organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Benzimidazol-2-ylmeth­yl)-2H-1,4-benzo­thia­zin-3(4H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 May 2010; accepted 24 May 2010; online 29 May 2010)

In the title compound, C16H13N3OS, the thio­morpholine ring exists in a screw boat conformation. The angle between the benzimidazole ring system and the benzene ring fused to the thia­zine ring is 67.22 (6)°. In the crystal, mol­ecules form infinite chains along the a axis via inter­molecular N—H⋯N inter­actions. C—H⋯π inter­actions also contribute to the stability of the crystal structure.

Related literature

For the biological activity of mol­ecules containing 1H-benzimidazole, see: Sridhar & Ramesh (2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]); Guven et al. (2007[Güven, Ö. Ö., Erdoğan, T., Göeker, H. & Yıldız, S. (2007). Bioorg. Med. Chem. Lett. 17, 2233-2236.]); Nofal et al. (2002[Nofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res. 25, 28-38.]); Pedini et al. (1994[Pedini, M., Alunni Bistochi, G., Ricci, A., Bastianini, L. & Lepri, E. (1994). Il Farmaco, 49, 823-827.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Loh, W.-S., Janardhana, G., Khader, A. M. A. & Kalluraya, B. (2009). Acta Cryst. E65, o2358-o2359.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3OS

  • Mr = 295.35

  • Orthorhombic, P b c a

  • a = 9.4498 (8) Å

  • b = 17.0223 (16) Å

  • c = 17.4454 (16) Å

  • V = 2806.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.50 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.969

  • 16727 measured reflections

  • 4075 independent reflections

  • 3185 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.03

  • 4075 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.859 (19) 1.926 (19) 2.7800 (15) 173 (2)
C12—H12ACg1ii 0.93 2.97 3.6736 (16) 134
C3—H3ACg2iii 0.93 2.61 3.4750 (17) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{5\over 2}}, -y-{\script{1\over 2}}, -z]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A number of molecules containing the 1H-benzimidazole nucleus exhibit a broad spectrum of biological activity, including anti-inflammatory (Sridhar et al., 2001), antifungal (Guven et al., 2007), antibacterial (Nofal et al., 2002) and anthelmintic (Pedini et al., 1994) properties. With these results in mind, we have paid particular attention to the preparation of derivatives of 1H-benzimidazole and we report here the crystal structure of the title compound, a 1H-benzimidazole derivative containing 2H-1,4-benzothiazin-3(4H)-one.

The bond lengths and angles are within normal ranges. The thiomorpholine ring (C1, C6-C8, N3, S1) adopts a screw boat confirmation with puckering parameters (Cremer & Pople, 1975) being Q = 0.6563 (13) Å; θ = 66.76 (12)° and φ = 334.16 (14)°. The angle between the benzimidazole ring system and the benzene ring fused to the thiazine ring is 67.22 (6)°.

The intermolecular interaction N1—H1N1···N2 links the molecules to form infinite chains along the a-axis. The crystal structure is further stabilized by C—H···π interactions involving the C1-C6 (Cg1) and C11-C16 (Cg2) benzene rings (Table 1).

Related literature top

For the biological activity of molecules containing 1H-benzimidazole, see: Sridhar et al. (2001); Guven et al. (2007); Nofal et al. (2002); Pedini et al. (1994). For a related structure, see: Fun et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2-(3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4-yl)acetic acid (3.3 mmol) (Fun et al., 2009) and o-phenylenediamine (2.2 mmol) was heated at 140 °C under solvent-free conditions for 3 h and completion of the reaction was checked by TLC. The reaction mixture was cooled to room temperature and the solid product was washed with a saturated solution of sodium bicarbonate to yield 4-(1H-benzimidazol-2-ylmethyl)-2H-1,4-benzothiazin-3(4H)-one as a red solid. Single crystals suitable for X-ray analysis were obtained by crystallization from absolute ethanol under slow evaporation (M.p. 493 K).

Refinement top

The H atom attached to N1 was located in a difference map and refined isotropically; N1—H1N1 = 0.86 (2) Å. The carbon-bound H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

A number of molecules containing the 1H-benzimidazole nucleus exhibit a broad spectrum of biological activity, including anti-inflammatory (Sridhar et al., 2001), antifungal (Guven et al., 2007), antibacterial (Nofal et al., 2002) and anthelmintic (Pedini et al., 1994) properties. With these results in mind, we have paid particular attention to the preparation of derivatives of 1H-benzimidazole and we report here the crystal structure of the title compound, a 1H-benzimidazole derivative containing 2H-1,4-benzothiazin-3(4H)-one.

The bond lengths and angles are within normal ranges. The thiomorpholine ring (C1, C6-C8, N3, S1) adopts a screw boat confirmation with puckering parameters (Cremer & Pople, 1975) being Q = 0.6563 (13) Å; θ = 66.76 (12)° and φ = 334.16 (14)°. The angle between the benzimidazole ring system and the benzene ring fused to the thiazine ring is 67.22 (6)°.

The intermolecular interaction N1—H1N1···N2 links the molecules to form infinite chains along the a-axis. The crystal structure is further stabilized by C—H···π interactions involving the C1-C6 (Cg1) and C11-C16 (Cg2) benzene rings (Table 1).

For the biological activity of molecules containing 1H-benzimidazole, see: Sridhar et al. (2001); Guven et al. (2007); Nofal et al. (2002); Pedini et al. (1994). For a related structure, see: Fun et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal structure, showing infinite chains along the a-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
4-(1H-Benzimidazol-2-ylmethyl)-2H-1,4-benzothiazin- 3(4H)-one top
Crystal data top
C16H13N3OSF(000) = 1232
Mr = 295.35Dx = 1.398 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4703 reflections
a = 9.4498 (8) Åθ = 2.4–31.6°
b = 17.0223 (16) ŵ = 0.23 mm1
c = 17.4454 (16) ÅT = 100 K
V = 2806.2 (4) Å3Block, red
Z = 80.50 × 0.20 × 0.13 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube3185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.893, Tmax = 0.969k = 2323
16727 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.2202P]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H13N3OSV = 2806.2 (4) Å3
Mr = 295.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4498 (8) ŵ = 0.23 mm1
b = 17.0223 (16) ÅT = 100 K
c = 17.4454 (16) Å0.50 × 0.20 × 0.13 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4075 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3185 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.969Rint = 0.040
16727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
4075 reflectionsΔρmin = 0.26 e Å3
194 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69098 (4)0.04490 (2)0.49857 (2)0.02567 (12)
O10.90053 (12)0.12536 (7)0.41611 (7)0.0283 (2)
N11.05774 (11)0.12424 (7)0.21967 (7)0.0169 (2)
N20.82471 (11)0.10176 (7)0.21708 (7)0.0166 (2)
N30.84628 (12)0.01064 (7)0.35843 (7)0.0180 (2)
C10.75457 (14)0.05425 (8)0.34596 (8)0.0177 (3)
C20.74342 (15)0.08809 (8)0.27346 (8)0.0210 (3)
H2A0.79350.06680.23250.025*
C30.65796 (16)0.15354 (9)0.26189 (9)0.0251 (3)
H3A0.65300.17640.21350.030*
C40.58032 (16)0.18488 (9)0.32169 (10)0.0275 (3)
H4A0.52320.22860.31370.033*
C50.58816 (16)0.15078 (9)0.39359 (10)0.0256 (3)
H5A0.53460.17110.43370.031*
C60.67593 (15)0.08616 (8)0.40635 (8)0.0206 (3)
C70.70051 (17)0.05535 (9)0.46596 (9)0.0261 (3)
H7A0.71000.09000.50980.031*
H7B0.61340.06880.43960.031*
C80.82425 (15)0.06773 (8)0.41241 (8)0.0209 (3)
C90.96991 (14)0.02207 (8)0.30913 (8)0.0191 (3)
H9A1.04990.03740.34060.023*
H9B0.99330.02740.28470.023*
C100.94729 (13)0.08304 (8)0.24863 (8)0.0159 (2)
C111.00375 (13)0.17492 (8)0.16502 (8)0.0165 (3)
C121.06703 (15)0.23109 (9)0.11796 (8)0.0213 (3)
H12A1.16360.24150.12010.026*
C130.97847 (17)0.27045 (9)0.06787 (9)0.0245 (3)
H13A1.01620.30860.03560.029*
C140.83220 (16)0.25414 (9)0.06449 (9)0.0234 (3)
H14A0.77650.28090.02910.028*
C150.76917 (15)0.19954 (8)0.11228 (8)0.0198 (3)
H15A0.67240.18980.11050.024*
C160.85770 (13)0.15965 (8)0.16350 (8)0.0158 (2)
H1N11.143 (2)0.1173 (12)0.2353 (12)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0341 (2)0.02221 (19)0.02070 (19)0.00054 (14)0.00590 (14)0.00461 (13)
O10.0333 (6)0.0235 (5)0.0283 (6)0.0070 (4)0.0003 (5)0.0023 (4)
N10.0100 (5)0.0214 (6)0.0192 (5)0.0003 (4)0.0003 (4)0.0010 (4)
N20.0117 (5)0.0174 (5)0.0208 (6)0.0010 (4)0.0004 (4)0.0003 (4)
N30.0166 (5)0.0180 (5)0.0194 (6)0.0007 (4)0.0020 (4)0.0006 (4)
C10.0157 (6)0.0154 (6)0.0221 (6)0.0018 (4)0.0004 (5)0.0017 (5)
C20.0220 (6)0.0180 (6)0.0230 (7)0.0014 (5)0.0003 (5)0.0005 (5)
C30.0282 (7)0.0192 (7)0.0279 (8)0.0014 (5)0.0046 (6)0.0018 (6)
C40.0238 (7)0.0185 (6)0.0402 (9)0.0032 (5)0.0036 (6)0.0013 (6)
C50.0220 (7)0.0214 (7)0.0334 (8)0.0014 (5)0.0045 (6)0.0069 (6)
C60.0201 (6)0.0187 (6)0.0230 (7)0.0025 (5)0.0021 (5)0.0039 (5)
C70.0349 (8)0.0197 (7)0.0236 (7)0.0006 (6)0.0088 (6)0.0004 (6)
C80.0247 (7)0.0187 (6)0.0192 (7)0.0005 (5)0.0001 (5)0.0014 (5)
C90.0133 (5)0.0209 (6)0.0232 (7)0.0019 (5)0.0004 (5)0.0036 (5)
C100.0116 (5)0.0173 (6)0.0188 (6)0.0007 (4)0.0018 (5)0.0013 (5)
C110.0138 (5)0.0191 (6)0.0167 (6)0.0002 (4)0.0006 (5)0.0011 (5)
C120.0182 (6)0.0245 (7)0.0211 (7)0.0030 (5)0.0035 (5)0.0009 (5)
C130.0293 (7)0.0238 (7)0.0204 (7)0.0013 (6)0.0038 (6)0.0042 (5)
C140.0256 (7)0.0241 (7)0.0204 (7)0.0036 (5)0.0026 (5)0.0012 (5)
C150.0171 (6)0.0214 (6)0.0211 (7)0.0029 (5)0.0027 (5)0.0019 (5)
C160.0134 (5)0.0171 (6)0.0168 (6)0.0011 (4)0.0003 (5)0.0030 (5)
Geometric parameters (Å, º) top
S1—C61.7611 (16)C5—C61.396 (2)
S1—C71.8011 (16)C5—H5A0.9300
O1—C81.2191 (18)C7—C81.511 (2)
N1—C101.3552 (16)C7—H7A0.9700
N1—C111.3831 (17)C7—H7B0.9700
N1—H1N10.86 (2)C9—C101.4955 (19)
N2—C101.3214 (16)C9—H9A0.9700
N2—C161.3936 (17)C9—H9B0.9700
N3—C81.3692 (19)C11—C121.3950 (19)
N3—C11.4207 (17)C11—C161.4046 (18)
N3—C91.4637 (17)C12—C131.383 (2)
C1—C21.394 (2)C12—H12A0.9300
C1—C61.3990 (19)C13—C141.411 (2)
C2—C31.391 (2)C13—H13A0.9300
C2—H2A0.9300C14—C151.383 (2)
C3—C41.382 (2)C14—H14A0.9300
C3—H3A0.9300C15—C161.3998 (19)
C4—C51.384 (2)C15—H15A0.9300
C4—H4A0.9300
C6—S1—C795.35 (7)H7A—C7—H7B108.0
C10—N1—C11107.20 (11)O1—C8—N3121.18 (13)
C10—N1—H1N1122.3 (14)O1—C8—C7122.47 (14)
C11—N1—H1N1130.5 (14)N3—C8—C7116.35 (12)
C10—N2—C16104.70 (11)N3—C9—C10113.14 (11)
C8—N3—C1124.36 (12)N3—C9—H9A109.0
C8—N3—C9115.55 (12)C10—C9—H9A109.0
C1—N3—C9120.02 (11)N3—C9—H9B109.0
C2—C1—C6118.86 (13)C10—C9—H9B109.0
C2—C1—N3120.42 (12)H9A—C9—H9B107.8
C6—C1—N3120.71 (13)N2—C10—N1113.27 (12)
C3—C2—C1120.45 (14)N2—C10—C9125.91 (12)
C3—C2—H2A119.8N1—C10—C9120.81 (11)
C1—C2—H2A119.8N1—C11—C12132.45 (12)
C4—C3—C2120.52 (15)N1—C11—C16105.08 (11)
C4—C3—H3A119.7C12—C11—C16122.47 (13)
C2—C3—H3A119.7C13—C12—C11116.39 (13)
C3—C4—C5119.58 (14)C13—C12—H12A121.8
C3—C4—H4A120.2C11—C12—H12A121.8
C5—C4—H4A120.2C12—C13—C14121.59 (13)
C4—C5—C6120.46 (14)C12—C13—H13A119.2
C4—C5—H5A119.8C14—C13—H13A119.2
C6—C5—H5A119.8C15—C14—C13121.92 (14)
C5—C6—C1120.11 (14)C15—C14—H14A119.0
C5—C6—S1120.53 (11)C13—C14—H14A119.0
C1—C6—S1119.35 (11)C14—C15—C16116.96 (13)
C8—C7—S1111.46 (10)C14—C15—H15A121.5
C8—C7—H7A109.3C16—C15—H15A121.5
S1—C7—H7A109.3N2—C16—C15129.61 (12)
C8—C7—H7B109.3N2—C16—C11109.75 (11)
S1—C7—H7B109.3C15—C16—C11120.64 (13)
C8—N3—C1—C2150.61 (14)C8—N3—C9—C1076.17 (15)
C9—N3—C1—C225.96 (19)C1—N3—C9—C10100.69 (14)
C8—N3—C1—C630.5 (2)C16—N2—C10—N10.06 (15)
C9—N3—C1—C6152.88 (13)C16—N2—C10—C9178.82 (13)
C6—C1—C2—C31.4 (2)C11—N1—C10—N20.62 (16)
N3—C1—C2—C3177.44 (13)C11—N1—C10—C9179.45 (12)
C1—C2—C3—C41.5 (2)N3—C9—C10—N228.7 (2)
C2—C3—C4—C50.1 (2)N3—C9—C10—N1152.62 (12)
C3—C4—C5—C61.3 (2)C10—N1—C11—C12179.20 (15)
C4—C5—C6—C11.4 (2)C10—N1—C11—C160.88 (14)
C4—C5—C6—S1177.68 (12)N1—C11—C12—C13178.56 (14)
C2—C1—C6—C50.0 (2)C16—C11—C12—C131.3 (2)
N3—C1—C6—C5178.85 (13)C11—C12—C13—C140.3 (2)
C2—C1—C6—S1179.06 (10)C12—C13—C14—C151.7 (2)
N3—C1—C6—S10.20 (18)C13—C14—C15—C161.3 (2)
C7—S1—C6—C5142.33 (13)C10—N2—C16—C15178.42 (14)
C7—S1—C6—C138.62 (13)C10—N2—C16—C110.52 (15)
C6—S1—C7—C858.75 (12)C14—C15—C16—N2179.23 (13)
C1—N3—C8—O1173.88 (13)C14—C15—C16—C110.4 (2)
C9—N3—C8—O12.8 (2)N1—C11—C16—N20.88 (15)
C1—N3—C8—C75.6 (2)C12—C11—C16—N2179.20 (12)
C9—N3—C8—C7177.65 (12)N1—C11—C16—C15178.18 (12)
S1—C7—C8—O1137.50 (14)C12—C11—C16—C151.8 (2)
S1—C7—C8—N342.98 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.859 (19)1.926 (19)2.7800 (15)173 (2)
C12—H12A···Cg1ii0.932.973.6736 (16)134
C3—H3A···Cg2iii0.932.613.4750 (17)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+5/2, y1/2, z; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13N3OS
Mr295.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.4498 (8), 17.0223 (16), 17.4454 (16)
V3)2806.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.893, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
16727, 4075, 3185
Rint0.040
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.03
No. of reflections4075
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.859 (19)1.926 (19)2.7800 (15)173 (2)
C12—H12A···Cg1ii0.932.973.6736 (16)134
C3—H3A···Cg2iii0.932.613.4750 (17)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+5/2, y1/2, z; (iii) x+1, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

FHK and MMR thank Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Loh, W.-S., Janardhana, G., Khader, A. M. A. & Kalluraya, B. (2009). Acta Cryst. E65, o2358–o2359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGüven, Ö. Ö., Erdoğan, T., Göeker, H. & Yıldız, S. (2007). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationNofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res. 25, 28–38.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPedini, M., Alunni Bistochi, G., Ricci, A., Bastianini, L. & Lepri, E. (1994). Il Farmaco, 49, 823–827.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds