metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ4O:O′;κ3O,O′:O′;κ3O:O,O′-bis­­[(acetato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)europium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuesht@scnu.edu.cn

(Received 26 April 2010; accepted 28 April 2010; online 8 May 2010)

In the title centrosymmetric dinuclear EuIII complex, [Eu2(CH3COO)6(C12H8N2)2], each EuIII cation is coordinated by seven O atoms from five acetate anions and two N atoms from one phenanthroline ligand in a distorted tricapped trigonal-prismatic geometry. Four acetate anions bridge two EuIII cations to form the dinuclear complex, with an Eu⋯Eu distance of 3.9409 (8) Å. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For related lanthanide complexes with 1,10-phenanthroline and acetate ligands, see: Hu et al. (2006[Hu, X.-L., Qiu, L., Sun, W.-B. & Chen, Z. (2006). Acta Cryst. E62, m3213-m3214.]); Panagiotopoulos et al. (1995[Panagiotopoulos, A., Zafiropoulos, T. F., Perlepes, S. P., Bakalbassis, E., Masson-Ramade, I., Kahn, O., Terzis, A. & Raptopoulou, C. P. (1995). Inorg. Chem. 34, 4918-4923.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C2H3O2)6(C12H8N2)2]

  • Mr = 1018.61

  • Triclinic, [P \overline 1]

  • a = 8.7671 (19) Å

  • b = 8.9265 (19) Å

  • c = 12.992 (3) Å

  • α = 103.631 (2)°

  • β = 109.254 (2)°

  • γ = 98.300 (3)°

  • V = 905.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 298 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.541, Tmax = 0.571

  • 5010 measured reflections

  • 3474 independent reflections

  • 3062 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.062

  • S = 1.05

  • 3474 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.57 3.287 (6) 135
C12—H8⋯O6ii 0.93 2.44 3.078 (6) 126
C16—H10C⋯O1iii 0.96 2.45 3.390 (6) 165
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinuclear lanthanide complexes with 1,10-phenanthroline and acetate ligands had previously been reported (Panagiotopoulos et al., 1995; Hu et al., 2006). In this title complex, each Eu atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven oxygen atoms from acetate ions, to form a distorted tricapped trigonal prism, giving a dimeric structure with an inversion center (Fig.1). The result of the dinuclear centrosymmetric molecule with the Eu···Eu distance of 3.9409 (8) Å was that acetate ions exhibit three different coordination modes: common bidentate chelating mode, bidentate bridging mode and tridentate bridging mode. The Eu1—O bond distances vary from 2.359 (3) Å to 2.586 (3) Å and the Eu1—N bond length are 2.594 (3) Å and 2.649 (4) Å. The C—O distances of CH3COO- are within the range of 1.257 (5)Å to 1.273 (5) Å. This complex exhibits a three-dimensional structure via C—H···O hydrogen-bonds (Table 1).

Related literature top

For related lanthanide complexes with 1,10-phenanthroline and acetate ligands, see: Hu et al. (2006); Panagiotopoulos et al. (1995).

Experimental top

A stoichiometric amount of acetic acid and a quantitative amount of 1,10-phenanthroline (0.5 mmol) were mixed and then dissolved in 95% ethanol solution (20 ml). The pH value of the solution was adjusted to 6.5 by adding 1.0 M NaOH solution, and then added dropwise to the ethanol solution (20 ml) of Eu(NO3)3.6H2O (0.5 mmol). The solution mixture was stirred continuously for 2 h at room temperature and then filtered. Single crystals were obtained by evaporation after one week.

Refinement top

H atoms were positioned in calculated positions, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Structure description top

Dinuclear lanthanide complexes with 1,10-phenanthroline and acetate ligands had previously been reported (Panagiotopoulos et al., 1995; Hu et al., 2006). In this title complex, each Eu atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven oxygen atoms from acetate ions, to form a distorted tricapped trigonal prism, giving a dimeric structure with an inversion center (Fig.1). The result of the dinuclear centrosymmetric molecule with the Eu···Eu distance of 3.9409 (8) Å was that acetate ions exhibit three different coordination modes: common bidentate chelating mode, bidentate bridging mode and tridentate bridging mode. The Eu1—O bond distances vary from 2.359 (3) Å to 2.586 (3) Å and the Eu1—N bond length are 2.594 (3) Å and 2.649 (4) Å. The C—O distances of CH3COO- are within the range of 1.257 (5)Å to 1.273 (5) Å. This complex exhibits a three-dimensional structure via C—H···O hydrogen-bonds (Table 1).

For related lanthanide complexes with 1,10-phenanthroline and acetate ligands, see: Hu et al. (2006); Panagiotopoulos et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound [symmetry code: (A) -x+1, -y+2, -z+1].
Tetra-µ-acetato-κ4O:O';κ3O,O':O'; κ3O:O,O'-bis[(acetato-κ2O,O')(1,10- phenanthroline-κ2N,N')europium(III)] top
Crystal data top
[Eu2(C2H3O2)6(C12H8N2)2]Z = 1
Mr = 1018.61F(000) = 500
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7671 (19) ÅCell parameters from 2079 reflections
b = 8.9265 (19) Åθ = 0.7–25.2°
c = 12.992 (3) ŵ = 3.50 mm1
α = 103.631 (2)°T = 298 K
β = 109.254 (2)°Block, colorless
γ = 98.300 (3)°0.20 × 0.19 × 0.18 mm
V = 905.1 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3474 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.541, Tmax = 0.571k = 810
5010 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
3474 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Eu2(C2H3O2)6(C12H8N2)2]γ = 98.300 (3)°
Mr = 1018.61V = 905.1 (3) Å3
Triclinic, P1Z = 1
a = 8.7671 (19) ÅMo Kα radiation
b = 8.9265 (19) ŵ = 3.50 mm1
c = 12.992 (3) ÅT = 298 K
α = 103.631 (2)°0.20 × 0.19 × 0.18 mm
β = 109.254 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3474 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3062 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.571Rint = 0.021
5010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.05Δρmax = 0.80 e Å3
3474 reflectionsΔρmin = 0.64 e Å3
247 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.47430 (3)0.84412 (3)0.356229 (17)0.02341 (8)
O30.5788 (4)1.1409 (4)0.4756 (2)0.0312 (7)
O40.6208 (4)1.0735 (4)0.3157 (2)0.0336 (7)
O20.2565 (4)0.5955 (4)0.2687 (3)0.0419 (8)
O10.5000 (4)0.5829 (4)0.3834 (3)0.0373 (8)
O50.7449 (4)0.8969 (4)0.4988 (2)0.0310 (7)
N10.6375 (4)0.7194 (4)0.2384 (3)0.0277 (8)
C10.7671 (6)0.6658 (5)0.2863 (4)0.0362 (11)
H10.79150.66370.36120.043*
C20.8702 (6)0.6116 (6)0.2307 (4)0.0423 (12)
H20.96090.57530.26780.051*
C30.8341 (6)0.6134 (6)0.1215 (4)0.0450 (13)
H30.90070.57820.08290.054*
C40.6972 (6)0.6680 (6)0.0664 (4)0.0368 (11)
C70.4176 (6)0.7809 (6)0.0387 (4)0.0421 (13)
C60.4559 (6)0.7750 (5)0.0747 (3)0.0294 (10)
N20.3612 (5)0.8179 (4)0.1353 (3)0.0323 (9)
C120.2280 (6)0.8637 (6)0.0849 (4)0.0437 (13)
H80.16010.88950.12490.052*
C110.1825 (7)0.8757 (7)0.0271 (4)0.0565 (16)
H70.08830.91100.05920.068*
C100.2789 (7)0.8348 (7)0.0871 (4)0.0524 (15)
H60.25160.84310.16070.063*
C50.6006 (6)0.7203 (5)0.1290 (4)0.0299 (10)
C150.6463 (5)1.1743 (5)0.4079 (4)0.0284 (10)
C130.3479 (6)0.5207 (5)0.3230 (4)0.0327 (11)
C80.5223 (7)0.7281 (7)0.0976 (4)0.0534 (15)
H50.49860.73280.17180.064*
O60.7627 (4)1.0478 (4)0.6690 (2)0.0336 (7)
C140.2753 (7)0.3534 (6)0.3168 (5)0.0506 (14)
H9A0.15750.32550.27370.076*
H9B0.29590.34700.39270.076*
H9C0.32640.28140.28000.076*
C160.7559 (6)1.3374 (6)0.4417 (4)0.0422 (12)
H10A0.80971.34120.38860.063*
H10B0.83851.36120.51720.063*
H10C0.68941.41400.44090.063*
C90.6513 (7)0.6730 (7)0.0494 (4)0.0539 (15)
H40.71360.63670.09140.065*
C180.9975 (5)0.9554 (6)0.6560 (4)0.0395 (12)
H11A1.00030.84570.64450.059*
H11B1.04141.01060.73650.059*
H11C1.06361.00250.62060.059*
C170.8220 (5)0.9669 (5)0.6038 (4)0.0277 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02392 (12)0.02795 (13)0.02150 (12)0.00926 (9)0.01093 (9)0.00800 (9)
O30.0368 (18)0.0376 (18)0.0297 (16)0.0146 (15)0.0192 (14)0.0159 (15)
O40.0410 (19)0.0386 (19)0.0242 (16)0.0079 (15)0.0181 (14)0.0077 (15)
O20.039 (2)0.038 (2)0.045 (2)0.0085 (16)0.0110 (16)0.0142 (17)
O10.038 (2)0.0360 (19)0.0442 (19)0.0151 (15)0.0170 (16)0.0167 (16)
O50.0288 (17)0.0393 (19)0.0243 (16)0.0108 (14)0.0111 (13)0.0056 (14)
N10.030 (2)0.028 (2)0.0260 (19)0.0091 (16)0.0132 (16)0.0064 (16)
C10.044 (3)0.038 (3)0.032 (3)0.017 (2)0.019 (2)0.011 (2)
C20.034 (3)0.047 (3)0.050 (3)0.018 (2)0.018 (2)0.013 (3)
C30.046 (3)0.047 (3)0.048 (3)0.016 (3)0.031 (3)0.004 (3)
C40.043 (3)0.037 (3)0.032 (3)0.011 (2)0.021 (2)0.003 (2)
C70.050 (3)0.048 (3)0.025 (2)0.007 (3)0.014 (2)0.010 (2)
C60.036 (3)0.027 (2)0.022 (2)0.004 (2)0.011 (2)0.0032 (19)
N20.034 (2)0.035 (2)0.027 (2)0.0104 (18)0.0096 (17)0.0088 (18)
C120.039 (3)0.061 (4)0.031 (3)0.024 (3)0.011 (2)0.012 (3)
C110.064 (4)0.074 (4)0.033 (3)0.033 (3)0.009 (3)0.021 (3)
C100.069 (4)0.060 (4)0.027 (3)0.018 (3)0.013 (3)0.016 (3)
C50.037 (3)0.025 (2)0.028 (2)0.005 (2)0.015 (2)0.005 (2)
C150.027 (2)0.034 (3)0.031 (2)0.012 (2)0.014 (2)0.015 (2)
C130.043 (3)0.033 (3)0.029 (2)0.012 (2)0.024 (2)0.006 (2)
C80.067 (4)0.071 (4)0.029 (3)0.018 (3)0.027 (3)0.015 (3)
O60.0333 (18)0.0416 (19)0.0257 (16)0.0171 (15)0.0109 (14)0.0052 (15)
C140.064 (4)0.033 (3)0.057 (3)0.004 (3)0.027 (3)0.016 (3)
C160.049 (3)0.036 (3)0.046 (3)0.007 (2)0.027 (3)0.009 (2)
C90.063 (4)0.066 (4)0.037 (3)0.017 (3)0.030 (3)0.008 (3)
C180.030 (3)0.044 (3)0.041 (3)0.013 (2)0.009 (2)0.009 (2)
C170.027 (2)0.028 (2)0.034 (3)0.0086 (19)0.014 (2)0.014 (2)
Geometric parameters (Å, º) top
Eu1—O3i2.358 (3)C7—C101.384 (7)
Eu1—O6i2.374 (3)C7—C61.415 (6)
Eu1—O52.377 (3)C7—C81.438 (7)
Eu1—O22.453 (3)C6—N21.355 (5)
Eu1—O12.470 (3)C6—C51.448 (6)
Eu1—O42.513 (3)N2—C121.311 (6)
Eu1—O32.586 (3)C12—C111.411 (7)
Eu1—N12.594 (3)C12—H80.9300
Eu1—N22.649 (4)C11—C101.358 (7)
Eu1—C132.815 (5)C11—H70.9300
Eu1—C152.920 (4)C10—H60.9300
Eu1—Eu1i3.9409 (8)C15—C161.500 (6)
O3—C151.276 (5)C13—C141.508 (6)
O3—Eu1i2.358 (3)C8—C91.324 (8)
O4—C151.245 (5)C8—H50.9300
O2—C131.262 (6)O6—C171.273 (5)
O1—C131.262 (5)O6—Eu1i2.374 (3)
O5—C171.256 (5)C14—H9A0.9600
N1—C11.319 (6)C14—H9B0.9600
N1—C51.351 (5)C14—H9C0.9600
C1—C21.402 (6)C16—H10A0.9600
C1—H10.9300C16—H10B0.9600
C2—C31.352 (7)C16—H10C0.9600
C2—H20.9300C9—H40.9300
C3—C41.399 (7)C18—C171.492 (6)
C3—H30.9300C18—H11A0.9600
C4—C51.410 (6)C18—H11B0.9600
C4—C91.437 (7)C18—H11C0.9600
O3i—Eu1—O6i75.03 (10)C5—N1—Eu1120.7 (3)
O3i—Eu1—O576.96 (10)N1—C1—C2123.7 (4)
O6i—Eu1—O5137.07 (10)N1—C1—H1118.2
O3i—Eu1—O286.29 (10)C2—C1—H1118.2
O6i—Eu1—O281.08 (11)C3—C2—C1118.2 (5)
O5—Eu1—O2128.67 (11)C3—C2—H2120.9
O3i—Eu1—O177.36 (10)C1—C2—H2120.9
O6i—Eu1—O1127.36 (11)C2—C3—C4120.5 (4)
O5—Eu1—O175.84 (10)C2—C3—H3119.8
O2—Eu1—O153.10 (11)C4—C3—H3119.8
O3i—Eu1—O4125.07 (10)C3—C4—C5117.4 (4)
O6i—Eu1—O490.28 (11)C3—C4—C9123.4 (5)
O5—Eu1—O479.96 (10)C5—C4—C9119.2 (5)
O2—Eu1—O4144.17 (10)C10—C7—C6117.6 (5)
O1—Eu1—O4141.79 (10)C10—C7—C8123.9 (5)
O3i—Eu1—O374.40 (11)C6—C7—C8118.5 (5)
O6i—Eu1—O372.72 (10)N2—C6—C7122.5 (4)
O5—Eu1—O368.79 (10)N2—C6—C5118.0 (4)
O2—Eu1—O3150.59 (10)C7—C6—C5119.5 (4)
O1—Eu1—O3138.62 (10)C12—N2—C6117.9 (4)
O4—Eu1—O350.80 (9)C12—N2—Eu1122.8 (3)
O3i—Eu1—N1143.33 (11)C6—N2—Eu1118.7 (3)
O6i—Eu1—N1139.90 (10)N2—C12—C11123.2 (5)
O5—Eu1—N177.84 (10)N2—C12—H8118.4
O2—Eu1—N189.07 (11)C11—C12—H8118.4
O1—Eu1—N170.92 (11)C10—C11—C12118.8 (5)
O4—Eu1—N175.40 (10)C10—C11—H7120.6
O3—Eu1—N1119.64 (10)C12—C11—H7120.6
O3i—Eu1—N2149.00 (11)C11—C10—C7120.0 (5)
O6i—Eu1—N277.11 (11)C11—C10—H6120.0
O5—Eu1—N2133.80 (10)C7—C10—H6120.0
O2—Eu1—N276.19 (11)N1—C5—C4122.1 (4)
O1—Eu1—N2110.07 (11)N1—C5—C6118.6 (4)
O4—Eu1—N267.99 (10)C4—C5—C6119.3 (4)
O3—Eu1—N2109.76 (10)O4—C15—O3120.4 (4)
N1—Eu1—N262.79 (11)O4—C15—C16121.0 (4)
O3i—Eu1—C1379.18 (11)O3—C15—C16118.5 (4)
O6i—Eu1—C13103.79 (13)O4—C15—Eu158.8 (2)
O5—Eu1—C13102.11 (13)O3—C15—Eu162.3 (2)
O2—Eu1—C1326.59 (12)C16—C15—Eu1172.3 (3)
O1—Eu1—C1326.61 (12)O2—C13—O1121.4 (4)
O4—Eu1—C13154.90 (11)O2—C13—C14119.9 (4)
O3—Eu1—C13153.35 (11)O1—C13—C14118.8 (5)
N1—Eu1—C1380.57 (12)O2—C13—Eu160.5 (2)
N2—Eu1—C1394.65 (12)O1—C13—Eu161.3 (2)
O3i—Eu1—C1599.99 (11)C14—C13—Eu1173.6 (3)
O6i—Eu1—C1582.87 (11)C9—C8—C7122.1 (5)
O5—Eu1—C1570.72 (11)C9—C8—H5119.0
O2—Eu1—C15160.62 (12)C7—C8—H5119.0
O1—Eu1—C15146.09 (11)C17—O6—Eu1i136.1 (3)
O4—Eu1—C1525.08 (10)C13—C14—H9A109.5
O3—Eu1—C1525.89 (10)C13—C14—H9B109.5
N1—Eu1—C1596.31 (11)H9A—C14—H9B109.5
N2—Eu1—C1589.71 (11)C13—C14—H9C109.5
C13—Eu1—C15172.71 (13)H9A—C14—H9C109.5
O3i—Eu1—Eu1i39.20 (7)H9B—C14—H9C109.5
O6i—Eu1—Eu1i69.54 (7)C15—C16—H10A109.5
O5—Eu1—Eu1i68.14 (7)C15—C16—H10B109.5
O2—Eu1—Eu1i122.20 (8)H10A—C16—H10B109.5
O1—Eu1—Eu1i111.19 (7)C15—C16—H10C109.5
O4—Eu1—Eu1i85.93 (7)H10A—C16—H10C109.5
O3—Eu1—Eu1i35.19 (6)H10B—C16—H10C109.5
N1—Eu1—Eu1i143.56 (8)C8—C9—C4121.4 (5)
N2—Eu1—Eu1i137.30 (8)C8—C9—H4119.3
C13—Eu1—Eu1i118.30 (9)C4—C9—H4119.3
C15—Eu1—Eu1i60.89 (9)C17—C18—H11A109.5
C15—O3—Eu1i160.5 (3)C17—C18—H11B109.5
C15—O3—Eu191.8 (3)H11A—C18—H11B109.5
Eu1i—O3—Eu1105.60 (10)C17—C18—H11C109.5
C15—O4—Eu196.1 (2)H11A—C18—H11C109.5
C13—O2—Eu192.9 (3)H11B—C18—H11C109.5
C13—O1—Eu192.1 (3)O5—C17—O6125.1 (4)
C17—O5—Eu1139.2 (3)O5—C17—C18117.4 (4)
C1—N1—C5118.2 (4)O6—C17—C18117.5 (4)
C1—N1—Eu1120.9 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2ii0.932.573.287 (6)135
C12—H8···O6i0.932.443.078 (6)126
C16—H10C···O1iii0.962.453.390 (6)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Eu2(C2H3O2)6(C12H8N2)2]
Mr1018.61
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7671 (19), 8.9265 (19), 12.992 (3)
α, β, γ (°)103.631 (2), 109.254 (2), 98.300 (3)
V3)905.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.50
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.541, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
5010, 3474, 3062
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.062, 1.05
No. of reflections3474
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.64

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.573.287 (6)134.5
C12—H8···O6ii0.932.443.078 (6)126.3
C16—H10C···O1iii0.962.453.390 (6)164.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported financially by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009) and the NSFC (grant Nos. 20971047 and U0734005).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, X.-L., Qiu, L., Sun, W.-B. & Chen, Z. (2006). Acta Cryst. E62, m3213–m3214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPanagiotopoulos, A., Zafiropoulos, T. F., Perlepes, S. P., Bakalbassis, E., Masson-Ramade, I., Kahn, O., Terzis, A. & Raptopoulou, C. P. (1995). Inorg. Chem. 34, 4918–4923.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds