3)0.006 (3)0.003 (3)
C180.044 (4)0.048 (3)0.035 (3)0.003 (3)0.013 (3)0.003 (3)
C190.032 (3)0.031 (3)0.032 (3)0.008 (2)0.002 (3)0.003 (3)
C200.075 (5)0.047 (3)0.045 (4)0.006 (3)0.023 (4)0.007 (3)
C210.049 (4)0.054 (3)0.040 (4)0.009 (3)0.001 (3)0.004 (3)
C220.087 (5)0.050 (3)0.051 (4)0.003 (3)0.031 (4)0.016 (3)
C230.076 (4)0.032 (3)0.048 (4)0.009 (3)0.026 (4)0.006 (3)
C240.072 (4)0.034 (3)0.052 (4)0.002 (3)0.032 (4)0.003 (3)
C250.034 (4)0.033 (3)0.036 (4)0.002 (2)0.013 (3)0.006 (2)
C260.043 (4)0.047 (3)0.046 (4)0.005 (3)0.022 (3)0.003 (3)
C270.040 (4)0.033 (3)0.029 (3)0.007 (2)0.004 (3)0.001 (2)
C280.074 (5)0.048 (3)0.054 (4)0.009 (3)0.028 (4)0.007 (3)
C290.046 (4)0.059 (3)0.039 (4)0.004 (3)0.006 (3)0.007 (3)
C300.052 (4)0.052 (3)0.057 (4)0.002 (3)0.020 (3)0.014 (3)
C310.053 (4)0.032 (3)0.044 (4)0.010 (2)0.018 (3)0.012 (3)
C320.063 (4)0.030 (3)0.047 (4)0.003 (3)0.023 (3)0.001 (3)
Br40.0479 (4)0.0731 (4)0.0598 (4)0.0013 (3)0.0123 (3)0.0233 (3)
Ni10.0474 (5)0.0200 (3)0.0248 (4)0.0021 (3)0.0146 (4)0.0008 (3)
N10.046 (3)0.029 (2)0.032 (3)0.0045 (19)0.016 (2)0.0023 (19)
N20.049 (3)0.025 (2)0.034 (3)0.0060 (19)0.013 (2)0.0005 (19)
N30.042 (3)0.033 (2)0.025 (3)0.0006 (19)0.007 (2)0.003 (2)
N40.050 (3)0.025 (2)0.034 (3)0.0023 (19)0.017 (2)0.0007 (19)
C10.032 (4)0.034 (3)0.027 (3)0.003 (2)0.011 (3)0.005 (2)
C20.038 (4)0.044 (3)0.035 (3)0.002 (3)0.017 (3)0.004 (3)
C30.036 (4)0.040 (3)0.026 (3)0.009 (3)0.006 (3)0.002 (3)
C40.067 (5)0.064 (4)0.061 (4)0.011 (3)0.035 (4)0.027 (3)
C50.049 (4)0.045 (3)0.041 (4)0.001 (3)0.015 (3)0.005 (3)
C60.057 (4)0.044 (3)0.052 (4)0.012 (3)0.020 (3)0.010 (3)
C70.069 (4)0.032 (3)0.045 (4)0.005 (3)0.027 (3)0.006 (3)
C80.070 (4)0.022 (3)0.038 (4)0.001 (2)0.021 (3)0.001 (3)
C90.049 (4)0.034 (3)0.027 (3)0.004 (3)0.014 (3)0.005 (2)
C100.043 (4)0.048 (3)0.041 (4)0.005 (3)0.020 (3)0.004 (3)
C110.032 (3)0.040 (3)0.028 (3)0.007 (2)0.006 (3)0.001 (3)
C120.086 (5)0.060 (4)0.052 (4)0.006 (3)0.039 (4)0.016 (3)
C130.052 (4)0.063 (4)0.037 (4)0.024 (3)0.000 (3)0.003 (3)
C140.083 (5)0.050 (4)0.048 (4)0.001 (3)0.028 (4)0.013 (3)
C150.077 (4)0.036 (3)0.043 (4)0.001 (3)0.029 (3)0.011 (3)
C160.075 (5)0.024 (3)0.056 (4)0.003 (3)0.034 (4)0.000 (3)
O10.089 (3)0.058 (2)0.102 (3)0.002 (2)0.038 (3)0.006 (2)
O20.105 (4)0.098 (3)0.099 (4)0.012 (3)0.049 (3)0.033 (3)
O30.101 (4)0.070 (3)0.096 (4)0.008 (2)0.036 (3)0.022 (2)
O40.113 (4)0.050 (2)0.172 (5)0.001 (2)0.087 (4)0.003 (3)
Br20.0602 (4)0.0637 (4)0.0547 (4)0.0070 (3)0.0113 (4)0.0054 (3)
Br30.0607 (5)0.0799 (4)0.0528 (4)0.0097 (3)0.0090 (4)0.0079 (3)
Geometric parameters (Å, º) top
Ni2—N61.976 (4)N1—C161.490 (4)
Ni2—N81.983 (3)N1—C11.504 (5)
Ni2—N72.003 (3)N1—H10.9101
Ni2—N52.029 (3)N2—C31.272 (5)
N5—C171.495 (5)N2—C71.471 (5)
N5—C321.497 (5)N3—C81.479 (4)
N5—H50.9100N3—C91.495 (5)
N6—C191.280 (5)N3—H30.9099
N6—C231.469 (5)N4—C111.271 (5)
N7—C241.472 (5)N4—C151.486 (5)
N7—C251.505 (5)C1—C51.516 (6)
N7—H70.9100C1—C21.524 (5)
N8—C271.275 (5)C1—C61.528 (5)
N8—C311.470 (5)C2—C31.504 (5)
C17—C211.529 (6)C2—H2A0.9700
C17—C181.527 (6)C2—H2B0.9700
C17—C221.529 (5)C3—C41.516 (5)
C18—C191.512 (6)C4—H4A0.9600
C18—H18A0.9700C4—H4B0.9600
C18—H18B0.9700C4—H4C0.9600
C19—C201.497 (5)C5—H5A0.9600
C20—H20A0.9600C5—H5B0.9600
C20—H20B0.9600C5—H5C0.9600
C20—H20C0.9600C6—H6A0.9600
C21—H21A0.9600C6—H6B0.9600
C21—H21B0.9600C6—H6C0.9600
C21—H21C0.9600C7—C81.521 (5)
C22—H22A0.9600C7—H7A0.9700
C22—H22B0.9600C7—H7B0.9700
C22—H22C0.9600C8—H8A0.9700
C23—C241.509 (6)C8—H8B0.9700
C23—H23A0.9700C9—C131.520 (6)
C23—H23B0.9700C9—C101.531 (5)
C24—H24A0.9700C9—C141.533 (5)
C24—H24B0.9700C10—C111.502 (6)
C25—C291.505 (6)C10—H10A0.9700
C25—C261.529 (5)C10—H10B0.9700
C25—C301.536 (5)C11—C121.497 (5)
C26—C271.496 (6)C12—H12A0.9600
C26—H26A0.9700C12—H12B0.9600
C26—H26B0.9700C12—H12C0.9600
C27—C281.496 (5)C13—H13A0.9600
C28—H28A0.9600C13—H13B0.9600
C28—H28B0.9600C13—H13C0.9600
C28—H28C0.9600C14—H14A0.9600
C29—H29A0.9600C14—H14B0.9600
C29—H29B0.9600C14—H14C0.9600
C29—H29C0.9600C15—C161.515 (5)
C30—H30A0.9600C15—H15A0.9700
C30—H30B0.9600C15—H15B0.9700
C30—H30C0.9600C16—H16A0.9700
C31—C321.518 (5)C16—H16B0.9700
C31—H31A0.9700O1—H1C0.8500
C31—H31B0.9700O1—H1D0.8500
C32—H32A0.9700O2—H2E0.8499
C32—H32B0.9700O2—H2F0.8500
Ni1—N21.985 (4)O3—H3C0.8498
Ni1—N41.993 (4)O3—H3D0.8500
Ni1—N12.007 (3)O4—H4F0.8501
Ni1—N32.020 (3)O4—H4G0.8499
N6—Ni2—N8172.20 (16)N4—Ni1—N185.03 (14)
N6—Ni2—N784.38 (14)N2—Ni1—N385.80 (14)
N8—Ni2—N794.04 (14)N4—Ni1—N394.09 (14)
N6—Ni2—N594.20 (14)N1—Ni1—N3170.06 (17)
N8—Ni2—N585.74 (14)C16—N1—C1116.0 (3)
N7—Ni2—N5167.87 (17)C16—N1—Ni1104.6 (2)
C17—N5—C32116.3 (3)C1—N1—Ni1118.9 (3)
C17—N5—Ni2116.7 (3)C16—N1—H1105.3
C32—N5—Ni2106.3 (2)C1—N1—H1105.4
C17—N5—H5105.4Ni1—N1—H1105.4
C32—N5—H5105.6C3—N2—C7122.5 (4)
Ni2—N5—H5105.5C3—N2—Ni1127.9 (3)
C19—N6—C23119.6 (4)C7—N2—Ni1109.1 (3)
C19—N6—Ni2128.2 (3)C8—N3—C9116.0 (3)
C23—N6—Ni2111.8 (3)C8—N3—Ni1106.4 (2)
C24—N7—C25117.1 (3)C9—N3—Ni1117.3 (3)
C24—N7—Ni2104.5 (3)C8—N3—H3105.3
C25—N7—Ni2118.2 (3)C9—N3—H3105.3
C24—N7—H7105.4Ni1—N3—H3105.3
C25—N7—H7105.2C11—N4—C15120.8 (4)
Ni2—N7—H7105.2C11—N4—Ni1128.2 (3)
C27—N8—C31122.0 (4)C15—N4—Ni1110.9 (3)
C27—N8—Ni2127.5 (3)N1—C1—C5110.4 (4)
C31—N8—Ni2109.3 (3)N1—C1—C2107.3 (3)
N5—C17—C21109.6 (4)C5—C1—C2111.6 (4)
N5—C17—C18106.8 (4)N1—C1—C6109.9 (4)
C21—C17—C18111.8 (4)C5—C1—C6110.1 (4)
N5—C17—C22109.9 (4)C2—C1—C6107.4 (4)
C21—C17—C22110.5 (4)C3—C2—C1120.5 (4)
C18—C17—C22108.1 (4)C3—C2—H2A107.2
C19—C18—C17119.7 (4)C1—C2—H2A107.2
C19—C18—H18A107.4C3—C2—H2B107.2
C17—C18—H18A107.4C1—C2—H2B107.2
C19—C18—H18B107.4H2A—C2—H2B106.8
C17—C18—H18B107.4N2—C3—C2121.7 (4)
H18A—C18—H18B106.9N2—C3—C4124.4 (4)
N6—C19—C20124.6 (4)C2—C3—C4114.0 (4)
N6—C19—C18120.5 (4)C3—C4—H4A109.5
C20—C19—C18114.8 (4)C3—C4—H4B109.5
C19—C20—H20A109.5H4A—C4—H4B109.5
C19—C20—H20B109.5C3—C4—H4C109.5
H20A—C20—H20B109.5H4A—C4—H4C109.5
C19—C20—H20C109.5H4B—C4—H4C109.5
H20A—C20—H20C109.5C1—C5—H5A109.5
H20B—C20—H20C109.5C1—C5—H5B109.5
C17—C21—H21A109.5H5A—C5—H5B109.5
C17—C21—H21B109.5C1—C5—H5C109.5
H21A—C21—H21B109.5H5A—C5—H5C109.5
C17—C21—H21C109.5H5B—C5—H5C109.5
H21A—C21—H21C109.5C1—C6—H6A109.5
H21B—C21—H21C109.5C1—C6—H6B109.5
C17—C22—H22A109.5H6A—C6—H6B109.5
C17—C22—H22B109.5C1—C6—H6C109.5
H22A—C22—H22B109.5H6A—C6—H6C109.5
C17—C22—H22C109.5H6B—C6—H6C109.5
H22A—C22—H22C109.5N2—C7—C8107.4 (4)
H22B—C22—H22C109.5N2—C7—H7A110.2
N6—C23—C24109.0 (4)C8—C7—H7A110.2
N6—C23—H23A109.9N2—C7—H7B110.2
C24—C23—H23A109.9C8—C7—H7B110.2
N6—C23—H23B109.9H7A—C7—H7B108.5
C24—C23—H23B109.9N3—C8—C7107.9 (3)
H23A—C23—H23B108.3N3—C8—H8A110.1
N7—C24—C23108.6 (4)C7—C8—H8A110.1
N7—C24—H24A110.0N3—C8—H8B110.1
C23—C24—H24A110.0C7—C8—H8B110.1
N7—C24—H24B110.0H8A—C8—H8B108.4
C23—C24—H24B110.0N3—C9—C13110.5 (4)
H24A—C24—H24B108.4N3—C9—C10107.3 (4)
N7—C25—C29110.6 (4)C13—C9—C10111.1 (4)
N7—C25—C26107.3 (4)N3—C9—C14110.4 (4)
C29—C25—C26111.5 (4)C13—C9—C14110.2 (4)
N7—C25—C30109.7 (4)C10—C9—C14107.3 (4)
C29—C25—C30109.9 (4)C11—C10—C9118.9 (4)
C26—C25—C30107.8 (4)C11—C10—H10A107.6
C27—C26—C25120.2 (4)C9—C10—H10A107.6
C27—C26—H26A107.3C11—C10—H10B107.6
C25—C26—H26A107.3C9—C10—H10B107.6
C27—C26—H26B107.3H10A—C10—H10B107.0
C25—C26—H26B107.3N4—C11—C12123.3 (4)
H26A—C26—H26B106.9N4—C11—C10121.3 (4)
N8—C27—C28124.2 (4)C12—C11—C10115.5 (4)
N8—C27—C26121.8 (4)C11—C12—H12A109.5
C28—C27—C26114.0 (4)C11—C12—H12B109.5
C27—C28—H28A109.5H12A—C12—H12B109.5
C27—C28—H28B109.5C11—C12—H12C109.5
H28A—C28—H28B109.5H12A—C12—H12C109.5
C27—C28—H28C109.5H12B—C12—H12C109.5
H28A—C28—H28C109.5C9—C13—H13A109.5
H28B—C28—H28C109.5C9—C13—H13B109.5
C25—C29—H29A109.5H13A—C13—H13B109.5
C25—C29—H29B109.5C9—C13—H13C109.5
H29A—C29—H29B109.5H13A—C13—H13C109.5
C25—C29—H29C109.5H13B—C13—H13C109.5
H29A—C29—H29C109.5C9—C14—H14A109.5
H29B—C29—H29C109.5C9—C14—H14B109.5
C25—C30—H30A109.5H14A—C14—H14B109.5
C25—C30—H30B109.5C9—C14—H14C109.5
H30A—C30—H30B109.5H14A—C14—H14C109.5
C25—C30—H30C109.5H14B—C14—H14C109.5
H30A—C30—H30C109.5N4—C15—C16109.0 (4)
H30B—C30—H30C109.5N4—C15—H15A109.9
N8—C31—C32107.4 (4)C16—C15—H15A109.9
N8—C31—H31A110.2N4—C15—H15B109.9
C32—C31—H31A110.2C16—C15—H15B109.9
N8—C31—H31B110.2H15A—C15—H15B108.3
C32—C31—H31B110.2N1—C16—C15108.2 (4)
H31A—C31—H31B108.5N1—C16—H16A110.1
N5—C32—C31107.7 (3)C15—C16—H16A110.1
N5—C32—H32A110.2N1—C16—H16B110.1
C31—C32—H32A110.2C15—C16—H16B110.1
N5—C32—H32B110.2H16A—C16—H16B108.4
C31—C32—H32B110.2H1C—O1—H1D108.1
H32A—C32—H32B108.5H2E—O2—H2F108.1
N2—Ni1—N4174.32 (16)H3C—O3—H3D108.1
N2—Ni1—N194.09 (14)H4F—O4—H4G108.1
N6—Ni2—N5—C1725.0 (3)N2—Ni1—N1—C16155.2 (3)
N8—Ni2—N5—C17147.2 (3)N4—Ni1—N1—C1630.5 (3)
N7—Ni2—N5—C1757.8 (8)N3—Ni1—N1—C16115.8 (8)
N6—Ni2—N5—C32156.6 (3)N2—Ni1—N1—C123.8 (3)
N8—Ni2—N5—C3215.6 (3)N4—Ni1—N1—C1161.8 (3)
N7—Ni2—N5—C3273.8 (8)N3—Ni1—N1—C1112.8 (9)
N8—Ni2—N6—C19100.7 (12)N4—Ni1—N2—C371.0 (17)
N7—Ni2—N6—C19179.4 (4)N1—Ni1—N2—C39.9 (4)
N5—Ni2—N6—C1911.5 (4)N3—Ni1—N2—C3160.1 (4)
N8—Ni2—N6—C2386.9 (12)N4—Ni1—N2—C7100.7 (16)
N7—Ni2—N6—C238.3 (3)N1—Ni1—N2—C7178.3 (3)
N5—Ni2—N6—C23176.2 (3)N3—Ni1—N2—C711.7 (3)
N6—Ni2—N7—C2431.8 (3)N2—Ni1—N3—C817.3 (3)
N8—Ni2—N7—C24155.8 (3)N4—Ni1—N3—C8157.0 (3)
N5—Ni2—N7—C24115.6 (7)N1—Ni1—N3—C872.4 (10)
N6—Ni2—N7—C25164.0 (3)N2—Ni1—N3—C9149.1 (3)
N8—Ni2—N7—C2523.6 (3)N4—Ni1—N3—C925.2 (3)
N5—Ni2—N7—C25112.2 (7)N1—Ni1—N3—C959.3 (10)
N6—Ni2—N8—C2764.9 (13)N2—Ni1—N4—C1195.4 (17)
N7—Ni2—N8—C2713.1 (4)N1—Ni1—N4—C11176.8 (4)
N5—Ni2—N8—C27154.7 (4)N3—Ni1—N4—C116.7 (4)
N6—Ni2—N8—C31103.2 (12)N2—Ni1—N4—C1587.3 (16)
N7—Ni2—N8—C31178.8 (3)N1—Ni1—N4—C155.9 (3)
N5—Ni2—N8—C3113.4 (3)N3—Ni1—N4—C15176.0 (3)
C32—N5—C17—C2164.6 (5)C16—N1—C1—C560.0 (5)
Ni2—N5—C17—C2162.3 (4)Ni1—N1—C1—C566.1 (4)
C32—N5—C17—C18174.1 (3)C16—N1—C1—C2178.2 (4)
Ni2—N5—C17—C1859.0 (4)Ni1—N1—C1—C255.7 (4)
C32—N5—C17—C2257.1 (5)C16—N1—C1—C661.7 (5)
Ni2—N5—C17—C22176.1 (3)Ni1—N1—C1—C6172.2 (3)
N5—C17—C18—C1966.8 (5)N1—C1—C2—C362.9 (5)
C21—C17—C18—C1953.1 (6)C5—C1—C2—C358.2 (5)
C22—C17—C18—C19175.0 (4)C6—C1—C2—C3179.0 (4)
C23—N6—C19—C201.0 (7)C7—N2—C3—C2178.3 (4)
Ni2—N6—C19—C20170.8 (3)Ni1—N2—C3—C27.6 (7)
C23—N6—C19—C18178.5 (4)C7—N2—C3—C40.3 (7)
Ni2—N6—C19—C189.6 (7)Ni1—N2—C3—C4171.1 (3)
C17—C18—C19—N631.5 (7)C1—C2—C3—N231.3 (7)
C17—C18—C19—C20148.2 (4)C1—C2—C3—C4149.9 (4)
C19—N6—C23—C24155.9 (4)C3—N2—C7—C8134.8 (5)
Ni2—N6—C23—C2417.2 (5)Ni1—N2—C7—C837.5 (4)
C25—N7—C24—C23177.7 (4)C9—N3—C8—C7174.6 (4)
Ni2—N7—C24—C2349.4 (4)Ni1—N3—C8—C742.1 (4)
N6—C23—C24—N744.5 (5)N2—C7—C8—N353.3 (5)
C24—N7—C25—C2961.5 (5)C8—N3—C9—C1364.1 (5)
Ni2—N7—C25—C2964.9 (4)Ni1—N3—C9—C1363.1 (4)
C24—N7—C25—C26176.7 (4)C8—N3—C9—C10174.7 (4)
Ni2—N7—C25—C2656.9 (4)Ni1—N3—C9—C1058.1 (5)
C24—N7—C25—C3059.9 (5)C8—N3—C9—C1458.1 (5)
Ni2—N7—C25—C30173.7 (3)Ni1—N3—C9—C14174.7 (3)
N7—C25—C26—C2763.1 (5)N3—C9—C10—C1167.1 (5)
C29—C25—C26—C2758.1 (6)C13—C9—C10—C1153.8 (6)
C30—C25—C26—C27178.9 (4)C14—C9—C10—C11174.3 (4)
C31—N8—C27—C280.1 (7)C15—N4—C11—C121.0 (7)
Ni2—N8—C27—C28166.6 (3)Ni1—N4—C11—C12176.1 (3)
C31—N8—C27—C26179.0 (4)C15—N4—C11—C10179.3 (4)
Ni2—N8—C27—C2612.3 (7)Ni1—N4—C11—C102.2 (7)
C25—C26—C27—N828.2 (7)C9—C10—C11—N436.3 (7)
C25—C26—C27—C28152.8 (4)C9—C10—C11—C12145.3 (5)
C27—N8—C31—C32129.6 (5)C11—N4—C15—C16157.4 (4)
Ni2—N8—C31—C3239.3 (4)Ni1—N4—C15—C1620.2 (5)
C17—N5—C32—C31172.7 (4)C1—N1—C16—C15177.7 (4)
Ni2—N5—C32—C3140.8 (4)Ni1—N1—C16—C1549.3 (4)
N8—C31—C32—N553.4 (5)N4—C15—C16—N146.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br30.912.553.444 (4)167
O2—H2F···Br20.852.603.437 (3)171
O3—H3D···Br30.852.633.473 (3)171
N5—H5···O4i0.912.413.269 (5)158
O1—H1C···Br1i0.852.553.390 (3)170
N7—H7···Br2ii0.912.543.436 (4)169
N3—H3···O1ii0.912.453.328 (5)161
O2—H2E···Br3iii0.852.503.339 (4)171
O1—H1D···Br4iii0.852.443.280 (3)169
O3—H3C···Br2ii0.852.483.316 (3)170
O4—H4G···Br4ii0.852.493.335 (4)171
O4—H4F···Br1iv0.852.393.228 (3)171
Symmetry codes: (i) x, y1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x1, y1/2, z1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C16H32N4)]Br2·2H2O
Mr535.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.8712 (15), 15.5028 (12), 17.2324 (17)
β (°) 112.077 (1)
V3)4424.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.27 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.831, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
22003, 7779, 4053
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.059, 0.96
No. of reflections7779
No. of parameters463
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.66

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni2—N61.976 (4)Ni1—N21.985 (4)
Ni2—N81.983 (3)Ni1—N41.993 (4)
Ni2—N72.003 (3)Ni1—N12.007 (3)
Ni2—N52.029 (3)Ni1—N32.020 (3)
N6—Ni2—N8172.20 (16)N2—Ni1—N4174.32 (16)
N6—Ni2—N784.38 (14)N2—Ni1—N194.09 (14)
N8—Ni2—N794.04 (14)N4—Ni1—N185.03 (14)
N6—Ni2—N594.20 (14)N2—Ni1—N385.80 (14)
N8—Ni2—N585.74 (14)N4—Ni1—N394.09 (14)
N7—Ni2—N5167.87 (17)N1—Ni1—N3170.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br30.912.553.444 (4)166.9
O2—H2F···Br20.852.603.437 (3)170.8
O3—H3D···Br30.852.633.473 (3)170.9
N5—H5···O4i0.912.413.269 (5)157.5
O1—H1C···Br1i0.852.553.390 (3)169.9
N7—H7···Br2ii0.912.543.436 (4)169.3
N3—H3···O1ii0.912.453.328 (5)161.2
O2—H2E···Br3iii0.852.503.339 (4)170.7
O1—H1D···Br4iii0.852.443.280 (3)169.4
O3—H3C···Br2ii0.852.483.316 (3)170.3
O4—H4G···Br4ii0.852.493.335 (4)171.3
O4—H4F···Br1iv0.852.393.228 (3)170.5
Symmetry codes: (i) x, y1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x1, y1/2, z1/2; (iv) x, y+1/2, z1/2.
 

References

First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzalda, D. J., Schwarz, C. L. & Creutz, C. (1991). Inorg. Chem. 30, 586–588.  CSD CrossRef CAS Web of Science Google Scholar
First citationWarner, L. G., Rose, N. J. & Busch, D. H. (1968). J. Am. Chem. Soc. 90, 6938–6946.  CrossRef CAS Web of Science Google Scholar
First citationWhimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds