organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(di­phenyl­phosphino)-1,2-di­ethyl­hydrazine

aProject AuTEK, Mintek, Private Bag X3015, Randburg 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 28 April 2010; accepted 29 April 2010; online 8 May 2010)

The title compound, C28H30N2P2, adopts a well documented and studied gauche conformation around the hydrazine bond. Bond lengths and angles are in the typical ranges expected for P—N and P—C bonds. A normal hydrazine N—N bond length of 1.426 (3) Å is observed.

Related literature

For related structures, see: Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]); Pelizzi & Pelizzi (1979[Pelizzi, C. & Pelizzi, G. (1979). Acta Cryst. B35, 1785-1790.]). For ab initio mol­ecular modelling studies, see: Cowley et al. (1979[Cowley, A. H., Mitchell, D. J., Whangbo, M. H. & Wolfe, S. (1979). J. Am. Chem. Soc. 101, 5224-5231.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30N2P2

  • Mr = 456.48

  • Monoclinic, P 21 /c

  • a = 14.623 (5) Å

  • b = 13.085 (4) Å

  • c = 13.494 (4) Å

  • β = 108.182 (6)°

  • V = 2453.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.44 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • 15744 measured reflections

  • 6008 independent reflections

  • 3774 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.156

  • S = 1.02

  • 6008 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Crystals of the title compound (Fig. 1) are found to be monoclinic, crystallising in the space group P21/c. Crystals of 1,2-bis(diphenylphosphino)ethane (dppe) show similar characteristics; it is monoclinic and crystallises in the spacegroup P21/n (Pelizzi et al., 1979). The title compound has four molecules per unit cell compared to two in dppe; the latter has a centre of symmetry at the mid-point of the C(sp3)—C(sp3) bond.

Dppe was shown to adopt a staggered conformation, whereas the title compound has a gauche conformation. This gauche conformation adopted by hydrazine has been well documented and studied both experimentally and by ab anitio molecular modelling (Cowley et al., 1979). It was found that the ground-state geometry of hydrazine is gauche, with a dihedral angle close to 90°. Ab initio theoretical estimates of the gauche-anti and gauche-syn barrier heights fall in the ranges 1.6-6.2 and 9.7-13.7 kcal/mol, respectively. In hydrazine, the relative stability of the conformations are gauche > anti > syn (Cowley et al., 1979). The planar conformation of dppe allows it to form stacks of molecules; this is not possible for the title compound.

Bond lengths and angles are in the typical ranges expected for P—N and P—C bonds (Reddy et al., 1994). A normal hydrazine N—N bond length of 1.426 (3) Å is observed.

Related literature top

For related structures, see: Reddy et al. (1994, 1995); Pelizzi & Pelizzi (1979). For ab initio molecular modelling studies, see: Cowley et al. (1979).

Experimental top

The title compound was synthesised in a similar manner to published methods (Reddy et al. 1994, 1995). The compound was obtained as light yellow, single crystalline flakes from the worked-up diethylether layer. The diethylether layer was concentrated and kept at -20 °C for 1-3 days. The supernatant was removed from the crystalline flakes and placed back in the freezer for further crystallisation. 86% yield. Mp 95-96 °C.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar-H) or 0.96 (CH3) Å, and with Ueq = 1.2 (Ar-H) or 1.5 (CH3)Ueq(C).

Structure description top

Crystals of the title compound (Fig. 1) are found to be monoclinic, crystallising in the space group P21/c. Crystals of 1,2-bis(diphenylphosphino)ethane (dppe) show similar characteristics; it is monoclinic and crystallises in the spacegroup P21/n (Pelizzi et al., 1979). The title compound has four molecules per unit cell compared to two in dppe; the latter has a centre of symmetry at the mid-point of the C(sp3)—C(sp3) bond.

Dppe was shown to adopt a staggered conformation, whereas the title compound has a gauche conformation. This gauche conformation adopted by hydrazine has been well documented and studied both experimentally and by ab anitio molecular modelling (Cowley et al., 1979). It was found that the ground-state geometry of hydrazine is gauche, with a dihedral angle close to 90°. Ab initio theoretical estimates of the gauche-anti and gauche-syn barrier heights fall in the ranges 1.6-6.2 and 9.7-13.7 kcal/mol, respectively. In hydrazine, the relative stability of the conformations are gauche > anti > syn (Cowley et al., 1979). The planar conformation of dppe allows it to form stacks of molecules; this is not possible for the title compound.

Bond lengths and angles are in the typical ranges expected for P—N and P—C bonds (Reddy et al., 1994). A normal hydrazine N—N bond length of 1.426 (3) Å is observed.

For related structures, see: Reddy et al. (1994, 1995); Pelizzi & Pelizzi (1979). For ab initio molecular modelling studies, see: Cowley et al. (1979).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for clarity.
1,2-Bis(diphenylphosphino)-1,2-diethylhydrazine top
Crystal data top
C28H30N2P2Z = 4
Mr = 456.48F(000) = 968
Monoclinic, P21/cDx = 1.236 Mg m3
Hall symbol: -P 2ybcMelting point: 368 K
a = 14.623 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.085 (4) ŵ = 0.20 mm1
c = 13.494 (4) ÅT = 173 K
β = 108.182 (6)°Prismic, colourless
V = 2453.1 (13) Å30.44 × 0.17 × 0.17 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 28.3°, θmin = 1.5°
phi and ω scansh = 1719
15744 measured reflectionsk = 1317
6008 independent reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0731P)2 + 1.0514P]
where P = (Fo2 + 2Fc2)/3
6008 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C28H30N2P2V = 2453.1 (13) Å3
Mr = 456.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.623 (5) ŵ = 0.20 mm1
b = 13.085 (4) ÅT = 173 K
c = 13.494 (4) Å0.44 × 0.17 × 0.17 mm
β = 108.182 (6)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3774 reflections with I > 2σ(I)
15744 measured reflectionsRint = 0.056
6008 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.02Δρmax = 0.82 e Å3
6008 reflectionsΔρmin = 0.56 e Å3
289 parameters
Special details top

Experimental. 1HNMR (CDCl3, 300 MHz) δH 7.54 (bs, Arom, 4H) 7.36 (bs, Arom, 4H), 7.26 (m, Arom, 12H), 3.73 and 3.23(m, CH2CH3,4H), 0.79 (t, CH2CH3,3J (1H-1H) = 7.0 Hz, 6H). 13C NMR (CDCl3, 75 MHz) δC 140.2 (m, Arom), 133.4 (m, Arom), 131.4 (s, Arom), 128.7(s, Arom), 48.7 (t, CH2CH3, 2J (13C-31P) = 2.5 Hz), 14.3 (d, CH2CH3, 3J (13C-31P) = 4.1 Hz). 31P NMR (CDCl3,162 MHz) δP 63.4. MS 427 (9%, M – 1).

Intensity data were collected on a Bruker SMART1K CCD area detector diffractometer with graphite monochromated Mo Kα radiation (40kV, 40mA). The collection method involved ω-scans of width 0.3°.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86723 (18)0.1568 (2)0.1440 (2)0.0281 (6)
H1A0.91830.20550.17450.034*
H1B0.83750.17590.07160.034*
C20.9114 (2)0.0518 (2)0.1476 (3)0.0393 (7)
H2A0.95770.05290.11050.059*
H2B0.86180.00320.11570.059*
H2C0.94260.03280.21890.059*
C30.62250 (18)0.1538 (2)0.1085 (2)0.0281 (6)
H3A0.60620.19450.16070.034*
H3B0.57180.10370.08210.034*
C40.6258 (2)0.2228 (2)0.0199 (2)0.0398 (7)
H4A0.56460.25580.00880.060*
H4B0.63990.18290.03320.060*
H4C0.67490.27350.04560.060*
C110.81426 (17)0.36831 (18)0.27049 (19)0.0227 (5)
C120.81650 (19)0.44196 (19)0.3461 (2)0.0288 (6)
H120.81090.42150.40990.035*
C130.8268 (2)0.5447 (2)0.3280 (2)0.0351 (7)
H130.82860.59240.37960.042*
C140.8345 (2)0.5768 (2)0.2334 (2)0.0351 (7)
H140.84250.64570.22150.042*
C150.8303 (2)0.5057 (2)0.1571 (2)0.0364 (7)
H150.83440.52720.09290.044*
C160.8199 (2)0.4023 (2)0.1743 (2)0.0309 (6)
H160.81680.35540.12160.037*
C210.92822 (18)0.21580 (18)0.39268 (19)0.0236 (5)
C221.00751 (19)0.2724 (2)0.3876 (2)0.0279 (6)
H220.99950.32220.33630.034*
C231.0980 (2)0.2556 (2)0.4579 (2)0.0320 (6)
H231.15050.29260.45250.038*
C241.1104 (2)0.1838 (2)0.5361 (2)0.0358 (7)
H241.17110.17350.58400.043*
C251.0331 (2)0.1275 (2)0.5431 (2)0.0386 (7)
H251.04160.07920.59580.046*
C260.9424 (2)0.1428 (2)0.4716 (2)0.0314 (6)
H260.89060.10410.47640.038*
C310.60617 (19)0.01800 (19)0.2575 (2)0.0257 (5)
C320.6057 (2)0.0375 (2)0.3455 (2)0.0409 (8)
H320.65910.07660.38050.049*
C330.5265 (3)0.0351 (2)0.3814 (3)0.0503 (9)
H330.52710.07350.43960.060*
C340.4471 (2)0.0231 (2)0.3320 (2)0.0401 (7)
H340.39440.02450.35670.048*
C350.44666 (19)0.0794 (2)0.2454 (2)0.0334 (6)
H350.39370.11990.21190.040*
C360.52481 (18)0.0760 (2)0.2081 (2)0.0299 (6)
H360.52290.11330.14880.036*
C410.68240 (17)0.10439 (18)0.1100 (2)0.0233 (5)
C420.67952 (19)0.20902 (19)0.1322 (2)0.0299 (6)
H420.69480.23030.20120.036*
C430.6543 (2)0.2810 (2)0.0532 (2)0.0353 (7)
H430.65260.34990.06950.042*
C440.63169 (19)0.2509 (2)0.0500 (2)0.0359 (7)
H440.61370.29920.10310.043*
C450.6360 (2)0.1489 (2)0.0735 (2)0.0330 (6)
H450.62170.12850.14270.040*
C460.66139 (18)0.07618 (19)0.0055 (2)0.0271 (6)
H460.66440.00770.01150.033*
N10.79504 (14)0.16499 (15)0.19838 (16)0.0237 (5)
N20.71357 (14)0.09995 (15)0.15842 (16)0.0229 (5)
P10.80362 (5)0.23470 (5)0.30655 (5)0.02321 (17)
P20.71714 (5)0.01492 (5)0.21993 (5)0.02383 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (13)0.0350 (15)0.0259 (14)0.0074 (11)0.0127 (11)0.0080 (11)
C20.0296 (15)0.0451 (18)0.0467 (19)0.0033 (13)0.0168 (14)0.0038 (14)
C30.0241 (13)0.0261 (13)0.0317 (15)0.0017 (10)0.0052 (11)0.0013 (11)
C40.0381 (17)0.0316 (16)0.0414 (18)0.0010 (13)0.0001 (14)0.0093 (13)
C110.0218 (12)0.0226 (12)0.0240 (13)0.0010 (10)0.0075 (10)0.0005 (10)
C120.0335 (15)0.0278 (14)0.0261 (14)0.0001 (11)0.0110 (12)0.0017 (11)
C130.0374 (16)0.0284 (15)0.0401 (18)0.0025 (12)0.0130 (13)0.0074 (12)
C140.0343 (16)0.0218 (14)0.0486 (19)0.0028 (11)0.0123 (14)0.0042 (13)
C150.0464 (17)0.0309 (15)0.0353 (16)0.0004 (12)0.0179 (14)0.0079 (12)
C160.0396 (16)0.0296 (14)0.0260 (14)0.0013 (12)0.0140 (12)0.0016 (11)
C210.0308 (14)0.0213 (13)0.0196 (13)0.0007 (10)0.0092 (11)0.0026 (10)
C220.0324 (14)0.0265 (13)0.0245 (14)0.0024 (11)0.0083 (11)0.0003 (11)
C230.0305 (14)0.0307 (15)0.0334 (15)0.0024 (11)0.0081 (12)0.0041 (12)
C240.0369 (16)0.0379 (16)0.0258 (15)0.0073 (13)0.0001 (12)0.0039 (12)
C250.0533 (19)0.0341 (16)0.0253 (15)0.0074 (14)0.0079 (13)0.0046 (12)
C260.0436 (16)0.0287 (14)0.0242 (14)0.0019 (12)0.0139 (12)0.0010 (11)
C310.0328 (14)0.0246 (13)0.0224 (13)0.0014 (11)0.0125 (11)0.0026 (10)
C320.0508 (19)0.0384 (17)0.0418 (18)0.0200 (14)0.0265 (15)0.0142 (14)
C330.071 (2)0.0453 (19)0.051 (2)0.0190 (17)0.0426 (19)0.0208 (16)
C340.0452 (18)0.0382 (17)0.0482 (19)0.0025 (14)0.0308 (15)0.0008 (14)
C350.0261 (14)0.0415 (16)0.0332 (16)0.0012 (12)0.0101 (12)0.0012 (13)
C360.0273 (14)0.0402 (16)0.0211 (14)0.0002 (11)0.0062 (11)0.0015 (11)
C410.0207 (12)0.0237 (13)0.0279 (14)0.0004 (10)0.0111 (10)0.0016 (11)
C420.0325 (15)0.0263 (14)0.0331 (16)0.0024 (11)0.0136 (12)0.0036 (11)
C430.0344 (15)0.0205 (14)0.0523 (19)0.0018 (11)0.0153 (14)0.0029 (13)
C440.0286 (15)0.0364 (16)0.0409 (17)0.0016 (12)0.0080 (13)0.0150 (13)
C450.0352 (15)0.0358 (16)0.0281 (15)0.0008 (12)0.0098 (12)0.0065 (12)
C460.0305 (14)0.0223 (13)0.0304 (15)0.0002 (10)0.0122 (12)0.0014 (11)
N10.0240 (11)0.0265 (11)0.0232 (11)0.0061 (9)0.0110 (9)0.0069 (9)
N20.0212 (10)0.0203 (10)0.0256 (11)0.0024 (8)0.0051 (9)0.0004 (9)
P10.0277 (3)0.0231 (3)0.0212 (3)0.0023 (3)0.0112 (3)0.0013 (3)
P20.0256 (3)0.0242 (3)0.0214 (3)0.0009 (3)0.0069 (3)0.0011 (3)
Geometric parameters (Å, º) top
C1—N11.465 (3)C24—C251.378 (4)
C1—C21.512 (4)C24—H240.9300
C1—H1A0.9700C25—C261.390 (4)
C1—H1B0.9700C25—H250.9300
C2—H2A0.9600C26—H260.9300
C2—H2B0.9600C31—C321.393 (4)
C2—H2C0.9600C31—C361.393 (4)
C3—N21.471 (3)C31—P21.846 (3)
C3—C41.510 (4)C32—C331.390 (4)
C3—H3A0.9700C32—H320.9300
C3—H3B0.9700C33—C341.375 (4)
C4—H4A0.9600C33—H330.9300
C4—H4B0.9600C34—C351.381 (4)
C4—H4C0.9600C34—H340.9300
C11—C121.396 (3)C35—C361.386 (4)
C11—C161.398 (4)C35—H350.9300
C11—P11.834 (3)C36—H360.9300
C12—C131.383 (4)C41—C461.395 (4)
C12—H120.9300C41—C421.405 (3)
C13—C141.380 (4)C41—P21.833 (3)
C13—H130.9300C42—C431.383 (4)
C14—C151.374 (4)C42—H420.9300
C14—H140.9300C43—C441.385 (4)
C15—C161.390 (4)C43—H430.9300
C15—H150.9300C44—C451.378 (4)
C16—H160.9300C44—H440.9300
C21—C221.396 (4)C45—C461.391 (4)
C21—C261.397 (4)C45—H450.9300
C21—P11.847 (3)C46—H460.9300
C22—C231.384 (4)N1—N21.426 (3)
C22—H220.9300N1—P11.692 (2)
C23—C241.381 (4)N2—P21.710 (2)
C23—H230.9300
N1—C1—C2114.7 (2)C24—C25—C26120.0 (3)
N1—C1—H1A108.6C24—C25—H25120.0
C2—C1—H1A108.6C26—C25—H25120.0
N1—C1—H1B108.6C25—C26—C21120.7 (3)
C2—C1—H1B108.6C25—C26—H26119.6
H1A—C1—H1B107.6C21—C26—H26119.6
C1—C2—H2A109.5C32—C31—C36117.5 (2)
C1—C2—H2B109.5C32—C31—P2117.4 (2)
H2A—C2—H2B109.5C36—C31—P2124.9 (2)
C1—C2—H2C109.5C33—C32—C31120.8 (3)
H2A—C2—H2C109.5C33—C32—H32119.6
H2B—C2—H2C109.5C31—C32—H32119.6
N2—C3—C4113.6 (2)C34—C33—C32120.9 (3)
N2—C3—H3A108.8C34—C33—H33119.5
C4—C3—H3A108.8C32—C33—H33119.5
N2—C3—H3B108.8C33—C34—C35119.1 (3)
C4—C3—H3B108.8C33—C34—H34120.5
H3A—C3—H3B107.7C35—C34—H34120.5
C3—C4—H4A109.5C34—C35—C36120.3 (3)
C3—C4—H4B109.5C34—C35—H35119.9
H4A—C4—H4B109.5C36—C35—H35119.9
C3—C4—H4C109.5C35—C36—C31121.4 (3)
H4A—C4—H4C109.5C35—C36—H36119.3
H4B—C4—H4C109.5C31—C36—H36119.3
C12—C11—C16117.6 (2)C46—C41—C42117.5 (2)
C12—C11—P1116.66 (19)C46—C41—P2124.53 (19)
C16—C11—P1125.7 (2)C42—C41—P2118.0 (2)
C13—C12—C11121.4 (3)C43—C42—C41121.2 (3)
C13—C12—H12119.3C43—C42—H42119.4
C11—C12—H12119.3C41—C42—H42119.4
C14—C13—C12120.2 (3)C42—C43—C44120.2 (3)
C14—C13—H13119.9C42—C43—H43119.9
C12—C13—H13119.9C44—C43—H43119.9
C15—C14—C13119.3 (3)C45—C44—C43119.6 (3)
C15—C14—H14120.3C45—C44—H44120.2
C13—C14—H14120.3C43—C44—H44120.2
C14—C15—C16121.0 (3)C44—C45—C46120.4 (3)
C14—C15—H15119.5C44—C45—H45119.8
C16—C15—H15119.5C46—C45—H45119.8
C15—C16—C11120.4 (3)C45—C46—C41121.0 (2)
C15—C16—H16119.8C45—C46—H46119.5
C11—C16—H16119.8C41—C46—H46119.5
C22—C21—C26118.2 (2)N2—N1—C1114.50 (19)
C22—C21—P1124.72 (19)N2—N1—P1118.43 (15)
C26—C21—P1117.0 (2)C1—N1—P1126.87 (16)
C23—C22—C21120.8 (2)N1—N2—C3114.66 (19)
C23—C22—H22119.6N1—N2—P2116.47 (15)
C21—C22—H22119.6C3—N2—P2121.99 (16)
C24—C23—C22120.1 (3)N1—P1—C11105.93 (11)
C24—C23—H23119.9N1—P1—C21105.29 (11)
C22—C23—H23119.9C11—P1—C2198.39 (11)
C25—C24—C23120.1 (3)N2—P2—C41102.11 (11)
C25—C24—H24120.0N2—P2—C31104.86 (11)
C23—C24—H24120.0C41—P2—C3199.40 (11)
C16—C11—C12—C131.9 (4)C2—C1—N1—N260.7 (3)
P1—C11—C12—C13178.3 (2)C2—C1—N1—P1114.0 (2)
C11—C12—C13—C140.4 (4)C1—N1—N2—C3113.0 (2)
C12—C13—C14—C151.0 (4)P1—N1—N2—C371.8 (2)
C13—C14—C15—C161.0 (4)C1—N1—N2—P295.4 (2)
C14—C15—C16—C110.4 (4)P1—N1—N2—P279.8 (2)
C12—C11—C16—C151.8 (4)C4—C3—N2—N157.0 (3)
P1—C11—C16—C15178.4 (2)C4—C3—N2—P2153.17 (19)
C26—C21—C22—C231.0 (4)N2—N1—P1—C11123.59 (17)
P1—C21—C22—C23177.6 (2)C1—N1—P1—C1161.9 (2)
C21—C22—C23—C241.7 (4)N2—N1—P1—C21132.80 (17)
C22—C23—C24—C251.2 (4)C1—N1—P1—C2141.7 (2)
C23—C24—C25—C260.0 (4)C12—C11—P1—N1176.22 (19)
C24—C25—C26—C210.6 (4)C16—C11—P1—N13.6 (3)
C22—C21—C26—C250.1 (4)C12—C11—P1—C2175.2 (2)
P1—C21—C26—C25176.7 (2)C16—C11—P1—C21105.1 (2)
C36—C31—C32—C330.5 (4)C22—C21—P1—N185.1 (2)
P2—C31—C32—C33177.0 (3)C26—C21—P1—N198.2 (2)
C31—C32—C33—C340.9 (5)C22—C21—P1—C1124.0 (2)
C32—C33—C34—C350.3 (5)C26—C21—P1—C11152.6 (2)
C33—C34—C35—C360.9 (5)N1—N2—P2—C41131.64 (17)
C34—C35—C36—C311.4 (4)C3—N2—P2—C4179.0 (2)
C32—C31—C36—C350.7 (4)N1—N2—P2—C31125.09 (17)
P2—C31—C36—C35175.6 (2)C3—N2—P2—C3124.3 (2)
C46—C41—C42—C431.7 (4)C46—C41—P2—N20.8 (2)
P2—C41—C42—C43179.7 (2)C42—C41—P2—N2178.72 (19)
C41—C42—C43—C440.2 (4)C46—C41—P2—C31108.3 (2)
C42—C43—C44—C451.1 (4)C42—C41—P2—C3173.7 (2)
C43—C44—C45—C461.0 (4)C32—C31—P2—N278.5 (2)
C44—C45—C46—C410.5 (4)C36—C31—P2—N2105.2 (2)
C42—C41—C46—C451.8 (4)C32—C31—P2—C41176.2 (2)
P2—C41—C46—C45179.7 (2)C36—C31—P2—C410.1 (3)

Experimental details

Crystal data
Chemical formulaC28H30N2P2
Mr456.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.623 (5), 13.085 (4), 13.494 (4)
β (°) 108.182 (6)
V3)2453.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.44 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15744, 6008, 3774
Rint0.056
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.156, 1.02
No. of reflections6008
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.56

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank Project AuTEK (Mintek and Harmony) and the University of the Witwatersrand for financial support.

References

First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCowley, A. H., Mitchell, D. J., Whangbo, M. H. & Wolfe, S. (1979). J. Am. Chem. Soc. 101, 5224–5231.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPelizzi, C. & Pelizzi, G. (1979). Acta Cryst. B35, 1785–1790.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 1355–1357.  CrossRef CAS Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds