organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-2-methyl-3,4-di­phenyl­cyclo­pent-2-en-1-one

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 May 2010; accepted 21 May 2010; online 26 May 2010)

The asymmetric unit of title compound, C18H16O2, contains two mol­ecules with slightly different conformations. In the first mol­ecule, the two phenyl rings make dihedral angles of 84.98 (11)° and the five-membered ring makes dihedral angles of 84.80 (12) and 73.00 (12)° with the phenyl rings; the corresponding angles for the second mol­ecule are 86.74 (11), 81.20 (13) and 71.36 (12)°. O—H⋯O hydrogen bonds between the hy­droxy and carbonyl groups are a feature of the crystal packing, which results in chains extending parallel to [100]. Weak C—H⋯O and C—H⋯π inter­actions are also observed.

Related literature

For background to the biological applications of steroids, see: Berger et al. (1996[Berger, J. R., Pall, L., Hall, C. D., Simpson, D. M., Berry, P. S. & Dudley, R. (1996). AIDS, 10, 1657-1662.]); Yamada (2002[Yamada, Y. (2002). Yakugaku Zasshi, 122, 727-743.]). For related structures, see: Sher et al. (2007[Sher, M., Fischer, C., Reinke, H. & Langer, P. (2007). Tetrahedron, 63, 4080-4086.]); Katritzky et al. (1999[Katritzky, A. R., Du, W., Denisenko, S. N., Czerney, P. & Steel, P. J. (1999). J. Prakt. Chem. 341, 152-158.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O2

  • Mr = 264.31

  • Orthorhombic, P n a 21

  • a = 12.5098 (4) Å

  • b = 13.1453 (5) Å

  • c = 17.5292 (7) Å

  • V = 2882.59 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.988

  • 14465 measured reflections

  • 3529 independent reflections

  • 2258 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.115

  • S = 0.99

  • 3529 reflections

  • 365 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.03 2.823 (3) 164
O3—H3A⋯O4ii 0.82 2.06 2.861 (3) 164
C2—H2⋯O4ii 0.93 2.54 3.430 (5) 162
C13—H13⋯O3 0.93 2.58 3.453 (4) 157
C20—H20⋯O2iii 0.93 2.60 3.478 (5) 158
C31—H31⋯O1iv 0.93 2.59 3.478 (5) 161
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) x, y-1, z; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Steroids belong to a rich class of secondary metabolites with enormous biological applications, e.g. in the treatment of brain tumors (Yamada, 2002). They are effective against cancer (especially of breast, uterus and prostrate) and also in therapeutic treatment of AIDS symptoms (Berger et al., 1996). The title compound (I, Fig. 1) has been synthesized as a D-ring precursor for the steroidal nucleus. The presence of a chiral center and the two phenyl rings makes it a novel substrate to synthesize a variety of steroids with different substituents on the D-ring.

Related crystal structures of 4-hydroxy-3,4-diphenyl-2-cyclopenten-1-one, (II), (Katritzky et al., 1999) and ethyl 4-hydroxy-3,4-diphenyl-cyclo-2-penten-1-one-2-carboxylate, (III), (Sher et al., 2007) have been published. The title compound differs from (II) and (III) due to substitution at the five membered ring.

The asymmetric unit of title compound consist of two molecules which differ slightly from each other. The phenyl rings A (C1—C6) and B (C12—C17) are attached to the five-membered ring C (C7—C11) which is nearly planar with a r. m. s. deviation of 0.0505 Å from the least-squares plane. The values of the dihedral angles between A/B, A/C and B/C are 84.98 (11)°, 84.80 (12)° and 73.00 (12)°, respectively. The other molecule consists of phenyl rings D (C19—C24), E (C30—C35) and the five-membered ring F (C25—C29). Here the five membered ring deviates by 0.0491 Å from the least-squares plane. The dihedral angles between D/E, D/F and E/F are 86.74 (11)°, 81.20 (13)° and 71.36 (12)°, respectively.

The packing of the molecules is characterised by intermolecular O—H···O hydrogen bonding between the hydroxy donor groups and the CO acceptor groups, leading to the formation of chains extending parallel to [100] (Table 1, Fig. 2). Weak C—H···π and intramolecular π···π interactions are also observed. The five-membered and phenyl rings attached to the hydroxy containing C-atom show π···π interactions with separation in the range 3.767 (3)-3.779 (3) Å, whereas the five membered and other phenyl ring show a separation in the range 4.069 (3)-4.080 (3) Å.

Related literature top

For background to the biological applications of steroids, see: Berger et al. (1996); Yamada (2002). For related structures, see: Sher et al. (2007); Katritzky et al. (1999).

Experimental top

Alcoholic KOH (0.6 g, 11 mmol) was added drop-wise to a well stirred hot solution of butanone (3.4 g, 0.06 mol) and benzil (2.1 g, 10 mmol) in EtOH (25 mL) and refluxed for 30 minutes. The resulting reaction mixture was cooled to 278 K in an ice bath and extracted with n-hexane (3 × 25 mL). The extract was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The resulting solution was kept at room temperature for 48 h to afford colorless prisms.

Refinement top

All Friedel pairs were merged. Although H atoms were discernible in difference Fourier maps, they were positioned geometrically with (C-H = 0.93–0.97 and O-H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and hydroxy H-atoms and x = 1.2 for all other H atoms.

Structure description top

Steroids belong to a rich class of secondary metabolites with enormous biological applications, e.g. in the treatment of brain tumors (Yamada, 2002). They are effective against cancer (especially of breast, uterus and prostrate) and also in therapeutic treatment of AIDS symptoms (Berger et al., 1996). The title compound (I, Fig. 1) has been synthesized as a D-ring precursor for the steroidal nucleus. The presence of a chiral center and the two phenyl rings makes it a novel substrate to synthesize a variety of steroids with different substituents on the D-ring.

Related crystal structures of 4-hydroxy-3,4-diphenyl-2-cyclopenten-1-one, (II), (Katritzky et al., 1999) and ethyl 4-hydroxy-3,4-diphenyl-cyclo-2-penten-1-one-2-carboxylate, (III), (Sher et al., 2007) have been published. The title compound differs from (II) and (III) due to substitution at the five membered ring.

The asymmetric unit of title compound consist of two molecules which differ slightly from each other. The phenyl rings A (C1—C6) and B (C12—C17) are attached to the five-membered ring C (C7—C11) which is nearly planar with a r. m. s. deviation of 0.0505 Å from the least-squares plane. The values of the dihedral angles between A/B, A/C and B/C are 84.98 (11)°, 84.80 (12)° and 73.00 (12)°, respectively. The other molecule consists of phenyl rings D (C19—C24), E (C30—C35) and the five-membered ring F (C25—C29). Here the five membered ring deviates by 0.0491 Å from the least-squares plane. The dihedral angles between D/E, D/F and E/F are 86.74 (11)°, 81.20 (13)° and 71.36 (12)°, respectively.

The packing of the molecules is characterised by intermolecular O—H···O hydrogen bonding between the hydroxy donor groups and the CO acceptor groups, leading to the formation of chains extending parallel to [100] (Table 1, Fig. 2). Weak C—H···π and intramolecular π···π interactions are also observed. The five-membered and phenyl rings attached to the hydroxy containing C-atom show π···π interactions with separation in the range 3.767 (3)-3.779 (3) Å, whereas the five membered and other phenyl ring show a separation in the range 4.069 (3)-4.080 (3) Å.

For background to the biological applications of steroids, see: Berger et al. (1996); Yamada (2002). For related structures, see: Sher et al. (2007); Katritzky et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the b-axis.
4-Hydroxy-2-methyl-3,4-diphenylcyclopent-2-en-1-one top
Crystal data top
C18H16O2F(000) = 1120
Mr = 264.31Dx = 1.218 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1864 reflections
a = 12.5098 (4) Åθ = 2.3–28.0°
b = 13.1453 (5) ŵ = 0.08 mm1
c = 17.5292 (7) ÅT = 296 K
V = 2882.59 (18) Å3Prism, colorless
Z = 80.34 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3529 independent reflections
Radiation source: fine-focus sealed tube2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 7.50 pixels mm-1θmax = 27.9°, θmin = 2.3°
ω–scansh = 1615
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1417
Tmin = 0.979, Tmax = 0.988l = 2123
14465 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
3529 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C18H16O2V = 2882.59 (18) Å3
Mr = 264.31Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 12.5098 (4) ŵ = 0.08 mm1
b = 13.1453 (5) ÅT = 296 K
c = 17.5292 (7) Å0.34 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2258 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.044
14465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.115H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
3529 reflectionsΔρmin = 0.21 e Å3
365 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43730 (14)0.83610 (14)0.23156 (15)0.0463 (8)
O20.71910 (14)0.61202 (16)0.24487 (17)0.0565 (8)
C10.40828 (19)0.7000 (2)0.13864 (19)0.0390 (10)
C20.4119 (3)0.5988 (3)0.1175 (2)0.0577 (14)
C30.3602 (3)0.5670 (3)0.0516 (3)0.0757 (17)
C40.3048 (3)0.6343 (4)0.0076 (3)0.078 (2)
C50.3014 (3)0.7344 (4)0.0279 (3)0.0743 (19)
C60.3533 (2)0.7671 (3)0.0928 (2)0.0555 (14)
C70.4671 (2)0.7358 (2)0.2095 (2)0.0370 (10)
C80.58990 (19)0.7350 (2)0.1973 (3)0.0451 (13)
C90.6291 (2)0.6478 (2)0.2462 (2)0.0418 (10)
C100.5418 (2)0.6131 (2)0.29581 (19)0.0400 (10)
C110.4522 (2)0.6621 (2)0.2763 (2)0.0364 (10)
C120.3469 (2)0.6473 (2)0.31338 (19)0.0380 (10)
C130.2870 (2)0.5598 (2)0.3005 (3)0.0602 (14)
C140.1906 (3)0.5460 (3)0.3375 (3)0.0737 (16)
C150.1529 (3)0.6174 (3)0.3867 (3)0.0680 (16)
C160.2094 (3)0.7036 (3)0.3992 (2)0.0580 (14)
C170.3062 (2)0.7196 (3)0.3627 (2)0.0486 (11)
C180.5604 (3)0.5369 (3)0.3565 (2)0.0603 (14)
O30.32467 (15)0.33328 (14)0.20448 (16)0.0504 (9)
O40.04405 (14)0.10816 (16)0.19042 (16)0.0578 (9)
C190.3572 (2)0.1967 (2)0.2955 (2)0.0424 (11)
C200.3643 (3)0.0942 (3)0.3135 (2)0.0524 (14)
C210.4182 (3)0.0620 (3)0.3771 (3)0.0680 (16)
C220.4655 (3)0.1303 (4)0.4252 (3)0.0763 (18)
C230.4582 (3)0.2321 (4)0.4091 (3)0.077 (2)
C240.4038 (3)0.2651 (3)0.3451 (3)0.0597 (14)
C250.2960 (2)0.2323 (2)0.2249 (2)0.0407 (12)
C260.1746 (2)0.2301 (3)0.2379 (3)0.0473 (13)
C270.1345 (2)0.1439 (2)0.1897 (2)0.0423 (10)
C280.2211 (2)0.1101 (2)0.1395 (2)0.0407 (10)
C290.3113 (2)0.1595 (2)0.1582 (2)0.0383 (10)
C300.4168 (2)0.1482 (2)0.1203 (2)0.0406 (10)
C310.4777 (3)0.0610 (3)0.1311 (2)0.0570 (14)
C320.5755 (3)0.0508 (3)0.0950 (3)0.0737 (16)
C330.6132 (3)0.1264 (3)0.0488 (3)0.0720 (16)
C340.5541 (3)0.2128 (3)0.0372 (2)0.0657 (16)
C350.4561 (3)0.2232 (3)0.0731 (2)0.0495 (11)
C360.2035 (2)0.0339 (3)0.0767 (2)0.0549 (11)
H10.372290.838850.237200.0694*
H20.448950.552120.147270.0694*
H30.363380.498890.037330.0908*
H40.269500.612040.036060.0940*
H50.263970.780700.002100.0893*
H60.351120.835600.105790.0662*
H8A0.607330.723630.144050.0539*
H8B0.621480.798750.213580.0539*
H130.311900.510470.266910.0725*
H140.151130.487200.328660.0883*
H150.088260.607110.411760.0817*
H160.183110.752440.432680.0693*
H170.343990.779430.371330.0582*
H18A0.503120.539750.392880.0903*
H18B0.626850.551340.381690.0903*
H18C0.563380.470180.334350.0903*
H3A0.389940.337850.201880.0757*
H200.331910.046490.281840.0629*
H210.422730.007180.387640.0816*
H220.502060.108020.468210.0916*
H230.490050.279280.441420.0916*
H240.398490.334480.335330.0717*
H26A0.158320.218410.291300.0566*
H26B0.142310.293820.222230.0566*
H310.452600.009410.162700.0682*
H320.615870.007860.102330.0885*
H330.679170.119140.024950.0865*
H340.579690.264050.005540.0785*
H350.416030.281920.065200.0591*
H36A0.270810.016910.053710.0824*
H36B0.156960.062590.038780.0824*
H36C0.171410.026390.097440.0824*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0357 (10)0.0371 (12)0.0662 (18)0.0001 (8)0.0019 (12)0.0014 (12)
O20.0280 (11)0.0599 (14)0.0817 (18)0.0063 (9)0.0022 (11)0.0020 (14)
C10.0258 (14)0.0482 (19)0.043 (2)0.0009 (12)0.0025 (14)0.0055 (16)
C20.060 (2)0.060 (2)0.053 (3)0.0002 (16)0.0040 (18)0.004 (2)
C30.078 (3)0.087 (3)0.062 (3)0.014 (2)0.001 (2)0.023 (3)
C40.049 (2)0.136 (5)0.050 (3)0.011 (2)0.006 (2)0.022 (3)
C50.058 (3)0.117 (4)0.048 (3)0.024 (2)0.010 (2)0.004 (3)
C60.0484 (19)0.073 (2)0.045 (3)0.0121 (16)0.0026 (18)0.006 (2)
C70.0253 (13)0.0386 (16)0.047 (2)0.0008 (11)0.0029 (13)0.0049 (16)
C80.0248 (14)0.0534 (18)0.057 (3)0.0038 (12)0.0051 (15)0.0062 (18)
C90.0273 (14)0.0472 (17)0.051 (2)0.0003 (12)0.0058 (14)0.0058 (16)
C100.0335 (15)0.0425 (17)0.044 (2)0.0016 (12)0.0026 (14)0.0009 (16)
C110.0306 (15)0.0367 (16)0.042 (2)0.0015 (12)0.0013 (13)0.0026 (15)
C120.0329 (14)0.0421 (16)0.039 (2)0.0000 (12)0.0014 (13)0.0024 (15)
C130.0487 (19)0.047 (2)0.085 (3)0.0106 (14)0.018 (2)0.010 (2)
C140.064 (3)0.066 (2)0.091 (3)0.0256 (19)0.021 (2)0.008 (2)
C150.043 (2)0.086 (3)0.075 (3)0.0148 (18)0.0161 (19)0.004 (3)
C160.055 (2)0.071 (3)0.048 (2)0.0021 (17)0.0159 (17)0.005 (2)
C170.0449 (18)0.056 (2)0.045 (2)0.0098 (16)0.0007 (16)0.003 (2)
C180.051 (2)0.065 (2)0.065 (3)0.0029 (16)0.0041 (18)0.013 (2)
O30.0382 (11)0.0381 (12)0.075 (2)0.0022 (8)0.0027 (12)0.0010 (12)
O40.0305 (11)0.0577 (14)0.0851 (19)0.0060 (9)0.0001 (12)0.0028 (14)
C190.0303 (15)0.050 (2)0.047 (2)0.0014 (13)0.0077 (15)0.0055 (18)
C200.0472 (19)0.054 (2)0.056 (3)0.0059 (14)0.0024 (16)0.0032 (19)
C210.063 (2)0.072 (3)0.069 (3)0.0117 (19)0.001 (2)0.009 (2)
C220.054 (2)0.114 (4)0.061 (3)0.009 (2)0.011 (2)0.015 (3)
C230.062 (3)0.101 (4)0.067 (4)0.019 (2)0.012 (2)0.011 (3)
C240.049 (2)0.060 (2)0.070 (3)0.0106 (16)0.011 (2)0.007 (2)
C250.0293 (14)0.0389 (16)0.054 (3)0.0001 (12)0.0020 (14)0.0003 (18)
C260.0306 (14)0.0524 (18)0.059 (3)0.0022 (13)0.0002 (16)0.0030 (19)
C270.0305 (14)0.0415 (16)0.055 (2)0.0023 (12)0.0059 (14)0.0084 (16)
C280.0348 (15)0.0364 (16)0.051 (2)0.0006 (12)0.0049 (14)0.0046 (16)
C290.0334 (15)0.0346 (16)0.047 (2)0.0021 (12)0.0010 (14)0.0033 (16)
C300.0329 (14)0.0458 (17)0.043 (2)0.0047 (12)0.0013 (14)0.0108 (16)
C310.0549 (19)0.052 (2)0.064 (3)0.0044 (15)0.0124 (19)0.0007 (19)
C320.050 (2)0.081 (3)0.090 (3)0.0193 (19)0.016 (2)0.009 (3)
C330.049 (2)0.094 (3)0.073 (3)0.009 (2)0.025 (2)0.019 (3)
C340.069 (2)0.076 (3)0.052 (3)0.025 (2)0.022 (2)0.015 (2)
C350.0527 (19)0.0537 (19)0.042 (2)0.0100 (16)0.0073 (16)0.005 (2)
C360.0506 (19)0.052 (2)0.062 (2)0.0052 (14)0.0058 (17)0.005 (2)
Geometric parameters (Å, º) top
O1—C71.424 (3)C18—H18C0.9600
O2—C91.220 (3)C18—H18A0.9600
O1—H10.8200C18—H18B0.9600
O3—C251.421 (3)C19—C201.387 (5)
O4—C271.225 (3)C19—C241.380 (5)
O3—H3A0.8200C19—C251.529 (5)
C1—C61.377 (5)C20—C211.370 (6)
C1—C71.519 (4)C21—C221.366 (7)
C1—C21.382 (5)C22—C231.371 (7)
C2—C31.388 (6)C23—C241.382 (7)
C3—C41.363 (7)C25—C291.523 (5)
C4—C51.364 (7)C25—C261.536 (4)
C5—C61.379 (6)C26—C271.500 (5)
C7—C111.531 (5)C27—C281.465 (4)
C7—C81.551 (4)C28—C291.343 (4)
C8—C91.513 (5)C28—C361.505 (5)
C9—C101.469 (4)C29—C301.485 (4)
C10—C111.337 (4)C30—C351.378 (5)
C10—C181.480 (5)C30—C311.389 (5)
C11—C121.482 (4)C31—C321.384 (6)
C12—C171.382 (5)C32—C331.366 (6)
C12—C131.391 (4)C33—C341.370 (6)
C13—C141.381 (5)C34—C351.385 (5)
C14—C151.359 (6)C20—H200.9300
C15—C161.353 (6)C21—H210.9300
C16—C171.386 (5)C22—H220.9300
C2—H20.9300C23—H230.9300
C3—H30.9300C24—H240.9300
C4—H40.9300C26—H26A0.9700
C5—H50.9300C26—H26B0.9700
C6—H60.9300C31—H310.9300
C8—H8B0.9700C32—H320.9300
C8—H8A0.9700C33—H330.9300
C13—H130.9300C34—H340.9300
C14—H140.9300C35—H350.9300
C15—H150.9300C36—H36A0.9600
C16—H160.9300C36—H36B0.9600
C17—H170.9300C36—H36C0.9600
O1···C173.212 (4)C21···H4viii2.8700
O1···O2i2.823 (3)C22···H4viii3.0300
O2···O1ii2.823 (3)C24···H3A2.6900
O2···C17ii3.218 (5)C27···H3Aiv3.0800
O3···C353.178 (5)C27···H18Civ3.0800
O3···O4iii2.861 (3)C28···H202.9700
O4···C35iv3.218 (5)C29···H202.6400
O4···O3iv2.861 (3)C30···H3A2.8900
O1···H172.8100C30···H36A2.7700
O1···H31v2.5900C31···H36A2.9800
O1···H62.4500C35···H3A2.8400
O2···H20iii2.6000C35···H16ix3.0400
O2···H18B2.7800H1···C122.8700
O2···H36Ciii2.8800H1···C172.8200
O2···H1ii2.0300H1···H62.3200
O3···H132.5800H1···H172.5000
O3···H242.4700H1···O2i2.0300
O3···H352.7800H1···C9i3.0500
O4···H36C2.8800H1···C62.7100
O4···H2iv2.5400H2···C102.9600
O4···H3Aiv2.0600H2···C112.6800
O4···H18Civ2.7400H2···O4iii2.5400
C2···C103.528 (5)H3A···C302.8900
C2···C123.586 (5)H3A···C352.8400
C2···C93.590 (5)H3A···H242.3400
C9···C17ii3.481 (5)H3A···H352.5300
C9···C23.590 (5)H3A···O4iii2.0600
C9···C16ii3.467 (5)H3A···C27iii3.0800
C10···C23.528 (5)H3A···C242.6900
C12···C23.586 (5)H4···C21x2.8700
C13···C183.571 (5)H4···C22x3.0300
C16···C9i3.467 (5)H6···O12.4500
C17···C9i3.481 (5)H6···H12.3200
C17···O2i3.218 (5)H8A···C22.9800
C17···O13.212 (4)H13···O32.5800
C18···C133.571 (5)H15···H21iv2.4900
C20···C313.525 (5)H16···C35xi3.0400
C20···C303.522 (5)H17···O12.8100
C20···C283.543 (5)H17···H12.5000
C27···C35iv3.494 (5)H18A···C122.7900
C27···C34iv3.421 (5)H18B···O22.7800
C28···C203.543 (5)H18C···O4iii2.7400
C30···C203.522 (5)H18C···C27iii3.0800
C31···C363.578 (5)H20···C282.9700
C31···C203.525 (5)H20···C292.6400
C34···C27iii3.421 (5)H20···O2iv2.6000
C35···C27iii3.494 (5)H21···H15iii2.4900
C35···O4iii3.218 (5)H23···C4vii3.0400
C35···O33.178 (5)H23···C5vii3.0200
C36···C313.578 (5)H24···O32.4700
C2···H8A2.9800H24···H3A2.3400
C4···H23vi3.0400H26A···C203.0800
C5···H23vi3.0200H31···O1xii2.5900
C6···H12.7100H31···C203.0700
C9···H1ii3.0500H34···C17vi2.8900
C10···H22.9600H34···H36Biii2.5400
C11···H22.6800H35···O32.7800
C12···H18A2.7900H35···H3A2.5300
C12···H12.8700H36A···C302.7700
C17···H12.8200H36A···C312.9800
C17···H34vii2.8900H36B···H34iv2.5400
C20···H313.0700H36C···O42.8800
C20···H26A3.0800H36C···O2iv2.8800
C7—O1—H1109.00C10—C18—H18A110.00
C25—O3—H3A110.00C20—C19—C24117.6 (3)
C2—C1—C6118.5 (3)C24—C19—C25121.5 (3)
C6—C1—C7121.4 (3)C20—C19—C25120.9 (3)
C2—C1—C7120.1 (3)C19—C20—C21121.1 (3)
C1—C2—C3119.9 (3)C20—C21—C22120.8 (4)
C2—C3—C4120.8 (4)C21—C22—C23119.1 (5)
C3—C4—C5119.6 (5)C22—C23—C24120.4 (4)
C4—C5—C6120.1 (4)C19—C24—C23121.0 (4)
C1—C6—C5121.1 (4)O3—C25—C19111.3 (2)
O1—C7—C8107.6 (2)O3—C25—C26107.7 (2)
O1—C7—C1112.5 (2)C19—C25—C26111.7 (3)
C1—C7—C11111.8 (2)C19—C25—C29111.5 (2)
C8—C7—C11102.8 (2)C26—C25—C29103.1 (3)
O1—C7—C11110.3 (3)O3—C25—C29111.2 (3)
C1—C7—C8111.4 (3)C25—C26—C27105.2 (3)
C7—C8—C9104.4 (3)O4—C27—C26126.4 (3)
O2—C9—C10125.3 (3)O4—C27—C28125.0 (3)
O2—C9—C8125.5 (3)C26—C27—C28108.7 (2)
C8—C9—C10109.3 (2)C27—C28—C36122.2 (2)
C11—C10—C18129.9 (3)C29—C28—C36128.6 (3)
C9—C10—C18121.3 (3)C27—C28—C29109.2 (3)
C9—C10—C11108.8 (3)C25—C29—C28112.7 (2)
C7—C11—C10113.5 (2)C28—C29—C30126.1 (3)
C7—C11—C12121.8 (2)C25—C29—C30121.2 (2)
C10—C11—C12124.7 (3)C29—C30—C31120.6 (3)
C11—C12—C13121.1 (3)C31—C30—C35118.5 (3)
C13—C12—C17118.1 (3)C29—C30—C35121.0 (3)
C11—C12—C17120.8 (2)C30—C31—C32120.2 (3)
C12—C13—C14120.2 (4)C31—C32—C33120.4 (4)
C13—C14—C15120.7 (4)C32—C33—C34120.3 (4)
C14—C15—C16120.0 (4)C33—C34—C35119.5 (4)
C15—C16—C17120.6 (4)C30—C35—C34121.2 (3)
C12—C17—C16120.4 (3)C19—C20—H20119.00
C3—C2—H2120.00C21—C20—H20119.00
C1—C2—H2120.00C20—C21—H21120.00
C4—C3—H3120.00C22—C21—H21120.00
C2—C3—H3120.00C21—C22—H22120.00
C5—C4—H4120.00C23—C22—H22121.00
C3—C4—H4120.00C22—C23—H23120.00
C4—C5—H5120.00C24—C23—H23120.00
C6—C5—H5120.00C19—C24—H24120.00
C1—C6—H6119.00C23—C24—H24119.00
C5—C6—H6119.00C25—C26—H26A111.00
C7—C8—H8B111.00C25—C26—H26B111.00
C9—C8—H8A111.00C27—C26—H26A111.00
C9—C8—H8B111.00C27—C26—H26B111.00
H8A—C8—H8B109.00H26A—C26—H26B109.00
C7—C8—H8A111.00C30—C31—H31120.00
C12—C13—H13120.00C32—C31—H31120.00
C14—C13—H13120.00C31—C32—H32120.00
C15—C14—H14120.00C33—C32—H32120.00
C13—C14—H14120.00C32—C33—H33120.00
C16—C15—H15120.00C34—C33—H33120.00
C14—C15—H15120.00C33—C34—H34120.00
C15—C16—H16120.00C35—C34—H34120.00
C17—C16—H16120.00C30—C35—H35119.00
C12—C17—H17120.00C34—C35—H35119.00
C16—C17—H17120.00C28—C36—H36A109.00
C10—C18—H18B109.00C28—C36—H36B109.00
C10—C18—H18C110.00C28—C36—H36C109.00
H18A—C18—H18B109.00H36A—C36—H36B109.00
H18A—C18—H18C109.00H36A—C36—H36C109.00
H18B—C18—H18C109.00H36B—C36—H36C109.00
C6—C1—C2—C30.4 (5)C24—C19—C20—C211.8 (5)
C7—C1—C2—C3178.4 (3)C25—C19—C20—C21179.4 (3)
C2—C1—C6—C51.0 (5)C20—C19—C24—C231.9 (5)
C7—C1—C6—C5179.0 (3)C25—C19—C24—C23179.5 (3)
C2—C1—C7—O1167.8 (3)C20—C19—C25—O3162.5 (3)
C2—C1—C7—C871.2 (4)C20—C19—C25—C2677.1 (4)
C2—C1—C7—C1143.2 (4)C20—C19—C25—C2937.7 (4)
C6—C1—C7—O114.3 (4)C24—C19—C25—O320.0 (4)
C6—C1—C7—C8106.7 (3)C24—C19—C25—C26100.4 (4)
C6—C1—C7—C11138.9 (3)C24—C19—C25—C29144.8 (3)
C1—C2—C3—C40.6 (6)C19—C20—C21—C220.8 (6)
C2—C3—C4—C51.0 (6)C20—C21—C22—C230.1 (6)
C3—C4—C5—C60.3 (6)C21—C22—C23—C240.0 (6)
C4—C5—C6—C10.7 (6)C22—C23—C24—C191.0 (6)
O1—C7—C8—C9127.1 (3)O3—C25—C26—C27128.2 (3)
C1—C7—C8—C9109.1 (3)C19—C25—C26—C27109.3 (3)
C11—C7—C8—C910.7 (3)C29—C25—C26—C2710.5 (4)
O1—C7—C11—C10122.2 (3)O3—C25—C29—C28122.6 (3)
O1—C7—C11—C1258.8 (3)O3—C25—C29—C3057.3 (3)
C1—C7—C11—C10112.0 (3)C19—C25—C29—C28112.6 (3)
C1—C7—C11—C1267.1 (3)C19—C25—C29—C3067.6 (3)
C8—C7—C11—C107.6 (4)C26—C25—C29—C287.4 (4)
C8—C7—C11—C12173.4 (3)C26—C25—C29—C30172.5 (3)
C7—C8—C9—O2169.2 (3)C25—C26—C27—O4170.6 (3)
C7—C8—C9—C1011.0 (4)C25—C26—C27—C2810.7 (4)
O2—C9—C10—C11173.6 (3)O4—C27—C28—C29174.9 (3)
O2—C9—C10—C187.3 (5)O4—C27—C28—C366.8 (5)
C8—C9—C10—C116.6 (4)C26—C27—C28—C296.4 (4)
C8—C9—C10—C18172.5 (3)C26—C27—C28—C36171.9 (3)
C9—C10—C11—C70.9 (4)C27—C28—C29—C250.8 (4)
C9—C10—C11—C12179.9 (3)C27—C28—C29—C30179.0 (3)
C18—C10—C11—C7179.9 (3)C36—C28—C29—C25179.0 (3)
C18—C10—C11—C121.1 (5)C36—C28—C29—C300.9 (5)
C7—C11—C12—C13105.4 (4)C25—C29—C30—C31107.3 (3)
C7—C11—C12—C1775.6 (4)C25—C29—C30—C3573.4 (4)
C10—C11—C12—C1373.6 (5)C28—C29—C30—C3172.9 (5)
C10—C11—C12—C17105.5 (4)C28—C29—C30—C35106.5 (4)
C11—C12—C13—C14177.9 (4)C29—C30—C31—C32179.4 (4)
C17—C12—C13—C141.1 (6)C35—C30—C31—C320.1 (5)
C11—C12—C17—C16177.8 (3)C29—C30—C35—C34179.6 (3)
C13—C12—C17—C161.3 (5)C31—C30—C35—C340.2 (5)
C12—C13—C14—C150.1 (7)C30—C31—C32—C330.3 (6)
C13—C14—C15—C160.7 (7)C31—C32—C33—C340.6 (7)
C14—C15—C16—C170.5 (6)C32—C33—C34—C350.4 (6)
C15—C16—C17—C120.5 (6)C33—C34—C35—C300.0 (6)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x, y+1, z; (vi) x+1, y+1, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z1/2; (x) x+1/2, y+1/2, z1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
CgD is the centroid of the C19–C25 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.032.823 (3)164.00
O3—H3A···O4iii0.822.062.861 (3)164.00
C2—H2···O4iii0.932.543.430 (5)162.00
C6—H6···O10.932.452.801 (4)102.00
C13—H13···O30.932.583.453 (4)157.00
C20—H20···O2iv0.932.603.478 (5)158.00
C24—H24···O30.932.472.803 (6)101.00
C31—H31···O1xii0.932.593.478 (5)161.00
C2—H2···CgC0.932.632.918 (4)99.00
C4—H4···CgDx0.932.973.750 (5)142.00
C20—H20···CgF0.932.682.957 (4)98.00
Symmetry codes: (i) x1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (x) x+1/2, y+1/2, z1/2; (xii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H16O2
Mr264.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)12.5098 (4), 13.1453 (5), 17.5292 (7)
V3)2882.59 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
14465, 3529, 2258
Rint0.044
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 0.99
No. of reflections3529
No. of parameters365
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
CgD is the centroid of the C19–C25 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.032.823 (3)164.00
O3—H3A···O4ii0.822.062.861 (3)164.00
C2—H2···O4ii0.932.543.430 (5)162.00
C13—H13···O30.932.583.453 (4)157.00
C20—H20···O2iii0.932.603.478 (5)158.00
C31—H31···O1iv0.932.593.478 (5)161.00
C4—H4···CgDv0.932.973.750 (5)142.00
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x, y1, z; (v) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. ARR also acknowledge the Higher Education Commission, Government of Pakistan, for generous support of a research project (20-819).

References

First citationBerger, J. R., Pall, L., Hall, C. D., Simpson, D. M., Berry, P. S. & Dudley, R. (1996). AIDS, 10, 1657–1662.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Du, W., Denisenko, S. N., Czerney, P. & Steel, P. J. (1999). J. Prakt. Chem. 341, 152–158.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSher, M., Fischer, C., Reinke, H. & Langer, P. (2007). Tetrahedron, 63, 4080–4086.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, Y. (2002). Yakugaku Zasshi, 122, 727–743.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds