metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(1H-imidazole)bis­­(μ2-1H-imidazolido)bis­­(μ2-7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato)trizinc(II)]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and cCollege of Public Administration, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: zjuwyz@126.com

(Received 21 April 2010; accepted 14 May 2010; online 22 May 2010)

The title polymer, [Zn3(C8H8O5)2(C3H3N2)2(C3H4N2)2]n, was formed by the reaction of zinc acetate with imidazole and 7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic anhydride (norcan­tharidine). One of the two crystallographically unique ZnII atoms is four-coordinated by three N atoms of three imidazole ligands, two of which are deprotonated, and by one carboxyl­ate O atom of the demethyl­cantharate anion. The second ZnII atom is situated on an inversion centre and is six-coordinated by the bridging O atoms of two symmetry-related demethyl­cantharate anions and by four carboxyl­ate O atoms of the corresponding carboxyl­ate groups. The polymeric crystal structure is additionally stabilized by N—H⋯O hydrogen bonding between the imidazole ligands and carboxyl­ate O atoms.

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic anhydride (nor­can­tharidin) is a lower toxicity anti­cancer drug, see: Shimi et al. (1982[Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.]). For cobalt complexes of norcantharidin, see: Wang et al. (1988[Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20-27.]) and for those including imidazole ligands, see: Furenlid et al. (1986[Furenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806-809.]); Zhu et al. (2003[Zhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E59, m1089-m1090.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3(C8H8O5)2(C3H3N2)2(C3H4N2)2]

  • Mr = 834.71

  • Monoclinic, P 21 /c

  • a = 7.9993 (1) Å

  • b = 22.3923 (2) Å

  • c = 9.7586 (1) Å

  • β = 112.633 (1)°

  • V = 1613.37 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 296 K

  • 0.28 × 0.17 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.629, Tmax = 0.822

  • 13439 measured reflections

  • 3714 independent reflections

  • 3197 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.03

  • 3714 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 1.9570 (12)
Zn1—N1 1.9686 (14)
Zn1—N2i 1.9944 (14)
Zn1—N3 1.9968 (16)
Zn2—O5 2.0266 (12)
Zn2—O4 2.0819 (12)
Zn2—O1 2.1862 (12)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O5ii 0.86 1.91 2.756 (2) 167
Symmetry code: (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982). Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang et al., 1988) and of imidazole (Furenlid et al., 1986; Zhu et al., 2003) have been reported previously.

In the structure of the title compound, the Zn1(II) cation is four-coordinated by three nitrogen atoms of three imidazoles ligands, two of which are deprotonated, and by one carboxylate oxygen atom of the demethylcantharate anion. The deprotonated imidazole rings are responsible for bridging neighbouring Zn1 atoms. The Zn2(II) cation is located on a crystallographic centre of inversion. Two bridge oxygen atoms of two symmetry-related demethylcantharate anions and four carboxylate oxygen atoms give rise to a slightly distorted octahedral ZnO6 coordination environment. Each demethylcantharate anion adopts simultaneously a bridging coordination mode (O2 towards Zn1, O4 towards Zn2) and a monodentate coordination mode (through O5 towards Zn2).

The crystal lattice is stabilized through N—H···O hydrogen bonds between the uncoordinated nitrogen atom (N4) of the imidazole molecule and one of the carboxylate oxygen atoms (O3) of the demethylcantharate anion.

Related literature top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi et al. (1982). For cobalt complexes of norcantharidin, see: Wang et al. (1988) and for those including imidazole ligands, see: Furenlid et al. (1986); Zhu et al. (2003).

Experimental top

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride, zinc acetate and imidazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Crystals suitable for X-ray diffraction were obtained.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H 0.93 Å, aliphatic C—H = 0.97 (2) Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C,N)].

Structure description top

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982). Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang et al., 1988) and of imidazole (Furenlid et al., 1986; Zhu et al., 2003) have been reported previously.

In the structure of the title compound, the Zn1(II) cation is four-coordinated by three nitrogen atoms of three imidazoles ligands, two of which are deprotonated, and by one carboxylate oxygen atom of the demethylcantharate anion. The deprotonated imidazole rings are responsible for bridging neighbouring Zn1 atoms. The Zn2(II) cation is located on a crystallographic centre of inversion. Two bridge oxygen atoms of two symmetry-related demethylcantharate anions and four carboxylate oxygen atoms give rise to a slightly distorted octahedral ZnO6 coordination environment. Each demethylcantharate anion adopts simultaneously a bridging coordination mode (O2 towards Zn1, O4 towards Zn2) and a monodentate coordination mode (through O5 towards Zn2).

