metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(ethyl­enedi­amine)copper(II)]-μ-sulfato]

aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: m.lutz@uu.nl

(Received 4 May 2010; accepted 11 May 2010; online 19 May 2010)

In the title compound, [Cu(SO4)(C2H8N2)2]n, the Cu, S and two O atoms lie on a mirror plane. The Cu atom is in a distorted octa­hedral environment and the ethyl­enediamine ligand is in a gauche conformation. The sulfate dianion is bridging, forming a one-dimensional chain. A two-dimensional net parallel to (001) is generated by N—H⋯O hydrogen bonding between the chains.

Related literature

For related Cu(II) ethyl­enediamine complexes, see: Cullen & Lingafelter (1970[Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858-1864.]); Bertini et al. (1979[Bertini, I., Dapporto, P., Gatteschi, D. & Scozzafava, A. (1979). J. Chem. Soc. Dalton Trans. pp. 1409-1414.]); Healy et al. (1978[Healy, P. C., Kennard, C. H. L., Smith, G. & White, A. H. (1978). Cryst. Struct. Commun. 7, 565-570.]); Manriquez et al. (1996[Manriquez, V., Campos-Vallette, M., Lara, N., Gonzalez-Tejeda, N., Wittke, O., Diaz, G., Diez, S., Munoz, R. & Kriskovic, L. (1996). J. Chem. Crystallogr. 26, 15-22.]); Taylor et al. (2006[Taylor, M. K., Stevenson, D. E., Berlouis, L. E. A., Kennedy, A. R. & Reglinski, J. (2006). J. Inorg. Biochem. 100, 250-259.]). A similar variation of axial Cu—O distances is found in many weakly coord­inating anions such as sulfate (Castro et al., 2002[Castro, J., Pérez Lourido, P., Sousa-Pedrares, A., Labisbal, E., Carabel, M. & García-Vázquez, J. A. (2002). Acta Cryst. C58, m65-m67.]), nitrate (Plater et al., 2008[Plater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125-130.]), perchlorate (Bernhardt et al., 2001[Bernhardt, P. V., Moore, E. G. & Riley, M. J. (2001). Inorg. Chem. 40, 5799-5805.]) or triflate (Liu et al., 2007[Liu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). Inorg. Chem. 46, 5814-5816.]). The anisotropic mosaicity was treated according to Duisenberg (1983[Duisenberg, A. J. M. (1983). Acta Cryst. A39, 211-216.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C2H8N2)2]

  • Mr = 279.81

  • Orthorhombic, C m c a

  • a = 14.4959 (3) Å

  • b = 9.63748 (8) Å

  • c = 13.87746 (17) Å

  • V = 1938.73 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 110 K

  • 0.36 × 0.21 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.489, Tmax = 0.910

  • 29167 measured reflections

  • 2204 independent reflections

  • 1990 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.10

  • 2204 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.0173 (8)
Cu1—N2 2.0226 (8)
Cu1—O1 2.3575 (9)
Cu1—O3i 2.4673 (9)
N1ii—Cu1—N1 91.62 (4)
N1—Cu1—N2ii 176.81 (3)
N1—Cu1—N2 85.22 (3)
N2ii—Cu1—N2 97.95 (4)
N1—Cu1—O1 92.50 (3)
N2—Cu1—O1 87.27 (3)
N1—Cu1—O3i 92.95 (3)
N2—Cu1—O3i 87.59 (3)
O1—Cu1—O3i 172.18 (3)
N1—C1—C2—N2 53.74 (10)
Symmetry codes: (i) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.858 (16) 2.280 (16) 3.0944 (11) 158.5 (14)
N1—H2N⋯O3iii 0.839 (17) 2.274 (17) 3.0642 (11) 157.1 (17)
N2—H3N⋯O2iv 0.845 (17) 2.125 (17) 2.9636 (10) 171.6 (16)
N2—H4N⋯O2v 0.859 (15) 2.210 (15) 3.0308 (10) 159.7 (14)
Symmetry codes: (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: PEAKREF (Schreurs, 2005[Schreurs, A. M. M. (2005). PEAKREF. Utrecht University, The Netherlands.]); data reduction: Eval15 (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]) and SADABS (Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ethylenediamine (en) complexes of transition metals belong to the most studied compounds in inorganic chemistry. In the case of copper sulfate the tris(ethylenediamine) complex is known at room temperature (Cullen & Lingafelter, 1970) as well as at 120 K after a solid-solid phase transition (Bertini et al., 1979). These crystal structures show the copper in an octahedral geometry and the sulfate is not coordinated to the metal but hydrogen bonded to the amine groups.

Here, we report the crystal structure of the bis(ethylenediamine) complex of copper sulfate (I), in which the sulfate is bridging two copper centers. The compound thus forms a polymeric chain by coordination, which runs in the direction of the c axis (Fig. 1). The copper, the sulfur and two O atoms are in special positions on the crystallographic mirror plane of the orthorhombic space group Cmca. Bridging sulfate ions are very common in copper complexes. For example, in [Cu(en)(H2O)2]SO4, the sulfate is a bridging ligand and a one-dimensional chain is formed by coordination (Healy et al., 1978; Manriquez et al., 1996; Taylor et al., 2006).

As expected, the ethylenediamine ligand is in a gauche conformation (Table 1) and the copper is in a distorted octahedral environment. The nitrogen atoms form the equatorial plane with Cu—N distances (2.0173 (8) and 2.0226 (8) Å), which are shorter than in the room temperature structure of the tris(ethylenediamine) complex (2.150 (2) Å). The two axial positions are occupied by oxygen atoms of sulfate anions with much longer distances than in the equatorial plane. This can be explained by the Jahn-Teller effect in Cu(II) compounds. The Cu—O distances (2.3575 (9) and 2.4673 (9) Å) also differ significantly compared to each other. Such differences are not uncommon with copper complexes of weakly coordinating anions like sulfate (Castro et al., 2002), nitrate (Plater et al., 2008), perchlorate (Bernhardt et al., 2001) or trifluoromethanesulfonate (Liu et al., 2007).

The coordinated NH2 groups act as hydrogen bond donors and the non-coordinated sulfate O-atoms act as acceptors (Table 2). Two hydrogen bonds are formed within the coordination polymer via H1N and H4N. Two hydrogen bonds via H2N and H3N are between the chains resulting in a two-dimensional net in the b,c-plane (Figures 2 and 3). This two-dimensional motif is also reflected in the plate shaped crystal habitus, where the a-direction has the smallest dimension.

Related literature top

For related Cu(II) ethylenediamine complexes, see: Cullen & Lingafelter (1970); Bertini et al. (1979); Healy et al. (1978); Manriquez et al. (1996); Taylor et al. (2006). A similar variation of axial Cu—O distances is found in many weakly coordinating anions such as sulfate (Castro et al., 2002), nitrate (Plater et al., 2008), perchlorate (Bernhardt et al., 2001) or triflate (Liu et al., 2007). The anisotropic mosaicity was treated according to Duisenberg (1983).

Experimental top

2.04 g of copper sulfate pentahydrate (8.17 mmol) were dissolved in 150 ml of water and brought to boiling temperature. Then 2 ml of ethylenediamine (37 mmol) were added dropwise. The resulting deep blue solution was concentrated at 333 K and atmospheric pressure. In the concentrated solution, crystals appeared after 2 days of evaporation at room temperature.

Refinement top

An anisotropic mosaic model was used in the intensity integration with hkl = (0,0,1) as anisotropic vector (Duisenberg, 1983). Hydrogen atoms were located in difference Fourier maps. N—H hydrogen atoms were refined freely with isotropic displacement parameters. C—H hydrogen atoms were refined using a riding model with C—H = 0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Ethylenediamine (en) complexes of transition metals belong to the most studied compounds in inorganic chemistry. In the case of copper sulfate the tris(ethylenediamine) complex is known at room temperature (Cullen & Lingafelter, 1970) as well as at 120 K after a solid-solid phase transition (Bertini et al., 1979). These crystal structures show the copper in an octahedral geometry and the sulfate is not coordinated to the metal but hydrogen bonded to the amine groups.

Here, we report the crystal structure of the bis(ethylenediamine) complex of copper sulfate (I), in which the sulfate is bridging two copper centers. The compound thus forms a polymeric chain by coordination, which runs in the direction of the c axis (Fig. 1). The copper, the sulfur and two O atoms are in special positions on the crystallographic mirror plane of the orthorhombic space group Cmca. Bridging sulfate ions are very common in copper complexes. For example, in [Cu(en)(H2O)2]SO4, the sulfate is a bridging ligand and a one-dimensional chain is formed by coordination (Healy et al., 1978; Manriquez et al., 1996; Taylor et al., 2006).

As expected, the ethylenediamine ligand is in a gauche conformation (Table 1) and the copper is in a distorted octahedral environment. The nitrogen atoms form the equatorial plane with Cu—N distances (2.0173 (8) and 2.0226 (8) Å), which are shorter than in the room temperature structure of the tris(ethylenediamine) complex (2.150 (2) Å). The two axial positions are occupied by oxygen atoms of sulfate anions with much longer distances than in the equatorial plane. This can be explained by the Jahn-Teller effect in Cu(II) compounds. The Cu—O distances (2.3575 (9) and 2.4673 (9) Å) also differ significantly compared to each other. Such differences are not uncommon with copper complexes of weakly coordinating anions like sulfate (Castro et al., 2002), nitrate (Plater et al., 2008), perchlorate (Bernhardt et al., 2001) or trifluoromethanesulfonate (Liu et al., 2007).

The coordinated NH2 groups act as hydrogen bond donors and the non-coordinated sulfate O-atoms act as acceptors (Table 2). Two hydrogen bonds are formed within the coordination polymer via H1N and H4N. Two hydrogen bonds via H2N and H3N are between the chains resulting in a two-dimensional net in the b,c-plane (Figures 2 and 3). This two-dimensional motif is also reflected in the plate shaped crystal habitus, where the a-direction has the smallest dimension.

For related Cu(II) ethylenediamine complexes, see: Cullen & Lingafelter (1970); Bertini et al. (1979); Healy et al. (1978); Manriquez et al. (1996); Taylor et al. (2006). A similar variation of axial Cu—O distances is found in many weakly coordinating anions such as sulfate (Castro et al., 2002), nitrate (Plater et al., 2008), perchlorate (Bernhardt et al., 2001) or triflate (Liu et al., 2007). The anisotropic mosaicity was treated according to Duisenberg (1983).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2005); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2008a); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. : Displacement ellipsoid plot of (I), drawn at the 50% probability level. Only three units of the polymeric chain are shown. View along the b axis. Symmetry operations i: -x, 0.5 - y, z - 1/2; ii: -x, 0.5 - y, z + 1/2; iii: -x, y, z.
[Figure 2] Fig. 2. : Packing of (I) in the crystal viewed along the b axis. C—H hydrogen atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. : Packing of (I) in the crystal viewed along the a axis. C—H hydrogen atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.
catena-Poly[[bis(ethylenediamine)copper(II)]-µ-sulfato] top
Crystal data top
[Cu(SO4)(C2H8N2)2]F(000) = 1160
Mr = 279.81Dx = 1.917 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 21936 reflections
a = 14.4959 (3) Åθ = 2.5–35.0°
b = 9.63748 (8) ŵ = 2.47 mm1
c = 13.87746 (17) ÅT = 110 K
V = 1938.73 (5) Å3Plate, blue
Z = 80.36 × 0.21 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2204 independent reflections
Radiation source: rotating anode1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 35.0°, θmin = 2.8°
Absorption correction: analytical
(SADABS; Sheldrick, 2008a)
h = 2323
Tmin = 0.489, Tmax = 0.910k = 1515
29167 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0208P)2 + 2.1845P]
where P = (Fo2 + 2Fc2)/3
2204 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu(SO4)(C2H8N2)2]V = 1938.73 (5) Å3
Mr = 279.81Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 14.4959 (3) ŵ = 2.47 mm1
b = 9.63748 (8) ÅT = 110 K
c = 13.87746 (17) Å0.36 × 0.21 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2204 independent reflections
Absorption correction: analytical
(SADABS; Sheldrick, 2008a)
1990 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 0.910Rint = 0.032
29167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.44 e Å3
2204 reflectionsΔρmin = 0.56 e Å3
86 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.226359 (15)0.385553 (11)0.00587 (4)
S10.00000.24252 (3)0.13888 (2)0.00541 (5)
O10.00000.32265 (9)0.22939 (6)0.00932 (16)
O20.08343 (5)0.15354 (7)0.13383 (5)0.01049 (12)
O30.00000.34145 (9)0.05699 (7)0.00990 (16)
N10.09978 (5)0.08890 (8)0.35157 (6)0.00890 (13)
H1N0.0983 (10)0.0830 (15)0.2899 (12)0.018 (4)*
H2N0.0882 (13)0.0121 (18)0.3774 (10)0.022 (4)*
N20.10526 (6)0.35659 (8)0.41674 (6)0.00842 (12)
H3N0.0944 (12)0.4387 (18)0.3986 (11)0.020 (4)*
H4N0.1142 (11)0.3552 (15)0.4779 (11)0.016 (4)*
C10.18950 (6)0.14531 (9)0.38195 (7)0.01121 (15)
H1A0.23970.10340.34340.013*
H1B0.20070.12410.45080.013*
C20.18704 (7)0.30147 (9)0.36647 (7)0.01045 (15)
H2A0.24380.34450.39260.013*
H2B0.18330.32270.29680.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00700 (7)0.00409 (6)0.00652 (7)0.0000.0000.00089 (4)
S10.00864 (12)0.00388 (10)0.00371 (11)0.0000.0000.00008 (8)
O10.0172 (4)0.0071 (4)0.0036 (4)0.0000.0000.0017 (3)
O20.0111 (3)0.0101 (3)0.0102 (3)0.0040 (2)0.0003 (2)0.0006 (2)
O30.0192 (4)0.0057 (3)0.0048 (4)0.0000.0000.0012 (3)
N10.0094 (3)0.0064 (3)0.0109 (3)0.0003 (2)0.0013 (3)0.0010 (2)
N20.0126 (3)0.0064 (3)0.0063 (3)0.0012 (2)0.0005 (2)0.0004 (2)
C10.0091 (4)0.0088 (3)0.0157 (4)0.0001 (3)0.0027 (3)0.0002 (3)
C20.0103 (4)0.0094 (3)0.0116 (4)0.0024 (3)0.0012 (3)0.0003 (3)
Geometric parameters (Å, º) top
Cu1—N1i2.0172 (8)N1—H1N0.858 (16)
Cu1—N12.0173 (8)N1—H2N0.839 (17)
Cu1—N2i2.0226 (8)N2—C21.4745 (12)
Cu1—N22.0226 (8)N2—H3N0.845 (17)
Cu1—O12.3575 (9)N2—H4N0.859 (15)
Cu1—O3ii2.4673 (9)C1—C21.5207 (13)
S1—O11.4745 (9)C1—H1A0.9900
S1—O31.4834 (9)C1—H1B0.9900
S1—O2i1.4842 (7)C2—H2A0.9900
S1—O21.4842 (7)C2—H2B0.9900
N1—C11.4712 (12)
N1i—Cu1—N191.62 (4)C1—N1—H1N109.4 (10)
N1i—Cu1—N2i85.22 (3)Cu1—N1—H1N105.0 (10)
N1—Cu1—N2i176.81 (3)C1—N1—H2N112.3 (12)
N1i—Cu1—N2176.81 (3)Cu1—N1—H2N109.6 (12)
N1—Cu1—N285.22 (3)H1N—N1—H2N111.3 (14)
N2i—Cu1—N297.95 (4)C2—N2—Cu1106.36 (5)
N1i—Cu1—O192.50 (3)C2—N2—H3N110.2 (11)
N1—Cu1—O192.50 (3)Cu1—N2—H3N112.1 (11)
N2i—Cu1—O187.27 (3)C2—N2—H4N110.0 (10)
N2—Cu1—O187.27 (3)Cu1—N2—H4N108.4 (10)
N1i—Cu1—O3ii92.95 (3)H3N—N2—H4N109.7 (14)
N1—Cu1—O3ii92.95 (3)N1—C1—C2107.73 (7)
N2i—Cu1—O3ii87.59 (3)N1—C1—H1A110.2
N2—Cu1—O3ii87.59 (3)C2—C1—H1A110.2
O1—Cu1—O3ii172.18 (3)N1—C1—H1B110.2
O1—S1—O3108.42 (5)C2—C1—H1B110.2
O1—S1—O2i110.05 (3)H1A—C1—H1B108.5
O3—S1—O2i109.58 (3)N2—C2—C1107.97 (7)
O1—S1—O2110.05 (3)N2—C2—H2A110.1
O3—S1—O2109.59 (3)C1—C2—H2A110.1
O2i—S1—O2109.14 (6)N2—C2—H2B110.1
S1—O1—Cu1125.23 (5)C1—C2—H2B110.1
C1—N1—Cu1108.92 (5)H2A—C2—H2B108.4
O3—S1—O1—Cu1180.0N2—Cu1—N1—C19.25 (6)
O2i—S1—O1—Cu160.16 (3)O1—Cu1—N1—C196.30 (6)
O2—S1—O1—Cu160.16 (3)N1—Cu1—N2—C219.71 (6)
N1i—Cu1—O1—S145.86 (2)N2i—Cu1—N2—C2159.89 (4)
N1—Cu1—O1—S145.86 (2)O1—Cu1—N2—C273.03 (6)
N2i—Cu1—O1—S1130.95 (2)Cu1—N1—C1—C235.63 (9)
N2—Cu1—O1—S1130.95 (2)Cu1—N2—C2—C144.31 (8)
N1i—Cu1—N1—C1171.12 (4)N1—C1—C2—N253.74 (10)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.858 (16)2.280 (16)3.0944 (11)158.5 (14)
N1—H2N···O3iii0.839 (17)2.274 (17)3.0642 (11)157.1 (17)
N2—H3N···O2iv0.845 (17)2.125 (17)2.9636 (10)171.6 (16)
N2—H4N···O2v0.859 (15)2.210 (15)3.0308 (10)159.7 (14)
Symmetry codes: (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C2H8N2)2]
Mr279.81
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)110
a, b, c (Å)14.4959 (3), 9.63748 (8), 13.87746 (17)
V3)1938.73 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.36 × 0.21 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correctionAnalytical
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.489, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
29167, 2204, 1990
Rint0.032
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.10
No. of reflections2204
No. of parameters86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.56

Computer programs: COLLECT (Nonius, 1999), PEAKREF (Schreurs, 2005), Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2008a), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—N12.0173 (8)Cu1—O12.3575 (9)
Cu1—N22.0226 (8)Cu1—O3i2.4673 (9)
N1ii—Cu1—N191.62 (4)N2—Cu1—O187.27 (3)
N1—Cu1—N2ii176.81 (3)N1—Cu1—O3i92.95 (3)
N1—Cu1—N285.22 (3)N2—Cu1—O3i87.59 (3)
N2ii—Cu1—N297.95 (4)O1—Cu1—O3i172.18 (3)
N1—Cu1—O192.50 (3)
N1—C1—C2—N253.74 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.858 (16)2.280 (16)3.0944 (11)158.5 (14)
N1—H2N···O3iii0.839 (17)2.274 (17)3.0642 (11)157.1 (17)
N2—H3N···O2iv0.845 (17)2.125 (17)2.9636 (10)171.6 (16)
N2—H4N···O2v0.859 (15)2.210 (15)3.0308 (10)159.7 (14)
Symmetry codes: (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

References

First citationBernhardt, P. V., Moore, E. G. & Riley, M. J. (2001). Inorg. Chem. 40, 5799–5805.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBertini, I., Dapporto, P., Gatteschi, D. & Scozzafava, A. (1979). J. Chem. Soc. Dalton Trans. pp. 1409–1414.  CSD CrossRef Web of Science Google Scholar
First citationCastro, J., Pérez Lourido, P., Sousa-Pedrares, A., Labisbal, E., Carabel, M. & García-Vázquez, J. A. (2002). Acta Cryst. C58, m65–m67.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864.  CSD CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M. (1983). Acta Cryst. A39, 211–216.  CrossRef CAS IUCr Journals Google Scholar
First citationHealy, P. C., Kennard, C. H. L., Smith, G. & White, A. H. (1978). Cryst. Struct. Commun. 7, 565–570.  CAS Google Scholar
First citationLiu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). Inorg. Chem. 46, 5814–5816.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManriquez, V., Campos-Vallette, M., Lara, N., Gonzalez-Tejeda, N., Wittke, O., Diaz, G., Diez, S., Munoz, R. & Kriskovic, L. (1996). J. Chem. Crystallogr. 26, 15–22.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPlater, M. J., Gelbrich, T., Hursthouse, M. B. & De Silva, B. M. (2008). CrystEngComm, 10, 125–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchreurs, A. M. M. (2005). PEAKREF. Utrecht University, The Netherlands.  Google Scholar
First citationSchreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, M. K., Stevenson, D. E., Berlouis, L. E. A., Kennedy, A. R. & Reglinski, J. (2006). J. Inorg. Biochem. 100, 250–259.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds