metal-organic compounds
Tetraaquabis(orotato-κO)cobalt(II) dihydrate
aDepartment of Chemistry, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Hitit University, 19030 Ulukavak, Çorum, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, dDepartment of Chemistry, Gebze High Technology Institute, 41400 Gebze, Kocaeli, Turkey, and eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title CoII complex, [Co(C5H3N2O4)2(H2O)4]·2H2O, the CoII ion is located on an inversion center and is coordinated by two orotate (2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate) anions and four water molecules in a slightly distorted octahedral geometry. The dihedral angle between the carboxylate group and the attached orotate ring is 1.2 (3)°. In the intermolecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into a three-dimensional network. π–π contacts between the orotate rings [centroid–centroid distances = 3.439 (2) and 3.438 (2) Å] further stabilize the structure.
Related literature
For orotic acid, see: Doody et al. (1996); Köse et al. (2008); Levine et al. (1974); Nelson & Michael (2000); Smith & Baker (1959). For applications of metal–orotate complexes and their derivatives, see: Schmidbaur et al. (1990); Castan et al. (1990); Köse et al. (2006). For related structures, see: Ha et al. (1999); Icbudak et al. (2003); Karipides & Thomas (1986); Kumberger et al. (1991); Mutikainen (1987); Mutikainen et al. (1996); Nepveu et al. (1995); Platter et al. (2002); Sabat et al. (1980); Solbakk (1971); Sun et al. (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810015837/xu2754sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810015837/xu2754Isup2.hkl
The title compound was prepared by the reaction of NH4H2Or (0.96 g, 5 mmol) in H2O (100 ml) and nicotinamide (1.22 g, 10 mmol) in H2O (100 ml) with Co(NO3)2.6H2O (1.45 g, 5 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving pink single crystals.
The highest peak and deepest hole in the final difference electron-density map were located 1.99 and 0.49 Å, respectively, from atom Co1. Atom H5 was positioned geometrically with C—H = 0.93 Å, for aromatic H atom and constrained to ride on its parent atom, with Uiso(H) = 1.2Ueq(C). Atoms H1, H2 (for NH), H51, H52, H61, H62, H71, H72 (for H2O) were located in difference Fourier maps and refined isotropically, with restrains of N1—H1 = 0.83 (2), N2—H2 = 0.84 (6), O5—H51 = 0.93 (2), O5—H52 = 0.91 (5), O6—H61 = 0.95 (2), O6—H62 = 0.92 (5), O7—H71 = 0.94 (5), O7—H72 = 0.97 (5) Å and H51-O5-H52 = 107 (4), H61-O6-H62 = 107 (4) and H71-O7-H72 = 107 (4)°.
Orotic acid (6-uracilic acid, vitamin B13, H3Or) is an essential vitamin in the syntheses of
of since it is the first pyridine product of an enzymatic step in normal blood cells (Nelson & Michael, 2000; Smith & Baker, 1959; Levine et al., 1974). Metal orotate complexes and their derivatives not only found applications in curing syndromes but also they have encouraging studies as therapeutic agents for cancer (Schmidbaur et al., 1990; Castan et al., 1990; Köse et al., 2006). Orotic acid is an interesting ligand because it has multiple coordination sites at low and neutral pH, it is coordinated from the carboxylic acid group monodentately in ketonic form but at higher pH values bidentate coordination occurs in enolic form, the between the ketonic and enolic structures makes multiform coordinations possible (Doody et al., 1996; Köse et al., 2008). Mononuclear crystal structures of Co, Cu, Mg, Ni and Zn complexes were reported, where bidentate orotate dianions (HOr2-) found in the molecules (Mutikainen, 1987; Mutikainen et al., 1996; Icbudak et al., 2003; Sabat et al., 1980; Karipides & Thomas, 1986; Platter et al., 2002; Kumberger et al., 1991). Dianionic form of the acid (HOr2-) can also act as a polydentate ligand in its polymeric complexes with Cu, Ni and Mn metals (Nepveu et al., 1995; Ha et al., 1999; Platter et al., 2002; Sun et al., 2002). Relatively limited number of monoanionic orotate complex crystal studies are found in the literature. The metal orotate structures including Mg, Ni and Zn have (H2Or-) ions located in the outer coordination sphere and the monoanion does not enter the inner coordination sphere of the aquated metal, M(II), cations (Solbakk, 1971). The title compound was synthesized and its is reported herein.The title complex, (I), is a crystallographically centrosymmetric mononuclear complex, consisting of two orotate, (Or), ligands, four coordinated and one uncoordinated water molecules (Fig. 1). Or ligands are monodentate. The four O atoms (O5, O6, and the symmetry-related atoms, O5', O6') in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two O atoms of the Or ligands (O1, O1') in the axial positions (Fig. 1).
The near equality of the C1—O1 [1.269 (4) Å] and C1—O2 [1.224 (5) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Co—O bond length is 2.095 (3) Å (Table 1), and the Co atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.6042 (1) Å. The dihedral angle between the planar carboxylate group and the Or ring A (N1/N2/C2—C5) is 1.15 (31)°. Atoms O1, O2, O3, O4 and C1 are -0.064 (3), -0.027 (4), -0.069 (3), 0.040 (3) and -0.039 (4) Å away from the plane of the Or ring, respectively.
In the π–π contacts between the Or rings, Cg1—Cg1i and Cg1—Cg1ii [symmetry codes: (i) x, 1/2 - y, z - 1/2; (ii) x, 1/2 - y, z + 1/2, where Cg1 is the centroid of the ring (N1/N2/C2—C5)] may further stabilize the structure, with centroid-centroid distances of 3.439 (2) and 3.438 (2) Å, respectively.
intramolecular O—H···O and intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. TheFor orotic acid, see: Doody et al. (1996); Köse et al. (2008); Levine et al. (1974); Nelson & Michael (2000); Smith & Baker (1959). For applications of metal–orotate complexes and their derivatives, see: Schmidbaur et al. (1990); Castan et al. (1990); Köse et al. (2006). For related structures, see: Ha et al. (1999); Icbudak et al. (2003); Karipides & Thomas (1986); Kumberger et al. (1991); Mutikainen (1987); Mutikainen et al. (1996); Nepveu et al. (1995); Platter et al. (2002); Sabat et al. (1980); Solbakk (1971); Sun et al. (2002).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, -z. |
[Co(C5H3N2O4)2(H2O)4]·2H2O | F(000) = 490 |
Mr = 477.21 | Dx = 1.816 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2967 reflections |
a = 9.8715 (5) Å | θ = 2.2–24.3° |
b = 13.1514 (7) Å | µ = 1.07 mm−1 |
c = 6.7281 (3) Å | T = 100 K |
β = 92.224 (3)° | Block, pink |
V = 872.81 (8) Å3 | 0.35 × 0.20 × 0.15 mm |
Z = 2 |
Bruker Kappa APEXII CCD area-detector diffractometer | 2006 independent reflections |
Radiation source: fine-focus sealed tube | 1905 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 27.7°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −12→11 |
Tmin = 0.775, Tmax = 0.851 | k = −17→12 |
6413 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.168 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.106P)2 + 1.3319P] where P = (Fo2 + 2Fc2)/3 |
2006 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 1.99 e Å−3 |
11 restraints | Δρmin = −0.49 e Å−3 |
[Co(C5H3N2O4)2(H2O)4]·2H2O | V = 872.81 (8) Å3 |
Mr = 477.21 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8715 (5) Å | µ = 1.07 mm−1 |
b = 13.1514 (7) Å | T = 100 K |
c = 6.7281 (3) Å | 0.35 × 0.20 × 0.15 mm |
β = 92.224 (3)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 2006 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1905 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.851 | Rint = 0.024 |
6413 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 11 restraints |
wR(F2) = 0.168 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 1.99 e Å−3 |
2006 reflections | Δρmin = −0.49 e Å−3 |
164 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.0000 | 0.0000 | 0.0000 | 0.0219 (3) | |
O1 | −0.1500 (2) | 0.0836 (2) | 0.1269 (4) | 0.0294 (6) | |
O2 | −0.3106 (3) | −0.0336 (2) | 0.1649 (5) | 0.0388 (7) | |
O3 | −0.3502 (3) | 0.4086 (2) | 0.1788 (5) | 0.0387 (7) | |
O4 | −0.7136 (3) | 0.2040 (2) | 0.2605 (5) | 0.0388 (7) | |
O5 | −0.0640 (3) | −0.1370 (2) | 0.1312 (4) | 0.0310 (6) | |
H51 | −0.158 (2) | −0.137 (5) | 0.127 (9) | 0.067* | |
H52 | −0.038 (7) | −0.200 (3) | 0.092 (12) | 0.09 (3)* | |
O6 | 0.1274 (3) | 0.0294 (2) | 0.2535 (4) | 0.0319 (6) | |
H61 | 0.175 (5) | 0.092 (2) | 0.259 (8) | 0.060 (18)* | |
H62 | 0.191 (5) | −0.021 (3) | 0.278 (9) | 0.057 (18)* | |
O7 | 0.0502 (4) | 0.6880 (2) | 0.0068 (5) | 0.0399 (7) | |
H71 | 0.010 (7) | 0.656 (5) | −0.106 (6) | 0.08 (2)* | |
H72 | 0.047 (8) | 0.639 (4) | 0.114 (7) | 0.09 (3)* | |
N1 | −0.3185 (3) | 0.2368 (2) | 0.1577 (5) | 0.0251 (6) | |
H1 | −0.240 (3) | 0.250 (5) | 0.127 (9) | 0.053 (16)* | |
N2 | −0.5297 (3) | 0.3038 (2) | 0.2173 (5) | 0.0269 (6) | |
H2 | −0.573 (7) | 0.358 (4) | 0.229 (12) | 0.09 (3)* | |
C1 | −0.2701 (3) | 0.0542 (3) | 0.1553 (5) | 0.0224 (7) | |
C2 | −0.3695 (3) | 0.1405 (3) | 0.1770 (5) | 0.0216 (6) | |
C3 | −0.3958 (3) | 0.3223 (3) | 0.1841 (5) | 0.0248 (7) | |
C4 | −0.5914 (3) | 0.2099 (3) | 0.2312 (5) | 0.0243 (7) | |
C5 | −0.5017 (3) | 0.1247 (3) | 0.2120 (5) | 0.0226 (7) | |
H5 | −0.5345 | 0.0588 | 0.2236 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0145 (4) | 0.0152 (4) | 0.0363 (4) | 0.00237 (19) | 0.0044 (3) | −0.0016 (2) |
O1 | 0.0167 (11) | 0.0196 (12) | 0.0525 (16) | 0.0007 (9) | 0.0096 (10) | −0.0062 (10) |
O2 | 0.0304 (15) | 0.0164 (14) | 0.071 (2) | −0.0017 (11) | 0.0170 (13) | 0.0004 (13) |
O3 | 0.0296 (14) | 0.0192 (13) | 0.0672 (19) | −0.0064 (11) | 0.0013 (12) | −0.0018 (12) |
O4 | 0.0164 (12) | 0.0321 (15) | 0.068 (2) | −0.0008 (10) | 0.0099 (12) | −0.0026 (13) |
O5 | 0.0220 (12) | 0.0229 (13) | 0.0488 (16) | 0.0000 (10) | 0.0085 (10) | 0.0044 (11) |
O6 | 0.0227 (13) | 0.0267 (14) | 0.0460 (15) | 0.0023 (11) | −0.0015 (10) | −0.0024 (12) |
O7 | 0.0453 (18) | 0.0282 (15) | 0.0462 (17) | 0.0016 (13) | 0.0007 (13) | 0.0015 (12) |
N1 | 0.0180 (13) | 0.0189 (15) | 0.0389 (16) | −0.0018 (11) | 0.0071 (11) | −0.0014 (11) |
N2 | 0.0189 (14) | 0.0178 (14) | 0.0441 (17) | 0.0032 (11) | 0.0045 (11) | −0.0049 (12) |
C1 | 0.0147 (14) | 0.0176 (15) | 0.0351 (16) | 0.0007 (12) | 0.0038 (11) | −0.0011 (12) |
C2 | 0.0180 (14) | 0.0195 (16) | 0.0276 (15) | 0.0025 (12) | 0.0042 (11) | −0.0022 (12) |
C3 | 0.0203 (16) | 0.0181 (16) | 0.0359 (17) | −0.0002 (12) | 0.0001 (12) | −0.0027 (12) |
C4 | 0.0157 (14) | 0.0205 (16) | 0.0369 (17) | −0.0008 (12) | 0.0046 (12) | −0.0051 (13) |
C5 | 0.0165 (14) | 0.0159 (15) | 0.0358 (17) | 0.0006 (11) | 0.0055 (12) | 0.0000 (12) |
Co1—O1 | 2.056 (2) | O6—H62 | 0.92 (5) |
Co1—O1i | 2.056 (2) | O7—H71 | 0.94 (5) |
Co1—O5 | 2.113 (3) | O7—H72 | 0.97 (5) |
Co1—O5i | 2.113 (3) | N1—C2 | 1.371 (4) |
Co1—O6 | 2.115 (3) | N1—C3 | 1.374 (5) |
Co1—O6i | 2.115 (3) | N1—H1 | 0.83 (2) |
O1—C1 | 1.269 (4) | N2—C3 | 1.371 (4) |
O2—C1 | 1.224 (5) | N2—C4 | 1.382 (4) |
O3—C3 | 1.222 (5) | N2—H2 | 0.84 (6) |
O4—C4 | 1.232 (4) | C2—C1 | 1.510 (4) |
O5—H51 | 0.93 (2) | C2—C5 | 1.351 (4) |
O5—H52 | 0.91 (5) | C5—C4 | 1.437 (5) |
O6—H61 | 0.95 (2) | C5—H5 | 0.9300 |
O1—Co1—O1i | 180.00 (14) | H71—O7—H72 | 107 (4) |
O1—Co1—O5 | 92.89 (10) | C2—N1—C3 | 122.5 (3) |
O1i—Co1—O5 | 87.11 (10) | C2—N1—H1 | 124 (4) |
O1—Co1—O5i | 87.11 (10) | C3—N1—H1 | 113 (4) |
O1i—Co1—O5i | 92.89 (10) | C3—N2—C4 | 126.8 (3) |
O1—Co1—O6 | 89.00 (11) | C3—N2—H2 | 112 (6) |
O1i—Co1—O6 | 91.00 (11) | C4—N2—H2 | 121 (6) |
O1—Co1—O6i | 91.00 (11) | O1—C1—C2 | 113.6 (3) |
O1i—Co1—O6i | 89.00 (11) | O2—C1—O1 | 127.2 (3) |
O5i—Co1—O5 | 180.00 (19) | O2—C1—C2 | 119.2 (3) |
O5—Co1—O6 | 89.84 (11) | N1—C2—C1 | 116.3 (3) |
O5i—Co1—O6 | 90.16 (11) | C5—C2—N1 | 121.3 (3) |
O5—Co1—O6i | 90.16 (11) | C5—C2—C1 | 122.4 (3) |
O5i—Co1—O6i | 89.84 (11) | O3—C3—N1 | 123.4 (3) |
O6i—Co1—O6 | 180.00 (10) | O3—C3—N2 | 121.8 (3) |
C1—O1—Co1 | 126.3 (2) | N2—C3—N1 | 114.8 (3) |
Co1—O5—H51 | 108 (4) | O4—C4—N2 | 120.2 (3) |
Co1—O5—H52 | 124 (5) | O4—C4—C5 | 125.2 (3) |
H52—O5—H51 | 107 (4) | N2—C4—C5 | 114.6 (3) |
Co1—O6—H61 | 118 (3) | C2—C5—C4 | 119.9 (3) |
Co1—O6—H62 | 113 (4) | C2—C5—H5 | 120.0 |
H61—O6—H62 | 107 (4) | C4—C5—H5 | 120.0 |
O5—Co1—O1—C1 | −36.3 (3) | C4—N2—C3—N1 | 1.7 (5) |
O5i—Co1—O1—C1 | 143.7 (3) | C3—N2—C4—O4 | −179.6 (4) |
O6—Co1—O1—C1 | −126.1 (3) | C3—N2—C4—C5 | 1.3 (5) |
O6i—Co1—O1—C1 | 53.9 (3) | N1—C2—C1—O1 | 1.8 (5) |
Co1—O1—C1—O2 | 21.4 (5) | N1—C2—C1—O2 | −177.8 (3) |
Co1—O1—C1—C2 | −158.2 (2) | C5—C2—C1—O1 | −178.7 (3) |
C3—N1—C2—C1 | −176.5 (3) | C5—C2—C1—O2 | 1.8 (5) |
C3—N1—C2—C5 | 3.9 (5) | N1—C2—C5—C4 | −0.5 (5) |
C2—N1—C3—O3 | 175.6 (4) | C1—C2—C5—C4 | 180.0 (3) |
C2—N1—C3—N2 | −4.4 (5) | C2—C5—C4—O4 | 179.0 (4) |
C4—N2—C3—O3 | −178.3 (4) | C2—C5—C4—N2 | −1.9 (5) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O7 | 0.83 (4) | 2.26 (4) | 3.073 (4) | 167 (5) |
N2—H2···O2 | 0.84 (6) | 1.98 (6) | 2.790 (4) | 162 (7) |
O5—H51···O2 | 0.93 (2) | 2.05 (5) | 2.805 (4) | 137 (5) |
O5—H52···O7 | 0.91 (5) | 1.82 (5) | 2.710 (4) | 167 (6) |
O6—H61···O4ii | 0.95 (3) | 1.84 (4) | 2.781 (4) | 173 (5) |
O6—H62···O3iii | 0.92 (5) | 1.84 (5) | 2.737 (4) | 164 (4) |
O7—H71···O5 | 0.94 (5) | 1.90 (5) | 2.808 (4) | 160 (6) |
O7—H72···O1 | 0.97 (5) | 2.11 (5) | 2.957 (4) | 145 (6) |
O7—H72···O6 | 0.97 (5) | 2.44 (7) | 3.201 (4) | 135 (6) |
C5—H5···O3 | 0.93 | 2.38 | 3.292 (5) | 165 |
Symmetry codes: (ii) x+1, y, z; (iii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C5H3N2O4)2(H2O)4]·2H2O |
Mr | 477.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.8715 (5), 13.1514 (7), 6.7281 (3) |
β (°) | 92.224 (3) |
V (Å3) | 872.81 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.07 |
Crystal size (mm) | 0.35 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.775, 0.851 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6413, 2006, 1905 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.168, 1.11 |
No. of reflections | 2006 |
No. of parameters | 164 |
No. of restraints | 11 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.99, −0.49 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O7 | 0.83 (4) | 2.26 (4) | 3.073 (4) | 167 (5) |
N2—H2···O2 | 0.84 (6) | 1.98 (6) | 2.790 (4) | 162 (7) |
O5—H51···O2 | 0.93 (2) | 2.05 (5) | 2.805 (4) | 137 (5) |
O5—H52···O7 | 0.91 (5) | 1.82 (5) | 2.710 (4) | 167 (6) |
O6—H61···O4i | 0.95 (3) | 1.84 (4) | 2.781 (4) | 173 (5) |
O6—H62···O3ii | 0.92 (5) | 1.84 (5) | 2.737 (4) | 164 (4) |
O7—H71···O5 | 0.94 (5) | 1.90 (5) | 2.808 (4) | 160 (6) |
O7—H72···O1 | 0.97 (5) | 2.11 (5) | 2.957 (4) | 145 (6) |
O7—H72···O6 | 0.97 (5) | 2.44 (7) | 3.201 (4) | 135 (6) |
C5—H5···O3 | 0.9300 | 2.38 | 3.292 (5) | 165 |
Symmetry codes: (i) x+1, y, z; (ii) −x, y−1/2, −z+1/2. |
References
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castan, P., Colacio-Rodrigez, E., Beauchamp, A. E., Cros, S. & Wimmer, S. (1990). J. Inorg. Biochem. 38, 225–239. CrossRef CAS PubMed Web of Science Google Scholar
Doody, Br. E., Tucci, E. R., Scruggs, R. & Li, N. C. (1996). J. Inorg. Nucl. Chem. 28, 833–844. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ha, T. T. B., Larsonneur-Galibert, A. M., Castan, P. & Jaud, J. (1999). J. Chem. Crystallogr. 29, 565–569. Web of Science CSD CrossRef CAS Google Scholar
Icbudak, H., Olmez, H., Yesilel, O. Z., Arslan, F., Naumov, P., Jovanovski, G., Ibrahim, A. R., Umsan, A., Fun, H. K., Chantrapromma, S. & Ng, S. W. (2003). J. Mol. Struct. 657, 255–270. Web of Science CSD CrossRef CAS Google Scholar
Karipides, A. & Thomas, B. (1986). Acta Cryst. C42, 1705–1707. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Köse, D. A., Zumreoglu-Karan, B., Kosar, B. & Buyukgungor, O. (2008). J. Chem. Crystallogr. 38, 305–309. Google Scholar
Köse, D. A., Zumreoglu-Karan, B., Sahin, O. & Buyukgungor, O. (2006). J. Mol. Struct. 789, 147–151. Google Scholar
Kumberger, O., Riede, J. & Schmidbaur, H. (1991). Chem. Ber. 124, 2739–2742. CrossRef CAS Web of Science Google Scholar
Levine, R. L., Hoogenraad, N. J. & Kretchmer, N. (1974). Pediat. Res. 8, 724–734. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mutikainen, I. (1987). Inorg. Chim. Acta, 136, 155–158. CSD CrossRef CAS Web of Science Google Scholar
Mutikainen, I., Hämäläinen, R., Klinga, M., Orama, O. & Turpeinen, U. (1996). Acta Cryst. C52, 2480–2482. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nelson, D. L. & Michael, M. C. (2000). Lehninger Principles of Biochemistry, 3rd ed., pp. 848–855. New York: Worth Publishers. Google Scholar
Nepveu, F., Gaultier, N., Korber, N., Jaud, J. & Castan, P. (1995). J. Chem. Soc. Dalton Trans. pp. 4005–4013. CSD CrossRef Web of Science Google Scholar
Platter, M. J., Foreman, M. R. St J., Skakle, J. M. S. & Howie, R. A. (2002). Inorg. Chim. Acta, 332, 135–145. Web of Science CSD CrossRef Google Scholar
Sabat, M., Zglinska, D. & Jėzowska-Trzebiatowska, B. (1980). Acta Cryst. B36, 1187–1188. CrossRef CAS IUCr Journals Web of Science Google Scholar
Schmidbaur, H., Classen, H. G. & Helbig, J. (1990). Angew. Chem. 102, 1122–1136. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, L. H. Jr & Baker, F. A. (1959). J. Clin. Invest. 38, 798–809. CrossRef PubMed CAS Web of Science Google Scholar
Solbakk, J. (1971). Acta Chem. Scand. 25, 3006–3018. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, D., Cao, R., Liang, Y., Hong, M., Zhao, Y. & Weng, J. (2002). Aust. J. Chem. 55, 681–683. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Orotic acid (6-uracilic acid, vitamin B13, H3Or) is an essential vitamin in the syntheses of pyrimidine bases of nucleic acids, since it is the first pyridine product of an enzymatic step in normal blood cells (Nelson & Michael, 2000; Smith & Baker, 1959; Levine et al., 1974). Metal orotate complexes and their derivatives not only found applications in curing syndromes but also they have encouraging studies as therapeutic agents for cancer (Schmidbaur et al., 1990; Castan et al., 1990; Köse et al., 2006). Orotic acid is an interesting ligand because it has multiple coordination sites at low and neutral pH, it is coordinated from the carboxylic acid group monodentately in ketonic form but at higher pH values bidentate coordination occurs in enolic form, the tautomerism between the ketonic and enolic structures makes multiform coordinations possible (Doody et al., 1996; Köse et al., 2008). Mononuclear crystal structures of Co, Cu, Mg, Ni and Zn complexes were reported, where bidentate orotate dianions (HOr2-) found in the molecules (Mutikainen, 1987; Mutikainen et al., 1996; Icbudak et al., 2003; Sabat et al., 1980; Karipides & Thomas, 1986; Platter et al., 2002; Kumberger et al., 1991). Dianionic form of the acid (HOr2-) can also act as a polydentate ligand in its polymeric complexes with Cu, Ni and Mn metals (Nepveu et al., 1995; Ha et al., 1999; Platter et al., 2002; Sun et al., 2002). Relatively limited number of monoanionic orotate complex crystal studies are found in the literature. The metal orotate structures including Mg, Ni and Zn have (H2Or-) ions located in the outer coordination sphere and the monoanion does not enter the inner coordination sphere of the aquated metal, M(II), cations (Solbakk, 1971). The title compound was synthesized and its crystal structure is reported herein.
The title complex, (I), is a crystallographically centrosymmetric mononuclear complex, consisting of two orotate, (Or), ligands, four coordinated and one uncoordinated water molecules (Fig. 1). Or ligands are monodentate. The four O atoms (O5, O6, and the symmetry-related atoms, O5', O6') in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two O atoms of the Or ligands (O1, O1') in the axial positions (Fig. 1).
The near equality of the C1—O1 [1.269 (4) Å] and C1—O2 [1.224 (5) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Co—O bond length is 2.095 (3) Å (Table 1), and the Co atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.6042 (1) Å. The dihedral angle between the planar carboxylate group and the Or ring A (N1/N2/C2—C5) is 1.15 (31)°. Atoms O1, O2, O3, O4 and C1 are -0.064 (3), -0.027 (4), -0.069 (3), 0.040 (3) and -0.039 (4) Å away from the plane of the Or ring, respectively.
In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The π–π contacts between the Or rings, Cg1—Cg1i and Cg1—Cg1ii [symmetry codes: (i) x, 1/2 - y, z - 1/2; (ii) x, 1/2 - y, z + 1/2, where Cg1 is the centroid of the ring (N1/N2/C2—C5)] may further stabilize the structure, with centroid-centroid distances of 3.439 (2) and 3.438 (2) Å, respectively.