The crystal lattice is stabilized through N—H···O hydrogen bonds between the uncoordinated nitrogen atom (N4) of the imidazole molecule and one of the carboxylate oxygen atoms (O3) of the demethylcantharate anion.

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi et al. (1982). For cobalt complexes of norcantharidin, see: Wang et al. (1988) and for those including imidazole ligands, see: Furenlid et al. (1986); Zhu et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound showing the atom-labelling and connectivity of the ZnII atoms. Displacement ellipsoids drawn at the 30% probability level.
Poly[bis(1H-imidazole)bis(µ2-1H-imidazolido)bis(µ2- 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato)trizinc(II)] top
Crystal data top
[Zn3(C8H8O5)2(C3H3N2)2(C3H4N2)2]F(000) = 848
Mr = 834.71Dx = 1.718 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5397 reflections
a = 7.9993 (1) Åθ = 1.8–27.6°
b = 22.3923 (2) ŵ = 2.28 mm1
c = 9.7586 (1) ÅT = 296 K
β = 112.633 (1)°Block, colourless
V = 1613.37 (3) Å30.28 × 0.17 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube3197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.629, Tmax = 0.822k = 2928
13439 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.4382P]
where P = (Fo2 + 2Fc2)/3
3714 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn3(C8H8O5)2(C3H3N2)2(C3H4N2)2]V = 1613.37 (3) Å3
Mr = 834.71Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9993 (1) ŵ = 2.28 mm1
b = 22.3923 (2) ÅT = 296 K
c = 9.7586 (1) Å0.28 × 0.17 × 0.09 mm
β = 112.633 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3197 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.822Rint = 0.023
13439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3714 reflectionsΔρmin = 0.28 e Å3
223 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.02705 (3)0.327653 (8)0.68480 (2)0.02488 (7)
Zn20.00000.50001.00000.02427 (8)
C10.5856 (3)0.35035 (11)0.8423 (3)0.0508 (6)
H1A0.70150.34150.84760.061*
C20.4334 (3)0.31994 (10)0.7673 (3)0.0471 (5)
H2A0.42590.28600.71030.057*
C30.3601 (3)0.39293 (9)0.8744 (2)0.0391 (5)
H3A0.29430.41960.90730.047*
C40.1719 (3)0.18968 (8)0.8571 (2)0.0333 (4)
H4A0.24510.15650.84880.040*
C50.1783 (3)0.22588 (8)0.7447 (2)0.0325 (4)
H5A0.25660.22180.64590.039*
C60.0280 (3)0.25794 (8)0.94487 (19)0.0293 (4)
H6A0.12060.28101.01100.035*
C70.1093 (2)0.44234 (7)0.70651 (18)0.0222 (3)
C80.1796 (2)0.50314 (7)0.64085 (19)0.0230 (3)
H8A0.23750.50010.53250.028*
C90.3146 (2)0.52910 (8)0.70277 (19)0.0267 (4)
H9A0.39370.49910.71980.032*
C100.4169 (3)0.58168 (8)0.6063 (2)0.0364 (4)
H10A0.52170.59270.62770.044*
H10B0.45550.57260.50150.044*
C110.2716 (3)0.63123 (8)0.6539 (2)0.0395 (5)
H11A0.24650.64590.57020.047*
H11B0.30780.66440.70030.047*
C120.1090 (3)0.59822 (8)0.7649 (2)0.0296 (4)
H12A0.01770.62480.83360.036*
C130.0311 (2)0.55369 (7)0.68508 (19)0.0250 (4)
H13A0.02820.57220.59500.030*
C140.1603 (2)0.53377 (8)0.78551 (19)0.0265 (4)
N10.0501 (2)0.26968 (6)0.80047 (16)0.0281 (3)
N20.0394 (2)0.20990 (6)0.98546 (16)0.0288 (3)
N30.2899 (2)0.34675 (7)0.78774 (18)0.0333 (4)
N40.5372 (2)0.39636 (8)0.9085 (2)0.0429 (4)
H4B0.60870.42320.96320.051*
O10.19478 (17)0.55896 (5)0.83772 (13)0.0271 (3)
O20.09952 (19)0.40346 (5)0.61684 (13)0.0326 (3)
O30.2753 (2)0.52710 (8)0.73430 (17)0.0515 (4)
O40.06572 (18)0.43224 (5)0.84191 (13)0.0293 (3)
O50.19131 (16)0.52692 (6)0.92484 (13)0.0299 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03053 (12)0.02231 (11)0.02322 (11)0.00257 (8)0.01193 (9)0.00100 (7)
Zn20.02831 (15)0.02813 (15)0.01822 (14)0.00145 (11)0.01100 (12)0.00224 (10)
C10.0314 (11)0.0607 (14)0.0607 (15)0.0008 (10)0.0180 (11)0.0062 (12)
C20.0400 (12)0.0476 (13)0.0559 (14)0.0009 (9)0.0209 (11)0.0142 (10)
C30.0339 (10)0.0342 (10)0.0435 (12)0.0002 (8)0.0085 (9)0.0071 (9)
C40.0360 (10)0.0285 (9)0.0353 (11)0.0069 (8)0.0135 (9)0.0026 (8)
C50.0348 (10)0.0339 (10)0.0254 (9)0.0060 (8)0.0077 (8)0.0002 (7)
C60.0355 (10)0.0247 (9)0.0267 (9)0.0021 (7)0.0107 (8)0.0007 (7)
C70.0217 (8)0.0222 (8)0.0228 (9)0.0034 (6)0.0088 (7)0.0027 (6)
C80.0265 (9)0.0228 (8)0.0185 (8)0.0016 (6)0.0075 (7)0.0007 (6)
C90.0256 (9)0.0266 (9)0.0275 (9)0.0022 (7)0.0096 (7)0.0005 (7)
C100.0303 (10)0.0353 (10)0.0400 (11)0.0077 (8)0.0095 (9)0.0041 (8)
C110.0435 (12)0.0266 (10)0.0465 (12)0.0070 (8)0.0154 (10)0.0055 (8)
C120.0342 (10)0.0217 (8)0.0334 (10)0.0031 (7)0.0134 (8)0.0021 (7)
C130.0287 (9)0.0253 (8)0.0229 (8)0.0028 (7)0.0121 (7)0.0023 (6)
C140.0271 (9)0.0272 (9)0.0270 (9)0.0059 (7)0.0124 (8)0.0009 (7)
N10.0341 (8)0.0252 (7)0.0249 (8)0.0016 (6)0.0114 (7)0.0028 (6)
N20.0376 (9)0.0254 (8)0.0256 (8)0.0013 (6)0.0148 (7)0.0035 (6)
N30.0301 (8)0.0309 (8)0.0371 (9)0.0032 (7)0.0110 (7)0.0046 (7)
N40.0319 (9)0.0396 (9)0.0461 (11)0.0091 (7)0.0028 (8)0.0045 (8)
O10.0316 (7)0.0272 (6)0.0250 (6)0.0010 (5)0.0136 (5)0.0020 (5)
O20.0497 (8)0.0243 (6)0.0235 (6)0.0059 (5)0.0137 (6)0.0031 (5)
O30.0368 (8)0.0864 (12)0.0406 (9)0.0114 (8)0.0249 (7)0.0152 (8)
O40.0439 (8)0.0233 (6)0.0203 (6)0.0005 (5)0.0120 (6)0.0004 (5)
O50.0258 (6)0.0419 (7)0.0226 (6)0.0049 (5)0.0099 (5)0.0012 (5)
Geometric parameters (Å, º) top
Zn1—O21.9570 (12)C6—H6A0.9300
Zn1—N11.9686 (14)C7—O41.251 (2)
Zn1—N2i1.9944 (14)C7—O21.2578 (19)
Zn1—N31.9968 (16)C7—C81.518 (2)
Zn2—O5ii2.0266 (12)C8—C91.540 (2)
Zn2—O52.0266 (12)C8—C131.576 (2)
Zn2—O42.0819 (12)C8—H8A0.9800
Zn2—O4ii2.0819 (12)C9—O11.459 (2)
Zn2—O1ii2.1862 (12)C9—C101.533 (2)
Zn2—O12.1862 (12)C9—H9A0.9800
C1—C21.340 (3)C10—C111.543 (3)
C1—N41.350 (3)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—N31.376 (3)C11—C121.525 (3)
C2—H2A0.9300C11—H11A0.9700
C3—N31.317 (2)C11—H11B0.9700
C3—N41.327 (3)C12—O11.457 (2)
C3—H3A0.9300C12—C131.537 (2)
C4—C51.349 (3)C12—H12A0.9800
C4—N21.369 (2)C13—C141.533 (2)
C4—H4A0.9300C13—H13A0.9800
C5—N11.371 (2)C14—O31.213 (2)
C5—H5A0.9300C14—O51.294 (2)
C6—N11.329 (2)N2—Zn1iii1.9944 (14)
C6—N21.330 (2)N4—H4B0.8600
O2—Zn1—N1122.06 (6)C10—C9—C8109.78 (15)
O2—Zn1—N2i97.25 (6)O1—C9—H9A113.8
N1—Zn1—N2i104.86 (6)C10—C9—H9A113.8
O2—Zn1—N3106.98 (6)C8—C9—H9A113.8
N1—Zn1—N3110.76 (7)C9—C10—C11101.84 (15)
N2i—Zn1—N3114.52 (7)C9—C10—H10A111.4
O5ii—Zn2—O5180.000 (1)C11—C10—H10A111.4
O5ii—Zn2—O492.34 (5)C9—C10—H10B111.4
O5—Zn2—O487.66 (5)C11—C10—H10B111.4
O5ii—Zn2—O4ii87.66 (5)H10A—C10—H10B109.3
O5—Zn2—O4ii92.34 (5)C12—C11—C10101.71 (15)
O4—Zn2—O4ii180.0C12—C11—H11A111.4
O5ii—Zn2—O1ii89.15 (5)C10—C11—H11A111.4
O5—Zn2—O1ii90.85 (5)C12—C11—H11B111.4
O4—Zn2—O1ii90.17 (4)C10—C11—H11B111.4
O4ii—Zn2—O1ii89.83 (4)H11A—C11—H11B109.3
O5ii—Zn2—O190.85 (5)O1—C12—C11101.88 (15)
O5—Zn2—O189.15 (5)O1—C12—C13102.39 (13)
O4—Zn2—O189.83 (4)C11—C12—C13110.85 (16)
O4ii—Zn2—O190.17 (4)O1—C12—H12A113.5
O1ii—Zn2—O1180.0C11—C12—H12A113.5
C2—C1—N4106.4 (2)C13—C12—H12A113.5
C2—C1—H1A126.8C14—C13—C12111.41 (14)
N4—C1—H1A126.8C14—C13—C8115.37 (13)
C1—C2—N3109.4 (2)C12—C13—C8101.21 (13)
C1—C2—H2A125.3C14—C13—H13A109.5
N3—C2—H2A125.3C12—C13—H13A109.5
N3—C3—N4110.88 (18)C8—C13—H13A109.5
N3—C3—H3A124.6O3—C14—O5123.32 (17)
N4—C3—H3A124.6O3—C14—C13120.10 (16)
C5—C4—N2108.61 (16)O5—C14—C13116.54 (15)
C5—C4—H4A125.7C6—N1—C5104.69 (15)
N2—C4—H4A125.7C6—N1—Zn1127.96 (13)
C4—C5—N1108.57 (16)C5—N1—Zn1126.56 (12)
C4—C5—H5A125.7C6—N2—C4104.75 (14)
N1—C5—H5A125.7C6—N2—Zn1iii130.16 (12)
N1—C6—N2113.37 (16)C4—N2—Zn1iii125.09 (12)
N1—C6—H6A123.3C3—N3—C2105.22 (17)
N2—C6—H6A123.3C3—N3—Zn1126.68 (14)
O4—C7—O2122.91 (15)C2—N3—Zn1127.52 (14)
O4—C7—C8121.03 (15)C3—N4—C1108.14 (17)
O2—C7—C8116.06 (15)C3—N4—H4B125.9
C7—C8—C9112.03 (14)C1—N4—H4B125.9
C7—C8—C13114.24 (14)C12—O1—C996.04 (12)
C9—C8—C13100.96 (13)C12—O1—Zn2112.31 (10)
C7—C8—H8A109.8C9—O1—Zn2114.50 (9)
C9—C8—H8A109.8C7—O2—Zn1121.81 (11)
C13—C8—H8A109.8C7—O4—Zn2122.65 (10)
O1—C9—C10102.25 (14)C14—O5—Zn2123.34 (11)
O1—C9—C8102.16 (13)
N4—C1—C2—N30.5 (3)C1—C2—N3—C30.3 (3)
N2—C4—C5—N10.1 (2)C1—C2—N3—Zn1171.94 (17)
O4—C7—C8—C942.3 (2)O2—Zn1—N3—C338.44 (19)
O2—C7—C8—C9137.10 (16)N1—Zn1—N3—C396.74 (18)
O4—C7—C8—C1371.7 (2)N2i—Zn1—N3—C3144.95 (17)
O2—C7—C8—C13108.87 (17)O2—Zn1—N3—C2131.53 (18)
C7—C8—C9—O186.39 (15)N1—Zn1—N3—C293.29 (19)
C13—C8—C9—O135.59 (15)N2i—Zn1—N3—C225.0 (2)
C7—C8—C9—C10165.65 (14)N3—C3—N4—C10.4 (3)
C13—C8—C9—C1072.37 (16)C2—C1—N4—C30.5 (3)
O1—C9—C10—C1133.06 (18)C11—C12—O1—C957.35 (15)
C8—C9—C10—C1174.84 (18)C13—C12—O1—C957.40 (14)
C9—C10—C11—C122.0 (2)C11—C12—O1—Zn2176.96 (11)
C10—C11—C12—O136.52 (18)C13—C12—O1—Zn262.21 (13)
C10—C11—C12—C1371.83 (19)C10—C9—O1—C1255.89 (15)
O1—C12—C13—C1488.49 (16)C8—C9—O1—C1257.76 (14)
C11—C12—C13—C14163.49 (15)C10—C9—O1—Zn2173.78 (11)
O1—C12—C13—C834.66 (16)C8—C9—O1—Zn260.13 (13)
C11—C12—C13—C873.36 (17)O5ii—Zn2—O1—C12170.75 (10)
C7—C8—C13—C140.5 (2)O5—Zn2—O1—C129.25 (10)
C9—C8—C13—C14120.96 (15)O4—Zn2—O1—C1296.91 (10)
C7—C8—C13—C12119.84 (15)O4ii—Zn2—O1—C1283.09 (10)
C9—C8—C13—C120.57 (16)O5ii—Zn2—O1—C981.07 (11)
C12—C13—C14—O3140.91 (18)O5—Zn2—O1—C998.93 (11)
C8—C13—C14—O3104.4 (2)O4—Zn2—O1—C911.27 (11)
C12—C13—C14—O536.7 (2)O4ii—Zn2—O1—C9168.73 (11)
C8—C13—C14—O577.90 (19)O4—C7—O2—Zn111.7 (2)
N2—C6—N1—C50.4 (2)C8—C7—O2—Zn1168.88 (11)
N2—C6—N1—Zn1169.85 (12)N1—Zn1—O2—C761.89 (16)
C4—C5—N1—C60.2 (2)N2i—Zn1—O2—C7174.51 (14)
C4—C5—N1—Zn1170.27 (13)N3—Zn1—O2—C767.06 (15)
O2—Zn1—N1—C6105.18 (16)O2—C7—O4—Zn2159.29 (13)
N2i—Zn1—N1—C6146.15 (16)C8—C7—O4—Zn221.3 (2)
N3—Zn1—N1—C622.12 (17)O5ii—Zn2—O4—C7124.12 (14)
O2—Zn1—N1—C586.57 (16)O5—Zn2—O4—C755.88 (14)
N2i—Zn1—N1—C522.11 (17)O1ii—Zn2—O4—C7146.73 (14)
N3—Zn1—N1—C5146.14 (15)O1—Zn2—O4—C733.27 (14)
N1—C6—N2—C40.5 (2)O3—C14—O5—Zn2150.62 (16)
N1—C6—N2—Zn1iii179.67 (12)C13—C14—O5—Zn231.8 (2)
C5—C4—N2—C60.3 (2)O4—Zn2—O5—C1447.74 (14)
C5—C4—N2—Zn1iii179.80 (13)O4ii—Zn2—O5—C14132.26 (14)
N4—C3—N3—C20.1 (2)O1ii—Zn2—O5—C14137.88 (14)
N4—C3—N3—Zn1171.69 (14)O1—Zn2—O5—C1442.12 (14)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O5iv0.861.912.756 (2)167
Symmetry code: (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn3(C8H8O5)2(C3H3N2)2(C3H4N2)2]
Mr834.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.9993 (1), 22.3923 (2), 9.7586 (1)
β (°) 112.633 (1)
V3)1613.37 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.28 × 0.17 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.629, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
13439, 3714, 3197
Rint0.023
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.03
No. of reflections3714
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O21.9570 (12)Zn2—O52.0266 (12)
Zn1—N11.9686 (14)Zn2—O42.0819 (12)
Zn1—N2i1.9944 (14)Zn2—O12.1862 (12)
Zn1—N31.9968 (16)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O5ii0.861.912.756 (2)166.9
Symmetry code: (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806–809.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.  CAS Google Scholar
First citationZhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E59, m1089–m1090.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds