metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­manganese(II)]-μ-7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 9 May 2010; accepted 21 May 2010; online 29 May 2010)

In the title polymer, [Mn(C8H8O5)(H2O)2]n, the MnII atom is in a distorted octa­hedral coordination mode, binding to the bridging O atom of the bicyclo­heptane unit, two O atoms from corresponding carboxyl­ate groups, one carboxyl­ate O atom from a symmetry-related bridging ligand and two water O atoms. This arrangement leads to the formation of polymeric chains propagating parallel to [001]. The crystal structure is stabilized by several O—H⋯O hydrogen-bonding inter­actions involving the coordinated water mol­ecules as donors and the carboxyl­ate O atoms as acceptors.

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride (nor­can­tharidin) is a lower toxicity anti­cancer drug, see: Shimi et al. (1982[Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789.]). For the preparation of disodium demethyl­cantharate, see: Yin et al. (2003[Yin, F. L., Shen, J., Zou, J. J. & Li, R. C. (2003). Acta Chim. Sin. 61, 556-561.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H8O5)(H2O)2]

  • Mr = 275.12

  • Orthorhombic, I b a 2

  • a = 10.3513 (2) Å

  • b = 18.9903 (4) Å

  • c = 10.4899 (5) Å

  • V = 2062.04 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.37 × 0.22 × 0.14 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.722, Tmax = 0.838

  • 14198 measured reflections

  • 2401 independent reflections

  • 2196 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.02

  • 2401 reflections

  • 157 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1171 Friedel pairs

  • Flack parameter: 0.019 (15)

Table 1
Selected bond lengths (Å)

Mn1—O3i 2.0910 (13)
Mn1—O4 2.1527 (13)
Mn1—O2W 2.1722 (16)
Mn1—O1W 2.1892 (13)
Mn1—O2 2.1929 (15)
Mn1—O1 2.2660 (11)
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4ii 0.87 (2) 1.83 (2) 2.6965 (17) 175 (3)
O2W—H2WA⋯O5iii 0.88 (2) 1.95 (2) 2.796 (2) 161 (3)
O1W—H1WB⋯O5i 0.82 (2) 2.01 (2) 2.809 (2) 166 (3)
O2W—H2WB⋯O2i 0.80 (2) 2.13 (2) 2.822 (2) 145 (3)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x, -y+1, z; (iii) [-x, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982) which makes this compound and its derived metal complexes interesting for structural research.

In the title polymer, each MnII atom is six-coordinated in a distorted octahedral coordination, defined by the bridging oxygen atom (O1) of the bicycloheptane unit, two oxygen atoms (O2 and O4) from carboxylate groups, one carboxylate oxygen atom (O3A) from a symmetry-related bridging ligand, and two oxygen atoms (O1W and O2W) from two water molecules. Each demethylcantharate anion adopts simultaneously a bridging coordination mode (O2 and O3 towards neighbouring MnII atoms) and a monodentate coordination mode (through O4 towards Mn1). Owing to the binding of the bridging oxygen atom (O1) with MnII, two six-membered rings(Mn1/O2/C8/C5/C4/O1 and Mn1/O4/C7/C6/C1/O1) are created. In addition, a seven-membered ring (Mn1/O2/C8/C5/C6/C7/O4) is formed because of the coordination of the carboxylate oxygen atoms (O2 and O4).

The crystal structure is stabilized by several hydrogen bonding interactions of the type O—H···O, involving the coordinated water molecules as donors and carboxylate O atoms as acceptors (Table 2).

Related literature top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi et al. (1982). For the preparation of disodium demethylcantharate, see: Yin et al. (2003).

Experimental top

Disodium demethylcantharate was prepared in accordance with the literature technique (Yin et al., 2003).

A solution of manganese(II) acetate (1 mmol) and disodium demethylcantharate (1 mmol) was stirred at the room temperature. After 1 h, a solution of 2-amino-1,3,4-thiadiazole (2 mmol) was added dropwise to the mixed solution. Crystals suitable for single-crystal X-ray diffraction were obtained as colourless blocks over a period of several weeks.

Refinement top

H atoms bonded to C atoms were positioned geometrically and were refined using a riding model [d(C—H) = 0.97-0.98 Å, Uiso(H) = 1.2Ueq(C)]. H atoms bonded to water O atoms were located in a difference Fourier maps and were refined with an O—H distance restraint of 0.85 (2) Å and Uiso(H) = 1.5Ueq(O).

Structure description top

7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982) which makes this compound and its derived metal complexes interesting for structural research.

In the title polymer, each MnII atom is six-coordinated in a distorted octahedral coordination, defined by the bridging oxygen atom (O1) of the bicycloheptane unit, two oxygen atoms (O2 and O4) from carboxylate groups, one carboxylate oxygen atom (O3A) from a symmetry-related bridging ligand, and two oxygen atoms (O1W and O2W) from two water molecules. Each demethylcantharate anion adopts simultaneously a bridging coordination mode (O2 and O3 towards neighbouring MnII atoms) and a monodentate coordination mode (through O4 towards Mn1). Owing to the binding of the bridging oxygen atom (O1) with MnII, two six-membered rings(Mn1/O2/C8/C5/C4/O1 and Mn1/O4/C7/C6/C1/O1) are created. In addition, a seven-membered ring (Mn1/O2/C8/C5/C6/C7/O4) is formed because of the coordination of the carboxylate oxygen atoms (O2 and O4).

The crystal structure is stabilized by several hydrogen bonding interactions of the type O—H···O, involving the coordinated water molecules as donors and carboxylate O atoms as acceptors (Table 2).

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi et al. (1982). For the preparation of disodium demethylcantharate, see: Yin et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
catena-Poly[[diaquamanganese(II)]-µ- 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylato] top
Crystal data top
[Mn(C8H8O5)(H2O)2]F(000) = 1128
Mr = 275.12Dx = 1.772 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 6907 reflections
a = 10.3513 (2) Åθ = 2.1–27.8°
b = 18.9903 (4) ŵ = 1.30 mm1
c = 10.4899 (5) ÅT = 296 K
V = 2062.04 (11) Å3Block, colourless
Z = 80.37 × 0.22 × 0.14 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.722, Tmax = 0.838k = 2324
14198 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2401 reflectionsΔρmax = 0.21 e Å3
157 parametersΔρmin = 0.28 e Å3
7 restraintsAbsolute structure: Flack (1983), 1171 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (15)
Crystal data top
[Mn(C8H8O5)(H2O)2]V = 2062.04 (11) Å3
Mr = 275.12Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 10.3513 (2) ŵ = 1.30 mm1
b = 18.9903 (4) ÅT = 296 K
c = 10.4899 (5) Å0.37 × 0.22 × 0.14 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2401 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2196 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.838Rint = 0.030
14198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057Δρmax = 0.21 e Å3
S = 1.02Δρmin = 0.28 e Å3
2401 reflectionsAbsolute structure: Flack (1983), 1171 Friedel pairs
157 parametersAbsolute structure parameter: 0.019 (15)
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.23964 (2)0.466637 (12)0.21088 (5)0.02642 (8)
O10.37728 (10)0.37412 (6)0.22354 (12)0.0264 (3)
O30.35327 (13)0.46639 (7)0.59926 (14)0.0309 (3)
C80.35590 (15)0.45297 (10)0.48293 (17)0.0235 (4)
O1W0.12217 (13)0.56135 (8)0.23773 (15)0.0428 (4)
C60.28402 (16)0.32972 (9)0.4091 (2)0.0266 (4)
H6A0.28560.28790.46360.032*
O50.08680 (12)0.35748 (7)0.51658 (13)0.0365 (3)
O20.32170 (11)0.49510 (7)0.39659 (14)0.0300 (3)
O40.11371 (12)0.40095 (7)0.32282 (15)0.0359 (3)
C50.40058 (15)0.37989 (9)0.44426 (17)0.0250 (4)
H5A0.45190.35890.51300.030*
C70.15121 (15)0.36557 (9)0.41784 (18)0.0255 (4)
O2W0.15899 (16)0.41688 (10)0.04225 (15)0.0490 (4)
C40.47817 (16)0.37949 (10)0.31993 (18)0.0289 (4)
H4A0.53440.42060.30940.035*
C10.32042 (18)0.30945 (10)0.27210 (19)0.0309 (4)
H1A0.24710.29260.22150.037*
C30.54794 (18)0.30928 (12)0.3051 (2)0.0394 (5)
H3A0.59040.29550.38370.047*
H3B0.61120.31110.23700.047*
C20.4359 (2)0.25889 (11)0.2721 (2)0.0439 (5)
H2A0.44810.23730.18920.053*
H2B0.42620.22240.33610.053*
H2WA0.0832 (18)0.4022 (14)0.017 (3)0.066*
H1WA0.0462 (18)0.5712 (14)0.268 (2)0.066*
H2WB0.193 (2)0.4298 (16)0.022 (2)0.066*
H1WB0.125 (2)0.5871 (13)0.176 (2)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02597 (12)0.02875 (14)0.02454 (14)0.00026 (9)0.00046 (14)0.00452 (15)
O10.0268 (5)0.0279 (6)0.0246 (7)0.0008 (4)0.0014 (5)0.0003 (6)
O30.0305 (6)0.0387 (7)0.0235 (7)0.0061 (5)0.0003 (5)0.0052 (5)
C80.0159 (7)0.0306 (9)0.0240 (10)0.0027 (6)0.0019 (7)0.0023 (8)
O1W0.0354 (7)0.0479 (9)0.0452 (10)0.0157 (6)0.0108 (6)0.0147 (7)
C60.0284 (8)0.0222 (8)0.0292 (10)0.0010 (7)0.0010 (7)0.0041 (8)
O50.0320 (7)0.0453 (8)0.0321 (8)0.0008 (6)0.0049 (6)0.0033 (6)
O20.0379 (7)0.0265 (6)0.0257 (7)0.0034 (6)0.0002 (6)0.0008 (6)
O40.0233 (6)0.0449 (8)0.0395 (9)0.0013 (6)0.0017 (6)0.0161 (7)
C50.0218 (8)0.0282 (9)0.0250 (10)0.0026 (7)0.0014 (7)0.0011 (8)
C70.0228 (8)0.0243 (9)0.0294 (10)0.0053 (7)0.0008 (7)0.0013 (8)
O2W0.0458 (9)0.0724 (11)0.0289 (8)0.0249 (8)0.0036 (7)0.0029 (8)
C40.0210 (8)0.0357 (10)0.0301 (11)0.0036 (7)0.0013 (7)0.0052 (8)
C10.0345 (9)0.0256 (9)0.0325 (10)0.0025 (7)0.0015 (8)0.0038 (8)
C30.0342 (10)0.0475 (12)0.0365 (12)0.0185 (9)0.0023 (9)0.0050 (10)
C20.0553 (13)0.0305 (11)0.0461 (13)0.0136 (9)0.0063 (11)0.0045 (10)
Geometric parameters (Å, º) top
Mn1—O3i2.0910 (13)C6—H6A0.9800
Mn1—O42.1527 (13)O5—C71.241 (2)
Mn1—O2W2.1722 (16)O4—C71.263 (2)
Mn1—O1W2.1892 (13)C5—C41.532 (2)
Mn1—O22.1929 (15)C5—H5A0.9800
Mn1—O12.2660 (11)O2W—H2WA0.875 (16)
O1—C11.454 (2)O2W—H2WB0.800 (17)
O1—C41.457 (2)C4—C31.524 (3)
O3—C81.247 (2)C4—H4A0.9800
O3—Mn1ii2.0910 (13)C1—C21.534 (3)
C8—O21.259 (2)C1—H1A0.9800
C8—C51.518 (2)C3—C21.543 (3)
O1W—H1WA0.867 (15)C3—H3A0.9700
O1W—H1WB0.815 (16)C3—H3B0.9700
C6—C11.534 (3)C2—H2A0.9700
C6—C71.537 (2)C2—H2B0.9700
C6—C51.581 (2)
O3i—Mn1—O4176.92 (5)C4—C5—C6101.44 (14)
O3i—Mn1—O2W91.42 (6)C8—C5—H5A109.9
O4—Mn1—O2W87.68 (6)C4—C5—H5A109.9
O3i—Mn1—O1W83.39 (5)C6—C5—H5A109.9
O4—Mn1—O1W93.99 (5)O5—C7—O4123.99 (16)
O2W—Mn1—O1W104.40 (7)O5—C7—C6118.40 (16)
O3i—Mn1—O297.45 (5)O4—C7—C6117.60 (16)
O4—Mn1—O283.84 (6)Mn1—O2W—H2WA137.1 (18)
O2W—Mn1—O2168.38 (6)Mn1—O2W—H2WB113 (2)
O1W—Mn1—O284.17 (6)H2WA—O2W—H2WB103 (2)
O3i—Mn1—O198.67 (5)O1—C4—C3101.98 (14)
O4—Mn1—O184.23 (4)O1—C4—C5102.44 (13)
O2W—Mn1—O187.25 (6)C3—C4—C5109.84 (16)
O1W—Mn1—O1168.16 (6)O1—C4—H4A113.8
O2—Mn1—O184.00 (5)C3—C4—H4A113.8
C1—O1—C496.10 (13)C5—C4—H4A113.8
C1—O1—Mn1114.89 (9)O1—C1—C2102.31 (15)
C4—O1—Mn1115.91 (9)O1—C1—C6102.45 (14)
C8—O3—Mn1ii133.21 (12)C2—C1—C6110.39 (16)
O3—C8—O2124.60 (17)O1—C1—H1A113.5
O3—C8—C5117.07 (16)C2—C1—H1A113.5
O2—C8—C5118.31 (16)C6—C1—H1A113.5
Mn1—O1W—H1WA136.7 (17)C4—C3—C2102.08 (15)
Mn1—O1W—H1WB112.0 (19)C4—C3—H3A111.4
H1WA—O1W—H1WB100.8 (19)C2—C3—H3A111.4
C1—C6—C7112.76 (16)C4—C3—H3B111.4
C1—C6—C5100.51 (14)C2—C3—H3B111.4
C7—C6—C5113.69 (14)H3A—C3—H3B109.2
C1—C6—H6A109.8C1—C2—C3101.40 (15)
C7—C6—H6A109.8C1—C2—H2A111.5
C5—C6—H6A109.8C3—C2—H2A111.5
C8—O2—Mn1126.25 (12)C1—C2—H2B111.5
C7—O4—Mn1123.55 (11)C3—C2—H2B111.5
C8—C5—C4113.07 (15)H2A—C2—H2B109.3
C8—C5—C6112.38 (13)
O3i—Mn1—O1—C1167.13 (12)C1—C6—C5—C41.19 (16)
O4—Mn1—O1—C111.83 (12)C7—C6—C5—C4119.54 (17)
O2W—Mn1—O1—C176.11 (12)Mn1—O4—C7—O5141.81 (15)
O1W—Mn1—O1—C193.7 (3)Mn1—O4—C7—C639.0 (2)
O2—Mn1—O1—C196.22 (12)C1—C6—C7—O5149.40 (16)
O3i—Mn1—O1—C482.04 (11)C5—C6—C7—O597.02 (19)
O4—Mn1—O1—C499.00 (11)C1—C6—C7—O429.8 (2)
O2W—Mn1—O1—C4173.06 (12)C5—C6—C7—O483.8 (2)
O1W—Mn1—O1—C417.1 (3)C1—O1—C4—C356.75 (16)
O2—Mn1—O1—C414.61 (11)Mn1—O1—C4—C3178.24 (11)
Mn1ii—O3—C8—O227.8 (3)C1—O1—C4—C556.96 (15)
Mn1ii—O3—C8—C5150.61 (12)Mn1—O1—C4—C564.53 (14)
O3—C8—O2—Mn1150.12 (13)C8—C5—C4—O186.60 (16)
C5—C8—O2—Mn128.30 (19)C6—C5—C4—O133.96 (16)
O3i—Mn1—O2—C8133.89 (13)C8—C5—C4—C3165.60 (15)
O4—Mn1—O2—C848.92 (13)C6—C5—C4—C373.84 (17)
O2W—Mn1—O2—C85.5 (4)C4—O1—C1—C256.40 (16)
O1W—Mn1—O2—C8143.59 (13)Mn1—O1—C1—C2178.67 (11)
O1—Mn1—O2—C835.89 (13)C4—O1—C1—C658.02 (14)
O2W—Mn1—O4—C7131.49 (16)Mn1—O1—C1—C664.25 (15)
O1W—Mn1—O4—C7124.24 (15)C7—C6—C1—O185.26 (17)
O2—Mn1—O4—C740.55 (15)C5—C6—C1—O136.13 (16)
O1—Mn1—O4—C744.01 (15)C7—C6—C1—C2166.38 (15)
O3—C8—C5—C4144.55 (16)C5—C6—C1—C272.23 (17)
O2—C8—C5—C436.9 (2)O1—C4—C3—C235.23 (18)
O3—C8—C5—C6101.34 (18)C5—C4—C3—C272.87 (18)
O2—C8—C5—C677.21 (19)O1—C1—C2—C334.25 (19)
C1—C6—C5—C8122.23 (15)C6—C1—C2—C374.20 (19)
C7—C6—C5—C81.5 (2)C4—C3—C2—C10.64 (19)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4iii0.87 (2)1.83 (2)2.6965 (17)175 (3)
O2W—H2WA···O5iv0.88 (2)1.95 (2)2.796 (2)161 (3)
O1W—H1WB···O5i0.82 (2)2.01 (2)2.809 (2)166 (3)
O2W—H2WB···O2i0.80 (2)2.13 (2)2.822 (2)145 (3)
Symmetry codes: (i) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H8O5)(H2O)2]
Mr275.12
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)296
a, b, c (Å)10.3513 (2), 18.9903 (4), 10.4899 (5)
V3)2062.04 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.37 × 0.22 × 0.14
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.722, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
14198, 2401, 2196
Rint0.030
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.02
No. of reflections2401
No. of parameters157
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.28
Absolute structureFlack (1983), 1171 Friedel pairs
Absolute structure parameter0.019 (15)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O3i2.0910 (13)Mn1—O1W2.1892 (13)
Mn1—O42.1527 (13)Mn1—O22.1929 (15)
Mn1—O2W2.1722 (16)Mn1—O12.2660 (11)
Symmetry code: (i) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.867 (15)1.832 (16)2.6965 (17)175 (3)
O2W—H2WA···O5iii0.875 (16)1.954 (17)2.796 (2)161 (3)
O1W—H1WB···O5i0.815 (16)2.011 (18)2.809 (2)166 (3)
O2W—H2WB···O2i0.800 (17)2.13 (2)2.822 (2)145 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z; (iii) x, y, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–789.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYin, F. L., Shen, J., Zou, J. J. & Li, R. C. (2003). Acta Chim. Sin. 61, 556–561.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds