inorganic compounds
The trigonal polymorph of strontium tetraborate, β-SrB4O7
aInstitute of Physics SB RAS, Krasnoyarsk 660036, Russian Federation and Siberian Federal University, Svobodnyi st. 79, Krasnoyarsk 660041, Russian Federation
*Correspondence e-mail: adva@iph.krasn.ru
The β-SrB4O7, contains five Sr atoms (three located on a threefold rotation axis), twelve B and 21 O atoms. The structure is made up from BO3 triangles and BO4 tetrahedra in a 1:1 ratio. Pairs of BO3 triangles are linked to BO4 tetrahedra via common corners, forming chains. These chains are further linked to adjacent chains through corner-sharing, leading to a three-dimensional framework with channels running parallel to [001]. The Sr2+ ions reside in the channels and exhibit strongly distorted polyhedra The density of the β-polymorph is considerably lower than that of α-SrB4O7, which is constructed solely from BO4 tetrahedra.
of the title compound,Related literature
For the orthorhombic α-polymorph, see: Block et al. (1964). For the physical properties of this phase, see: Oseledchik et al. (1995); Petrov et al. (2004); Zaitsev et al. (2006); Verwey et al. (1992); Machida et al. (1979); Pei et al. (2000). For other crystalline phases in the system SrO—B2O3 listed in the ICSD (2009), see: Ross & Angel (1991); Lin et al. (1999); Wei et al. (2001); Tang et al. (2008); Lapshin et al. (2007); Kim et al. (1996). For glass-phases in this system, see: Imaoka (1959); Polyakova & Litovchik (2008). For a review of B—O bond lengths in BO3 and BO4 units, see: Zobetz (1982, 1990).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810019069/wm2345sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810019069/wm2345Isup2.hkl
Crystals were extracted out of glass by careful dissolving of the latter in a 2% HNO3 solution. The initial glass has been made from a mixture of SrCO3 (99.8%) and H3BO3 (99.98%) in a 1:4 ratio. The mixture was heated up to 353—363 K with addition of a small amount of water and careful mixing until CO2 gas evolution had stopped. Then the temperature was increased slowly up to 573 K to yield a anhydrous phase. The derived mixture was then placed into a glass-carbon crucible and kept in a molten state at 1323 K during 6 h in a nitrogen atmosphere. The
was cooled in air down to 773 K and the glass was finally annealed at 723 K during a day to remove strain.The orthorhombic phase of strontium tetraborate, α-SrB4O7 (I), is known for a long time (Block et al., 1964). This compound has attracted attention owing to its interesting physical properties, namely an unprecedented fundamental optical-absorption edge among oxide compounds (~130 nm), high non-linear optical coefficients (Oseledchik et al., 1995; Petrov et al., 2004; Zaitsev et al., 2006), good luminescent characteristics and an ability to stabilize rare-earth elements in divalent state (Verwey et al., 1992; Pei et al., 2000; Machida et al., 1979).
SrB4O7 falls in a glass-forming range within the SrO—B2O3 system and can simply be obtained as a glass (Imaoka, 1959). The process of glass re-crystallization occurs through complex mechanisms with probabilistic formation of other crystalline phases, specifically of metastable phases. Such a phase was in fact observed and designated as β-SrB4O7 (Polyakova & Litovchik, 2008). However, X-ray powder diffraction data of this phase and of two other new compounds described by these authors were not analysed because of impure samples.
The FIZ/NIST Inorganic
Database (release 2009; ICSD, 2009) reveals six phases in the SrO—B2O3 system besides (I): strontium diborate, (IIa), SrB2O4 (Kim et al., 1996), its high-pressure form (Ross & Angel, 1991), (IIb), distrontium diborate, Sr2B2O5, (III), (Lin et al., 1999), tristrontium tetraborate, Sr3B2O6, (IV), (Wei et al., 2001), distrontium hexadecaborate, Sr2B16O26, (V), (Tang et al., 2008) and tetrastrontium tetradecaborate, Sr4B14O25, (VI), (Lapshin et al., 2007). Only two of these phases crystallize in non-centrosymmetric space groups, viz. (I, Pmn21 and VI, Cmc21). The main feature of all these structures are BOx units (x = 3,4). Isolated (IV) or flat pairs (III) of BO3 triangles, a framework of BO4 tetrahedra with shared vertices (I, II) and a framework of triangles and tetrahedra with shared vertices (V, VI) are found in these structures.In the process of glass re-crystallization of a strontium tetraborate composition at 973–983 K during one day, we obtained β-SrB4O7 crystals with dimensions of ~200–400 µm. The crystals were located on the glass surface and were optically homogeneous (i.e. crystals showed homogeneous extinction when observed under a polarizing microscope). The crystals possess strong anisotropy when abrased, and crystals with an elongated ellipsoidal shape were obtained in such a way. As it turned out, the crystals are most firm along the c-direction.
The ~20°. The remaining two vertices are common with the same tetrahedron (e.g. see O2 and O4 in Fig.1). The BO4 tetrahedra are connected to one another via common vertices and form chains along the c-direction (Fig. 2). These chains are connected with pairs of BO3 triangles, leading to the formation of channels in the structure. The channels are filled with strontium ions (Fig. 3). The coordination polyhedra around the strontium ions are non-regular and defined by six O atoms in the range 2.479 (3)–2.786 (3) Å when a distance < 2.8 Å is considered as relevant.
of (I) is built up from a three-dimensional framework of connected boron-oxygen tetrahedra. The of the title structure contains five Sr (three on special positions), twelve B and 21 O atoms. Alternatively, the of the title compound can thus be written as Sr3B12O21. It consists of BO3 triangles and BO4 tetrahedra in an 1:1 ratio (3:1 for structure V and 3:4 for structure VI). They form a three-dimensional framework constructed via common vertices. The BO3 triangles are linked to one another so that two of their vertices and the bridging O atom are located on a straight line (see O1, O3, O5; O6, O7, O10 and O11, O13, O15 in Fig.1). The plane of one triangle in such a pair is tilted relatively to the other one about the line with an angle ofAll vertices in the anionic framework are shared so that every oxygen atom is connected to two boron atoms. The B—O distances fall into the interval 1.323 (6)–1.420 (6)Å (average is 1.367 (6) Å) for BO3 triangles and into the interval 1.425 (6)–1.538 (6) Å (average is 1.474 (6) Å) for BO4 tetrahedra. These values compare well with the mean bond lengths calculated for various borate structures (Zobetz, 1982, 1990).
In comparison with α-SrB4O7 which is constructued solely from BO4 tetrahedra, the density of the β-polymorph is considerably lower.
For the orthorhombic α-polymorph, see: Block et al. (1964). For the physical properties of this phase, see: Oseledchik et al. (1995); Petrov et al. (2004); Zaitsev et al. (2006); Verwey et al. (1992); Machida et al. (1979); Pei et al. (2000). For other crystalline phases in the system SrO—B2O3 listed in the ICSD (2009), see: Ross & Angel (1991); Lin et al. (1999); Wei et al. (2001); Tang et al. (2008); Lapshin et al. (2007); Kim et al. (1996). For glass-phases in this system, see: Imaoka (1959); Polyakova & Litovchik (2008). For a review of B—O bond lengths in BO3 and BO4 units, see: Zobetz (1982, 1990).
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).SrB4O7 | Dx = 3.353 (1) Mg m−3 |
Mr = 242.86 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3 | Cell parameters from 2820 reflections |
Hall symbol: P 3 | θ = 2.4–29.3° |
a = 17.145 (1) Å | µ = 11.19 mm−1 |
c = 4.2527 (5) Å | T = 296 K |
V = 1082.61 (16) Å3 | Ellipsoidal, colorless |
Z = 9 | 0.40 × 0.25 × 0.18 mm |
F(000) = 1026 |
Bruker SMART CCD area-detector diffractometer | 3709 independent reflections |
Radiation source: fine-focus sealed tube | 3202 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
φ and ω scans | θmax = 28.7°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −22→23 |
Tmin = 0.095, Tmax = 0.242 | k = −23→23 |
10350 measured reflections | l = −5→5 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.030 | (Δ/σ)max < 0.001 |
wR(F2) = 0.064 | Δρmax = 1.02 e Å−3 |
S = 0.85 | Δρmin = −0.49 e Å−3 |
3709 reflections | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
265 parameters | Extinction coefficient: 0.0794 (13) |
0 restraints | Absolute structure: Flack (1983), 1836 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.030 (7) |
SrB4O7 | Z = 9 |
Mr = 242.86 | Mo Kα radiation |
Trigonal, P3 | µ = 11.19 mm−1 |
a = 17.145 (1) Å | T = 296 K |
c = 4.2527 (5) Å | 0.40 × 0.25 × 0.18 mm |
V = 1082.61 (16) Å3 |
Bruker SMART CCD area-detector diffractometer | 3709 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3202 reflections with I > 2σ(I) |
Tmin = 0.095, Tmax = 0.242 | Rint = 0.054 |
10350 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.064 | Δρmax = 1.02 e Å−3 |
S = 0.85 | Δρmin = −0.49 e Å−3 |
3709 reflections | Absolute structure: Flack (1983), 1836 Friedel pairs |
265 parameters | Absolute structure parameter: −0.030 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.0000 | 0.0000 | 0.5000 | 0.0106 (2) | |
Sr2 | 0.6667 | 0.3333 | 0.7047 (2) | 0.0097 (2) | |
Sr3 | 0.3333 | 0.6667 | 0.6084 (5) | 0.01172 (15) | |
Sr4 | 0.32408 (4) | 0.33158 (4) | 0.7001 (4) | 0.00732 (14) | |
Sr5 | −0.00569 (3) | 0.33541 (4) | 0.5183 (4) | 0.00743 (15) | |
O1 | 0.3441 (2) | 0.5031 (2) | 0.5634 (9) | 0.0115 (7) | |
O2 | 0.2472 (2) | 0.3798 (2) | 0.2476 (8) | 0.0094 (7) | |
O3 | 0.2591 (2) | 0.5240 (2) | 0.1833 (8) | 0.0108 (7) | |
O4 | 0.1239 (2) | 0.3939 (2) | 0.0012 (9) | 0.0109 (7) | |
O5 | 0.1760 (2) | 0.5441 (2) | −0.1939 (8) | 0.0090 (7) | |
O6 | 0.1571 (2) | 0.1803 (2) | 0.4810 (9) | 0.0119 (8) | |
O7 | 0.2841 (2) | 0.2150 (2) | 0.1685 (8) | 0.0075 (6) | |
O8 | 0.1428 (2) | 0.0790 (2) | 0.0952 (8) | 0.0109 (7) | |
O9 | 0.2767 (2) | 0.0826 (2) | −0.0917 (8) | 0.0083 (7) | |
O10 | 0.1278 (2) | −0.0221 (2) | −0.2863 (8) | 0.0095 (7) | |
O11 | 0.5201 (2) | 0.3007 (2) | 0.4426 (8) | 0.0082 (7) | |
O12 | 0.4709 (2) | 0.4061 (2) | 0.3108 (8) | 0.0077 (7) | |
O13 | 0.6000 (2) | 0.4102 (2) | 0.0726 (8) | 0.0105 (7) | |
O14 | 0.5899 (2) | 0.5436 (2) | 0.0455 (8) | 0.0065 (6) | |
O15 | 0.6814 (2) | 0.5195 (2) | −0.3106 (8) | 0.0082 (7) | |
O16 | 0.0899 (2) | 0.2724 (2) | 0.3487 (8) | 0.0084 (7) | |
O17 | 0.1632 (2) | 0.2814 (2) | 0.8498 (8) | 0.0085 (7) | |
O18 | 0.3864 (2) | 0.1604 (2) | 0.2995 (8) | 0.0082 (7) | |
O19 | 0.3945 (2) | 0.2362 (2) | 0.7992 (8) | 0.0062 (6) | |
O20 | 0.5007 (2) | 0.5578 (2) | 0.4336 (8) | 0.0073 (7) | |
O21 | 0.4320 (2) | 0.4828 (2) | 0.9349 (8) | 0.0067 (7) | |
B1 | 0.2862 (4) | 0.4681 (4) | 0.3246 (14) | 0.0079 (10)* | |
B2 | 0.1811 (3) | 0.4849 (3) | −0.0018 (13) | 0.0059 (10)* | |
B3 | 0.1948 (3) | 0.1620 (3) | 0.2422 (13) | 0.0075 (10)* | |
B4 | 0.1853 (4) | 0.0444 (3) | −0.0934 (13) | 0.0071 (10)* | |
B5 | 0.5250 (3) | 0.3704 (3) | 0.2794 (12) | 0.0052 (9)* | |
B6 | 0.6277 (3) | 0.4939 (3) | −0.0547 (13) | 0.0063 (10)* | |
B7 | 0.1537 (4) | 0.3283 (3) | 0.1104 (13) | 0.0048 (10)* | |
B8 | 0.1082 (3) | 0.2266 (3) | 0.5981 (12) | 0.0052 (10)* | |
B9 | 0.3394 (4) | 0.1748 (4) | 0.0454 (12) | 0.0064 (11)* | |
B10 | 0.4409 (3) | 0.2160 (3) | 0.5607 (12) | 0.0063 (10)* | |
B11 | 0.4960 (4) | 0.4991 (4) | 0.1768 (13) | 0.0076 (12)* | |
B12 | 0.4379 (3) | 0.5431 (3) | 0.6829 (12) | 0.0061 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.0098 (3) | 0.0098 (3) | 0.0121 (5) | 0.00490 (15) | 0.000 | 0.000 |
Sr2 | 0.0093 (3) | 0.0093 (3) | 0.0106 (5) | 0.00466 (16) | 0.000 | 0.000 |
Sr3 | 0.0100 (2) | 0.0100 (2) | 0.0151 (4) | 0.00502 (10) | 0.000 | 0.000 |
Sr4 | 0.0072 (3) | 0.0066 (3) | 0.0083 (3) | 0.0036 (2) | 0.0001 (3) | 0.0014 (2) |
Sr5 | 0.0072 (3) | 0.0076 (3) | 0.0082 (3) | 0.0043 (2) | 0.0007 (2) | 0.0015 (2) |
O1 | 0.0055 (16) | 0.0191 (19) | 0.0082 (17) | 0.0048 (15) | −0.0004 (14) | −0.0017 (14) |
O2 | 0.0069 (16) | 0.0074 (16) | 0.0109 (17) | 0.0014 (13) | −0.0039 (13) | 0.0001 (13) |
O3 | 0.0099 (16) | 0.0065 (16) | 0.0141 (18) | 0.0027 (14) | −0.0075 (14) | −0.0033 (14) |
O4 | 0.0090 (16) | 0.0103 (17) | 0.0153 (19) | 0.0062 (14) | −0.0051 (14) | −0.0006 (14) |
O5 | 0.0074 (16) | 0.0100 (17) | 0.0091 (18) | 0.0039 (14) | −0.0009 (13) | 0.0018 (13) |
O6 | 0.0139 (19) | 0.0164 (18) | 0.0101 (18) | 0.0110 (16) | 0.0039 (14) | 0.0042 (15) |
O7 | 0.0080 (16) | 0.0090 (16) | 0.0058 (16) | 0.0046 (14) | −0.0001 (13) | −0.0004 (13) |
O8 | 0.0065 (16) | 0.0099 (16) | 0.0148 (19) | 0.0029 (14) | 0.0034 (14) | −0.0030 (14) |
O9 | 0.0076 (16) | 0.0109 (16) | 0.0081 (16) | 0.0059 (14) | 0.0012 (13) | −0.0006 (13) |
O10 | 0.0087 (17) | 0.0060 (16) | 0.0148 (19) | 0.0044 (14) | −0.0046 (14) | −0.0022 (14) |
O11 | 0.0061 (16) | 0.0095 (16) | 0.0093 (17) | 0.0042 (14) | 0.0016 (13) | 0.0018 (13) |
O12 | 0.0090 (16) | 0.0090 (16) | 0.0069 (16) | 0.0057 (14) | 0.0031 (13) | 0.0025 (13) |
O13 | 0.0104 (17) | 0.0078 (16) | 0.0125 (18) | 0.0039 (14) | 0.0087 (13) | 0.0050 (13) |
O14 | 0.0077 (15) | 0.0062 (15) | 0.0060 (16) | 0.0039 (13) | 0.0001 (13) | −0.0009 (12) |
O15 | 0.0086 (18) | 0.0114 (18) | 0.0048 (17) | 0.0053 (15) | 0.0040 (14) | 0.0046 (14) |
O16 | 0.0069 (16) | 0.0130 (17) | 0.0075 (16) | 0.0066 (14) | 0.0036 (13) | 0.0026 (13) |
O17 | 0.0082 (16) | 0.0092 (16) | 0.0077 (17) | 0.0041 (14) | −0.0004 (13) | −0.0023 (13) |
O18 | 0.0081 (16) | 0.0112 (16) | 0.0079 (17) | 0.0068 (14) | −0.0016 (13) | 0.0003 (13) |
O19 | 0.0089 (15) | 0.0083 (16) | 0.0043 (16) | 0.0065 (13) | 0.0021 (12) | 0.0017 (12) |
O20 | 0.0099 (16) | 0.0099 (16) | 0.0038 (15) | 0.0061 (14) | 0.0024 (13) | 0.0000 (12) |
O21 | 0.0057 (15) | 0.0066 (15) | 0.0076 (17) | 0.0029 (13) | −0.0009 (12) | 0.0029 (13) |
Sr1—O10i | 2.569 (3) | Sr5—B11xii | 3.171 (6) |
Sr1—O10ii | 2.569 (3) | O1—B1 | 1.335 (6) |
Sr1—O10iii | 2.569 (3) | O1—B12 | 1.486 (6) |
Sr1—O8iv | 2.734 (3) | O2—B1 | 1.354 (6) |
Sr1—O8v | 2.734 (3) | O2—B7 | 1.509 (6) |
Sr1—O8 | 2.734 (3) | O2—Sr4xiv | 2.988 (3) |
Sr1—O6 | 2.913 (4) | O3—B1 | 1.392 (6) |
Sr1—O6v | 2.913 (4) | O3—B2 | 1.401 (6) |
Sr1—O6iv | 2.913 (4) | O3—Sr3xiv | 3.236 (3) |
Sr1—B3 | 3.285 (5) | O4—B2 | 1.366 (6) |
Sr1—B3iv | 3.285 (5) | O4—B7 | 1.521 (6) |
Sr1—B3v | 3.285 (5) | O4—Sr5xiv | 2.816 (3) |
Sr2—O11vi | 2.542 (3) | O5—B2 | 1.340 (6) |
Sr2—O11vii | 2.542 (3) | O5—B12xv | 1.489 (6) |
Sr2—O11 | 2.542 (3) | O5—Sr3xiv | 2.594 (3) |
Sr2—O13viii | 2.644 (3) | O6—B3 | 1.323 (6) |
Sr2—O13ix | 2.644 (3) | O6—B8 | 1.499 (6) |
Sr2—O13ii | 2.644 (3) | O7—B3 | 1.370 (6) |
Sr2—O15viii | 3.074 (3) | O7—B9 | 1.517 (6) |
Sr2—O15ix | 3.074 (3) | O7—Sr4xiv | 2.657 (3) |
Sr2—O15ii | 3.074 (3) | O8—B3 | 1.394 (6) |
Sr2—B6viii | 3.303 (5) | O8—B4 | 1.399 (6) |
Sr2—B6ix | 3.303 (5) | O8—Sr1xiv | 3.304 (3) |
Sr2—B6ii | 3.303 (5) | O9—B4 | 1.364 (6) |
Sr3—O5x | 2.594 (3) | O9—B9 | 1.516 (6) |
Sr3—O5ii | 2.594 (3) | O9—Sr5xvi | 2.676 (3) |
Sr3—O5xi | 2.594 (3) | O10—B4 | 1.349 (6) |
Sr3—O3xii | 2.786 (3) | O10—B8xvi | 1.487 (5) |
Sr3—O3 | 2.786 (3) | O10—Sr1xiv | 2.569 (3) |
Sr3—O3xiii | 2.786 (3) | O11—B5 | 1.348 (6) |
Sr3—O1xii | 2.908 (3) | O11—B10 | 1.494 (6) |
Sr3—O1xiii | 2.908 (3) | O12—B5 | 1.350 (6) |
Sr3—O1 | 2.908 (3) | O12—B11 | 1.537 (6) |
Sr3—O3x | 3.236 (3) | O13—B6 | 1.377 (6) |
Sr3—O3xi | 3.236 (4) | O13—B5 | 1.419 (6) |
Sr3—O3ii | 3.236 (4) | O13—Sr2xiv | 2.644 (3) |
Sr4—O19 | 2.507 (3) | O14—B6 | 1.371 (6) |
Sr4—O21 | 2.519 (3) | O14—B11 | 1.503 (6) |
Sr4—O17 | 2.526 (3) | O14—Sr5xiii | 2.657 (3) |
Sr4—O7ii | 2.657 (3) | O14—Sr5xvii | 2.836 (3) |
Sr4—O2 | 2.685 (3) | O15—B6 | 1.349 (6) |
Sr4—O12 | 2.737 (3) | O15—B10xviii | 1.501 (6) |
Sr4—O1 | 2.845 (4) | O15—Sr5xvii | 2.649 (3) |
Sr4—O7 | 2.864 (3) | O15—Sr2xiv | 3.074 (3) |
Sr4—O6 | 2.893 (4) | O16—B8 | 1.445 (6) |
Sr4—O2ii | 2.988 (3) | O16—B7 | 1.447 (6) |
Sr4—B12 | 3.145 (5) | O17—B8 | 1.425 (6) |
Sr4—B1 | 3.158 (5) | O17—B7ii | 1.426 (6) |
Sr5—O16 | 2.479 (3) | O18—B9 | 1.441 (6) |
Sr5—O20xii | 2.482 (3) | O18—B10 | 1.458 (6) |
Sr5—O18v | 2.539 (3) | O18—Sr5iv | 2.539 (3) |
Sr5—O15x | 2.649 (3) | O19—B10 | 1.434 (6) |
Sr5—O14xii | 2.657 (3) | O19—B9ii | 1.450 (5) |
Sr5—O9i | 2.676 (3) | O20—B12 | 1.440 (6) |
Sr5—O4ii | 2.816 (3) | O20—B11 | 1.460 (6) |
Sr5—O14x | 2.836 (3) | O20—Sr5xiii | 2.482 (3) |
Sr5—O4 | 2.924 (4) | O21—B11ii | 1.425 (6) |
Sr5—B10v | 3.129 (5) | O21—B12 | 1.458 (6) |
Sr5—B6x | 3.149 (5) | ||
O10i—Sr1—O10ii | 108.20 (8) | O7—Sr4—O2ii | 145.41 (8) |
O10i—Sr1—O10iii | 108.20 (8) | O6—Sr4—O2ii | 97.10 (9) |
O10ii—Sr1—O10iii | 108.20 (8) | O16—Sr5—O20xii | 116.34 (10) |
O10i—Sr1—O8iv | 155.68 (11) | O16—Sr5—O18v | 104.21 (10) |
O10ii—Sr1—O8iv | 94.57 (10) | O20xii—Sr5—O18v | 119.04 (10) |
O10iii—Sr1—O8iv | 71.17 (10) | O16—Sr5—O15x | 152.34 (10) |
O10i—Sr1—O8v | 71.17 (10) | O20xii—Sr5—O15x | 90.34 (10) |
O10ii—Sr1—O8v | 155.68 (11) | O18v—Sr5—O15x | 52.72 (10) |
O10iii—Sr1—O8v | 94.57 (10) | O16—Sr5—O14xii | 112.32 (11) |
O8iv—Sr1—O8v | 84.57 (11) | O20xii—Sr5—O14xii | 54.17 (10) |
O10i—Sr1—O8 | 94.57 (10) | O18v—Sr5—O14xii | 69.52 (10) |
O10ii—Sr1—O8 | 71.17 (10) | O15x—Sr5—O14xii | 76.45 (10) |
O10iii—Sr1—O8 | 155.68 (11) | O16—Sr5—O9i | 85.40 (10) |
O8iv—Sr1—O8 | 84.57 (11) | O20xii—Sr5—O9i | 148.56 (12) |
O8v—Sr1—O8 | 84.57 (11) | O18v—Sr5—O9i | 72.45 (10) |
O10i—Sr1—O6 | 49.69 (9) | O15x—Sr5—O9i | 73.60 (10) |
O10ii—Sr1—O6 | 76.23 (9) | O14xii—Sr5—O9i | 140.89 (9) |
O10iii—Sr1—O6 | 156.14 (11) | O16—Sr5—O4ii | 77.96 (10) |
O8iv—Sr1—O6 | 132.54 (10) | O20xii—Sr5—O4ii | 83.34 (10) |
O8v—Sr1—O6 | 86.46 (9) | O18v—Sr5—O4ii | 151.29 (11) |
O8—Sr1—O6 | 48.18 (9) | O15x—Sr5—O4ii | 114.40 (11) |
O10i—Sr1—O6v | 76.23 (9) | O14xii—Sr5—O4ii | 136.93 (9) |
O10ii—Sr1—O6v | 156.14 (11) | O9i—Sr5—O4ii | 79.29 (10) |
O10iii—Sr1—O6v | 49.69 (9) | O16—Sr5—O14x | 142.36 (10) |
O8iv—Sr1—O6v | 86.46 (9) | O20xii—Sr5—O14x | 70.68 (10) |
O8v—Sr1—O6v | 48.18 (9) | O18v—Sr5—O14x | 102.82 (9) |
O8—Sr1—O6v | 132.54 (10) | O15x—Sr5—O14x | 50.85 (9) |
O6—Sr1—O6v | 119.923 (7) | O14xii—Sr5—O14x | 101.42 (10) |
O10i—Sr1—O6iv | 156.14 (11) | O9i—Sr5—O14x | 78.32 (9) |
O10ii—Sr1—O6iv | 49.69 (9) | O4ii—Sr5—O14x | 65.84 (10) |
O10iii—Sr1—O6iv | 76.23 (9) | O16—Sr5—O4 | 51.39 (10) |
O8iv—Sr1—O6iv | 48.18 (9) | O20xii—Sr5—O4 | 71.17 (10) |
O8v—Sr1—O6iv | 132.54 (10) | O18v—Sr5—O4 | 108.16 (10) |
O8—Sr1—O6iv | 86.46 (9) | O15x—Sr5—O4 | 142.90 (10) |
O6—Sr1—O6iv | 119.923 (8) | O14xii—Sr5—O4 | 66.60 (9) |
O6v—Sr1—O6iv | 119.923 (8) | O9i—Sr5—O4 | 136.26 (9) |
O11vi—Sr2—O11vii | 102.21 (9) | O4ii—Sr5—O4 | 95.60 (10) |
O11vi—Sr2—O11 | 102.21 (9) | O14x—Sr5—O4 | 139.09 (9) |
O11vii—Sr2—O11 | 102.21 (9) | B1—O1—B12 | 149.0 (4) |
O11vi—Sr2—O13viii | 94.41 (10) | B1—O1—Sr4 | 90.7 (3) |
O11vii—Sr2—O13viii | 75.13 (10) | B12—O1—Sr4 | 87.2 (2) |
O11—Sr2—O13viii | 163.33 (10) | B1—O1—Sr3 | 95.2 (3) |
O11vi—Sr2—O13ix | 75.13 (10) | B12—O1—Sr3 | 96.2 (3) |
O11vii—Sr2—O13ix | 163.33 (10) | Sr4—O1—Sr3 | 161.90 (14) |
O11—Sr2—O13ix | 94.41 (10) | B1—O2—B7 | 122.2 (4) |
O13viii—Sr2—O13ix | 88.58 (11) | B1—O2—Sr4 | 97.3 (3) |
O11vi—Sr2—O13ii | 163.33 (10) | B7—O2—Sr4 | 129.7 (3) |
O11vii—Sr2—O13ii | 94.41 (10) | B1—O2—Sr4xiv | 117.3 (3) |
O11—Sr2—O13ii | 75.13 (10) | B7—O2—Sr4xiv | 91.4 (3) |
O13viii—Sr2—O13ii | 88.58 (11) | Sr4—O2—Sr4xiv | 96.96 (10) |
O13ix—Sr2—O13ii | 88.58 (11) | B1—O3—B2 | 118.8 (4) |
O11vi—Sr2—O15viii | 48.77 (9) | B1—O3—Sr3 | 99.3 (3) |
O11vii—Sr2—O15viii | 77.18 (10) | B2—O3—Sr3 | 133.8 (3) |
O11—Sr2—O15viii | 148.54 (9) | B1—O3—Sr3xiv | 134.9 (3) |
O13viii—Sr2—O15viii | 47.70 (9) | B2—O3—Sr3xiv | 81.8 (3) |
O13ix—Sr2—O15viii | 89.33 (9) | Sr3—O3—Sr3xiv | 89.54 (8) |
O13ii—Sr2—O15viii | 136.27 (10) | B2—O4—B7 | 122.2 (4) |
O11vi—Sr2—O15ix | 77.18 (10) | B2—O4—Sr5xiv | 112.8 (3) |
O11vii—Sr2—O15ix | 148.54 (9) | B7—O4—Sr5xiv | 117.1 (3) |
O11—Sr2—O15ix | 48.77 (9) | B2—O4—Sr5 | 112.8 (3) |
O13viii—Sr2—O15ix | 136.27 (10) | B7—O4—Sr5 | 89.7 (2) |
O13ix—Sr2—O15ix | 47.70 (9) | Sr5xiv—O4—Sr5 | 95.60 (10) |
O13ii—Sr2—O15ix | 89.33 (9) | B2—O5—B12xv | 137.7 (4) |
O15viii—Sr2—O15ix | 119.955 (5) | B2—O5—Sr3xiv | 112.1 (3) |
O11vi—Sr2—O15ii | 148.54 (9) | B12xv—O5—Sr3xiv | 110.1 (2) |
O11vii—Sr2—O15ii | 48.77 (9) | B3—O6—B8 | 148.2 (4) |
O11—Sr2—O15ii | 77.18 (10) | B3—O6—Sr4 | 94.5 (3) |
O13viii—Sr2—O15ii | 89.33 (9) | B8—O6—Sr4 | 89.0 (2) |
O13ix—Sr2—O15ii | 136.27 (10) | B3—O6—Sr1 | 94.1 (3) |
O13ii—Sr2—O15ii | 47.70 (9) | B8—O6—Sr1 | 95.1 (2) |
O15viii—Sr2—O15ii | 119.955 (6) | Sr4—O6—Sr1 | 156.60 (14) |
O15ix—Sr2—O15ii | 119.955 (5) | B3—O7—B9 | 121.5 (4) |
O5x—Sr3—O5ii | 110.02 (8) | B3—O7—Sr4xiv | 116.9 (3) |
O5x—Sr3—O5xi | 110.02 (8) | B9—O7—Sr4xiv | 95.6 (2) |
O5ii—Sr3—O5xi | 110.02 (8) | B3—O7—Sr4 | 94.6 (3) |
O5x—Sr3—O3xii | 70.47 (10) | B9—O7—Sr4 | 127.1 (3) |
O5ii—Sr3—O3xii | 94.31 (9) | Sr4xiv—O7—Sr4 | 100.68 (10) |
O5xi—Sr3—O3xii | 152.90 (11) | B3—O8—B4 | 119.2 (4) |
O5x—Sr3—O3 | 152.90 (11) | B3—O8—Sr1 | 100.4 (3) |
O5ii—Sr3—O3 | 70.47 (10) | B4—O8—Sr1 | 132.7 (3) |
O5xi—Sr3—O3 | 94.31 (9) | B3—O8—Sr1xiv | 136.6 (3) |
O3xii—Sr3—O3 | 82.43 (11) | B4—O8—Sr1xiv | 79.8 (3) |
O5x—Sr3—O3xiii | 94.31 (9) | Sr1—O8—Sr1xiv | 89.02 (8) |
O5ii—Sr3—O3xiii | 152.90 (11) | B4—O9—B9 | 123.2 (4) |
O5xi—Sr3—O3xiii | 70.47 (10) | B4—O9—Sr5xvi | 114.8 (3) |
O3xii—Sr3—O3xiii | 82.43 (11) | B9—O9—Sr5xvi | 120.0 (2) |
O3—Sr3—O3xiii | 82.43 (11) | B4—O10—B8xvi | 135.4 (4) |
O5x—Sr3—O1xii | 77.41 (9) | B4—O10—Sr1xiv | 114.0 (3) |
O5ii—Sr3—O1xii | 49.47 (9) | B8xvi—O10—Sr1xiv | 110.6 (3) |
O5xi—Sr3—O1xii | 158.70 (11) | B5—O11—B10 | 131.2 (4) |
O3xii—Sr3—O1xii | 48.06 (9) | B5—O11—Sr2 | 114.5 (3) |
O3—Sr3—O1xii | 84.14 (10) | B10—O11—Sr2 | 112.6 (3) |
O3xiii—Sr3—O1xii | 129.98 (11) | B5—O12—B11 | 122.3 (4) |
O5x—Sr3—O1xiii | 49.47 (9) | B5—O12—Sr4 | 121.9 (3) |
O5ii—Sr3—O1xiii | 158.70 (10) | B11—O12—Sr4 | 115.1 (3) |
O5xi—Sr3—O1xiii | 77.41 (9) | B6—O13—B5 | 120.1 (4) |
O3xii—Sr3—O1xiii | 84.14 (10) | B6—O13—Sr2xiv | 106.1 (3) |
O3—Sr3—O1xiii | 129.98 (11) | B5—O13—Sr2xiv | 129.8 (3) |
O3xiii—Sr3—O1xiii | 48.06 (9) | B6—O14—B11 | 121.3 (4) |
O1xii—Sr3—O1xiii | 119.572 (18) | B6—O14—Sr5xiii | 119.7 (3) |
O5x—Sr3—O1 | 158.70 (11) | B11—O14—Sr5xiii | 95.3 (3) |
O5ii—Sr3—O1 | 77.41 (9) | B6—O14—Sr5xvii | 89.9 (3) |
O5xi—Sr3—O1 | 49.47 (9) | B11—O14—Sr5xvii | 130.0 (3) |
O3xii—Sr3—O1 | 129.98 (11) | Sr5xiii—O14—Sr5xvii | 101.42 (10) |
O3—Sr3—O1 | 48.06 (9) | B6—O15—B10xviii | 147.5 (4) |
O3xiii—Sr3—O1 | 84.14 (9) | B6—O15—Sr5xvii | 98.7 (3) |
O1xii—Sr3—O1 | 119.572 (19) | B10xviii—O15—Sr5xvii | 93.8 (2) |
O1xiii—Sr3—O1 | 119.572 (19) | B6—O15—Sr2xiv | 87.5 (3) |
O5x—Sr3—O3x | 44.45 (9) | B10xviii—O15—Sr2xiv | 89.5 (2) |
O5ii—Sr3—O3x | 68.82 (9) | Sr5xvii—O15—Sr2xiv | 162.45 (13) |
O5xi—Sr3—O3x | 109.89 (10) | B8—O16—B7 | 125.3 (4) |
O3xii—Sr3—O3x | 89.54 (8) | B8—O16—Sr5 | 113.2 (3) |
O3—Sr3—O3x | 137.69 (4) | B7—O16—Sr5 | 111.1 (3) |
O3xiii—Sr3—O3x | 137.69 (4) | B8—O17—B7ii | 137.0 (4) |
O1xii—Sr3—O3x | 60.73 (9) | B8—O17—Sr4 | 106.5 (3) |
O1xiii—Sr3—O3x | 89.91 (9) | B7ii—O17—Sr4 | 114.7 (3) |
O1—Sr3—O3x | 129.76 (10) | B9—O18—B10 | 133.6 (4) |
O5x—Sr3—O3xi | 68.82 (9) | B9—O18—Sr5iv | 123.3 (3) |
O5ii—Sr3—O3xi | 109.89 (10) | B10—O18—Sr5iv | 99.5 (3) |
O5xi—Sr3—O3xi | 44.45 (9) | B10—O19—B9ii | 125.1 (4) |
O3xii—Sr3—O3xi | 137.69 (4) | B10—O19—Sr4 | 123.0 (3) |
O3—Sr3—O3xi | 137.69 (4) | B9ii—O19—Sr4 | 104.1 (3) |
O3xiii—Sr3—O3xi | 89.54 (8) | B12—O20—B11 | 130.6 (4) |
O1xii—Sr3—O3xi | 129.76 (10) | B12—O20—Sr5xiii | 120.1 (3) |
O1xiii—Sr3—O3xi | 60.73 (9) | B11—O20—Sr5xiii | 104.0 (3) |
O1—Sr3—O3xi | 89.91 (9) | B11ii—O21—B12 | 128.2 (4) |
O3x—Sr3—O3xi | 69.12 (9) | O1—B1—O2 | 121.8 (5) |
O5x—Sr3—O3ii | 109.89 (10) | O1—B1—O3 | 116.7 (4) |
O5ii—Sr3—O3ii | 44.45 (9) | O2—B1—O3 | 121.1 (4) |
O5xi—Sr3—O3ii | 68.82 (9) | O5—B2—O4 | 126.2 (4) |
O3xii—Sr3—O3ii | 137.69 (4) | O5—B2—O3 | 112.9 (4) |
O3—Sr3—O3ii | 89.54 (8) | O4—B2—O3 | 120.6 (4) |
O3xiii—Sr3—O3ii | 137.69 (4) | O6—B3—O7 | 122.4 (4) |
O1xii—Sr3—O3ii | 89.91 (9) | O6—B3—O8 | 116.6 (4) |
O1xiii—Sr3—O3ii | 129.76 (10) | O7—B3—O8 | 120.5 (4) |
O1—Sr3—O3ii | 60.73 (9) | O10—B4—O9 | 125.9 (4) |
O3x—Sr3—O3ii | 69.12 (9) | O10—B4—O8 | 113.1 (4) |
O3xi—Sr3—O3ii | 69.12 (9) | O9—B4—O8 | 120.7 (4) |
O19—Sr4—O21 | 105.01 (10) | O11—B5—O12 | 126.8 (4) |
O19—Sr4—O17 | 122.38 (10) | O11—B5—O13 | 112.6 (4) |
O21—Sr4—O17 | 111.46 (10) | O12—B5—O13 | 120.4 (4) |
O19—Sr4—O7ii | 53.90 (9) | O15—B6—O14 | 120.4 (4) |
O21—Sr4—O7ii | 104.90 (10) | O15—B6—O13 | 118.6 (4) |
O17—Sr4—O7ii | 74.20 (10) | O14—B6—O13 | 120.1 (4) |
O19—Sr4—O2 | 142.35 (11) | O17xiv—B7—O16 | 115.6 (4) |
O21—Sr4—O2 | 100.85 (10) | O17xiv—B7—O2 | 104.0 (4) |
O17—Sr4—O2 | 70.44 (10) | O16—B7—O2 | 110.3 (4) |
O7ii—Sr4—O2 | 141.90 (9) | O17xiv—B7—O4 | 110.8 (4) |
O19—Sr4—O12 | 77.05 (9) | O16—B7—O4 | 106.4 (4) |
O21—Sr4—O12 | 74.24 (10) | O2—B7—O4 | 109.7 (4) |
O17—Sr4—O12 | 154.69 (11) | O17—B8—O16 | 116.4 (4) |
O7ii—Sr4—O12 | 129.48 (9) | O17—B8—O10i | 111.8 (4) |
O2—Sr4—O12 | 84.31 (10) | O16—B8—O10i | 109.5 (4) |
O19—Sr4—O1 | 149.31 (10) | O17—B8—O6 | 103.8 (4) |
O21—Sr4—O1 | 50.97 (9) | O16—B8—O6 | 112.0 (4) |
O17—Sr4—O1 | 87.17 (10) | O10i—B8—O6 | 102.2 (3) |
O7ii—Sr4—O1 | 141.53 (10) | O18—B9—O19xiv | 116.7 (4) |
O2—Sr4—O1 | 50.18 (10) | O18—B9—O9 | 105.9 (4) |
O12—Sr4—O1 | 77.65 (9) | O19xiv—B9—O9 | 110.2 (4) |
O19—Sr4—O7 | 72.72 (9) | O18—B9—O7 | 110.4 (4) |
O21—Sr4—O7 | 145.82 (10) | O19xiv—B9—O7 | 104.4 (3) |
O17—Sr4—O7 | 96.98 (10) | O9—B9—O7 | 109.2 (4) |
O7ii—Sr4—O7 | 100.68 (10) | O19—B10—O18 | 116.4 (4) |
O2—Sr4—O7 | 70.49 (10) | O19—B10—O11 | 110.3 (4) |
O12—Sr4—O7 | 72.05 (9) | O18—B10—O11 | 110.7 (4) |
O1—Sr4—O7 | 115.02 (10) | O19—B10—O15ix | 111.6 (4) |
O19—Sr4—O6 | 93.03 (10) | O18—B10—O15ix | 102.4 (3) |
O21—Sr4—O6 | 159.89 (10) | O11—B10—O15ix | 104.5 (3) |
O17—Sr4—O6 | 49.69 (10) | O21xiv—B11—O20 | 116.5 (4) |
O7ii—Sr4—O6 | 78.44 (10) | O21xiv—B11—O14 | 110.8 (4) |
O2—Sr4—O6 | 68.12 (10) | O20—B11—O14 | 104.6 (4) |
O12—Sr4—O6 | 119.38 (10) | O21xiv—B11—O12 | 106.0 (4) |
O1—Sr4—O6 | 114.52 (9) | O20—B11—O12 | 109.2 (4) |
O7—Sr4—O6 | 48.38 (9) | O14—B11—O12 | 109.7 (4) |
O19—Sr4—O2ii | 118.18 (10) | O20—B12—O21 | 116.5 (4) |
O21—Sr4—O2ii | 66.73 (10) | O20—B12—O1 | 111.7 (4) |
O17—Sr4—O2ii | 48.74 (9) | O21—B12—O1 | 104.4 (4) |
O7ii—Sr4—O2ii | 68.92 (9) | O20—B12—O5xi | 109.0 (4) |
O2—Sr4—O2ii | 96.96 (10) | O21—B12—O5xi | 111.8 (4) |
O12—Sr4—O2ii | 140.51 (9) | O1—B12—O5xi | 102.5 (3) |
O1—Sr4—O2ii | 73.46 (9) |
Symmetry codes: (i) −y, x−y, z+1; (ii) x, y, z+1; (iii) −x+y, −x, z+1; (iv) −x+y, −x, z; (v) −y, x−y, z; (vi) −y+1, x−y, z; (vii) −x+y+1, −x+1, z; (viii) −x+y+1, −x+1, z+1; (ix) −y+1, x−y, z+1; (x) −x+y, −x+1, z+1; (xi) −y+1, x−y+1, z+1; (xii) −x+y, −x+1, z; (xiii) −y+1, x−y+1, z; (xiv) x, y, z−1; (xv) −x+y, −x+1, z−1; (xvi) −x+y, −x, z−1; (xvii) −y+1, x−y+1, z−1; (xviii) −x+y+1, −x+1, z−1. |
Experimental details
Crystal data | |
Chemical formula | SrB4O7 |
Mr | 242.86 |
Crystal system, space group | Trigonal, P3 |
Temperature (K) | 296 |
a, c (Å) | 17.145 (1), 4.2527 (5) |
V (Å3) | 1082.61 (16) |
Z | 9 |
Radiation type | Mo Kα |
µ (mm−1) | 11.19 |
Crystal size (mm) | 0.40 × 0.25 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.095, 0.242 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10350, 3709, 3202 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.064, 0.85 |
No. of reflections | 3709 |
No. of parameters | 265 |
Δρmax, Δρmin (e Å−3) | 1.02, −0.49 |
Absolute structure | Flack (1983), 1836 Friedel pairs |
Absolute structure parameter | −0.030 (7) |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the State Program for Support of Leading Scientific Schools (grant LS-4645.2010.2.)
References
Block, S., Perloff, A. & Weir, C. E. (1964). Acta Cryst. 17, 314–315. CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
ICSD (2009). Inorganic Crystal Structure Database. FIZ–Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA. http://www.fiz–karlsruhe.de/icsd.html Google Scholar
Imaoka, M. (1959). J. Ceram. Assoc. Jpn, 67, 364–366. CrossRef CAS Google Scholar
Kim, J.-B., Lee, K.-S., Suh, I.-H., Lee, J.-H., Park, J.-R. & Shin, Y.-H. (1996). Acta Cryst. C52, 498–500. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lapshin, A. E., Litovchik, E. O., Polyakova, I. G. & Shepelev, Yu. F. (2007). Zh. Neorg. Khim. 52, 907–911. CAS Google Scholar
Lin, Q.-S., Cheng, W.-D., Chen, J.-T. & Huang, J.-S. (1999). J. Solid State Chem. 144, 30–34. Web of Science CrossRef CAS Google Scholar
Machida, K., Adachi, G. & Shiokawa, J. (1979). J. Lumin. 21, 101–110. CrossRef CAS Web of Science Google Scholar
Oseledchik, Y. S., Prosvirnin, A. I., Starshenko, V. V., Osadchuk, V., Pisarevsky, A. I., Belokrys, S. P., Korol, A. S., Svitanko, N. V., Krikunov, S. A. & Selevich, A. F. (1995). Opt. Mater. 4, 669–674. CrossRef CAS Web of Science Google Scholar
Pei, Z., Zeng, Q. & Su, Q. (2000). J. Phys. Chem. Solids, 61, 9–12. Web of Science CrossRef CAS Google Scholar
Petrov, V., Noack, F., Shen, D., Pan, F., Shen, G., Wang, X., Komatsu, R. & Volker, A. (2004). Opt. Lett. 29, 373–375. Web of Science CrossRef PubMed CAS Google Scholar
Polyakova, I. G. & Litovchik, E. O. (2008). Fiz. Khim. Stekla, 34, 488–502. Google Scholar
Ross, N. L. & Angel, R. J. (1991). J. Solid State Chem. 90, 27–30. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, Z., Chen, X. & Li, M. (2008). Solid State Sci. 10, 894–900. Web of Science CrossRef CAS Google Scholar
Verwey, J. W. M., Dirksen, G. J. & Blasse, G. (1992). J. Phys. Chem. Solids, 53, 367–375. CrossRef CAS Web of Science Google Scholar
Wei, Z. F., Chen, X. L., Wang, F. M., Li, W. C., He, M. & Zhang, Y. (2001). J. Alloys Compd. 327, 10–13. Web of Science CrossRef Google Scholar
Zaitsev, A. I., Aleksandrovsky, A. S., Zamkov, A. V. & Sysoev, A. M. (2006). Inorg. Mater. 42, 1360–1362. Web of Science CrossRef CAS Google Scholar
Zobetz, E. (1982). Z. Kristallogr. 160, 81–92. CrossRef CAS Web of Science Google Scholar
Zobetz, E. (1990). Z. Kristallogr. 191, 45–57. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The orthorhombic phase of strontium tetraborate, α-SrB4O7 (I), is known for a long time (Block et al., 1964). This compound has attracted attention owing to its interesting physical properties, namely an unprecedented fundamental optical-absorption edge among oxide compounds (~130 nm), high non-linear optical coefficients (Oseledchik et al., 1995; Petrov et al., 2004; Zaitsev et al., 2006), good luminescent characteristics and an ability to stabilize rare-earth elements in divalent state (Verwey et al., 1992; Pei et al., 2000; Machida et al., 1979).
SrB4O7 falls in a glass-forming range within the SrO—B2O3 system and can simply be obtained as a glass (Imaoka, 1959). The process of glass re-crystallization occurs through complex mechanisms with probabilistic formation of other crystalline phases, specifically of metastable phases. Such a phase was in fact observed and designated as β-SrB4O7 (Polyakova & Litovchik, 2008). However, X-ray powder diffraction data of this phase and of two other new compounds described by these authors were not analysed because of impure samples.
The FIZ/NIST Inorganic Crystal Structure Database (release 2009; ICSD, 2009) reveals six phases in the SrO—B2O3 system besides (I): strontium diborate, (IIa), SrB2O4 (Kim et al., 1996), its high-pressure form (Ross & Angel, 1991), (IIb), distrontium diborate, Sr2B2O5, (III), (Lin et al., 1999), tristrontium tetraborate, Sr3B2O6, (IV), (Wei et al., 2001), distrontium hexadecaborate, Sr2B16O26, (V), (Tang et al., 2008) and tetrastrontium tetradecaborate, Sr4B14O25, (VI), (Lapshin et al., 2007). Only two of these phases crystallize in non-centrosymmetric space groups, viz. (I, Pmn21 and VI, Cmc21). The main feature of all these structures are BOx units (x = 3,4). Isolated (IV) or flat pairs (III) of BO3 triangles, a framework of BO4 tetrahedra with shared vertices (I, II) and a framework of triangles and tetrahedra with shared vertices (V, VI) are found in these structures.
In the process of glass re-crystallization of a strontium tetraborate composition at 973–983 K during one day, we obtained β-SrB4O7 crystals with dimensions of ~200–400 µm. The crystals were located on the glass surface and were optically homogeneous (i.e. crystals showed homogeneous extinction when observed under a polarizing microscope). The crystals possess strong anisotropy when abrased, and crystals with an elongated ellipsoidal shape were obtained in such a way. As it turned out, the crystals are most firm along the c-direction.
The crystal structure of (I) is built up from a three-dimensional framework of connected boron-oxygen tetrahedra. The asymmetric unit of the title structure contains five Sr (three on special positions), twelve B and 21 O atoms. Alternatively, the structural formula of the title compound can thus be written as Sr3B12O21. It consists of BO3 triangles and BO4 tetrahedra in an 1:1 ratio (3:1 for structure V and 3:4 for structure VI). They form a three-dimensional framework constructed via common vertices. The BO3 triangles are linked to one another so that two of their vertices and the bridging O atom are located on a straight line (see O1, O3, O5; O6, O7, O10 and O11, O13, O15 in Fig.1). The plane of one triangle in such a pair is tilted relatively to the other one about the line with an angle of ~20°. The remaining two vertices are common with the same tetrahedron (e.g. see O2 and O4 in Fig.1). The BO4 tetrahedra are connected to one another via common vertices and form chains along the c-direction (Fig. 2). These chains are connected with pairs of BO3 triangles, leading to the formation of channels in the structure. The channels are filled with strontium ions (Fig. 3). The coordination polyhedra around the strontium ions are non-regular and defined by six O atoms in the range 2.479 (3)–2.786 (3) Å when a distance < 2.8 Å is considered as relevant.
All vertices in the anionic framework are shared so that every oxygen atom is connected to two boron atoms. The B—O distances fall into the interval 1.323 (6)–1.420 (6)Å (average is 1.367 (6) Å) for BO3 triangles and into the interval 1.425 (6)–1.538 (6) Å (average is 1.474 (6) Å) for BO4 tetrahedra. These values compare well with the mean bond lengths calculated for various borate structures (Zobetz, 1982, 1990).
In comparison with α-SrB4O7 which is constructued solely from BO4 tetrahedra, the density of the β-polymorph is considerably lower.