organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (4aR*,7S*,8S*,8aS*)-1-oxo-7-phenyl-3,4,4a,7,8,8a-hexa­hydro-1H-isochromene-8-carboxyl­ate

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 30 April 2010; accepted 10 May 2010; online 15 May 2010)

In the title compound, C18H20O4, both the tetra­hydro­pyran­one ring and the cyclo­hexene ring adopt envelope conformations. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonding.

Related literature

The title compound is a derivative of 1-oxo-hexa­hydro-1H-isochromene, which has been reported as a key inter­mediate towards the total syntheses of natural products such as eleutherobin and tetronothio­din, see: Kim et al. (2000[Kim, P., Nantz, M. H., Kurth, M. J. & Olmstead, M. M. (2000). Org. Lett. 2, 1831-1834.]); Jung et al. (2000[Jung, M. E., Huang, A. & Johnson, T. W. (2000). Org. Lett. 2, 1835-1837.]); Page et al. (2003[Page, P. C. B., Vahedi, H., Batchelor, K. J., Hindley, S. J., Edgar, M. & Beswick, P. (2003). Synlett, pp. 1022-1024.]). For microwave-assisted intra­molecular Diels–Alder cyclo­addition, see: Wu et al. (2006[Wu, J., Sun, L. & Dai, W.-M. (2006). Tetrahedron, 62, 8360-8372.], 2007[Wu, J., Yu, H., Wang, Y., Xing, X. & Dai, W.-M. (2007). Tetrahedron Lett. 48, 6543-6547.]); Wang et al. (2009[Wang, Y., Wu, J. & Dai, W.-M. (2009). Synlett, pp. 2862-2866.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O4

  • Mr = 300.34

  • Orthorhombic, P b c a

  • a = 15.5513 (12) Å

  • b = 9.9178 (7) Å

  • c = 21.1542 (17) Å

  • V = 3262.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.16 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • 26140 measured reflections

  • 3200 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.197

  • S = 1.00

  • 3200 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.98 2.45 3.401 (4) 164
C5—H5A⋯O4i 0.97 2.48 3.412 (4) 161
C7—H7⋯O1ii 0.93 2.56 3.468 (5) 165
C13—H13⋯O2iii 0.93 2.59 3.356 (6) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C18H20O4, refers to the derivative of 1-oxo- hexahydro-1H-isochromenes, which has been reported as a key intermediate towards total syntheses of natural products such as eleutherobin (Kim et al., 2000; Jung et al., 2000) and tetronothiodin (Page et al., 2003). The title compound has recently been obtained during microwave-assisted intramolecular Diels-Alder cycloaddition along with a minor diastereomer with a 74:26 diastereomeric ratio (Wu et al., 2006, 2007; Wang et al., 2009). The compound has four stereogenic centers but crystallizes as a racemate as indicated by the centrosymmetric space group. We report here its crystal structure.

In the molecular structure of the title compound (Fig. 1), there are one pyranone ring and one cyclohexene ring. Both of the two rings C1-C2/C6-C9 and C2-C3/O2/C4-C6 adopt envelope conformation. The crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

The title compound is a derivative of 1-oxo-hexahydro-1H-isochromene, which has been reported as a key intermediate towards the total syntheses of natural products such as eleutherobin and tetronothiodin, see: Kim et al. (2000); Jung et al. (2000); Page et al. (2003). For microwave-assisted intramolecular Diels–Alder cycloaddition, see: Wu et al. (2006, 2007); Wang et al. (2009).

Experimental top

A 10 mL pressured process vial was charged ethyl (3E,5E)-6-phenylhexa-3,5-dien-1-yl fumarate (172.0 mg, 0.57 mmol) followed by adding MeCN (4 mL). The loaded vial was then sealed with a cap containing a silicon septum and put into the cavity of a technical microwave reactor with the temperature measured by an IR sensor. After heating at 453 K for 1 h, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20% EtOAc in petroleum ether) to furnish the title compound (95.0 mg, 52%), along with a minor diastereomer (32.0 mg, 19%), as colorless needles. mp 392-394 K (EtOAc-hexane). Single crystals, as a racemate, suitable for X-ray diffraction of the title compound were grown at ambient temperature in the mixed solvent of ethyl acetate and hexane (v:v = 10:1).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93-0.98 Å, and refined in riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Structure description top

The title compound, C18H20O4, refers to the derivative of 1-oxo- hexahydro-1H-isochromenes, which has been reported as a key intermediate towards total syntheses of natural products such as eleutherobin (Kim et al., 2000; Jung et al., 2000) and tetronothiodin (Page et al., 2003). The title compound has recently been obtained during microwave-assisted intramolecular Diels-Alder cycloaddition along with a minor diastereomer with a 74:26 diastereomeric ratio (Wu et al., 2006, 2007; Wang et al., 2009). The compound has four stereogenic centers but crystallizes as a racemate as indicated by the centrosymmetric space group. We report here its crystal structure.

In the molecular structure of the title compound (Fig. 1), there are one pyranone ring and one cyclohexene ring. Both of the two rings C1-C2/C6-C9 and C2-C3/O2/C4-C6 adopt envelope conformation. The crystal packing is stabilized by weak non-classical intermolecular C—H···O hydrogen bonds (Table 1).

The title compound is a derivative of 1-oxo-hexahydro-1H-isochromene, which has been reported as a key intermediate towards the total syntheses of natural products such as eleutherobin and tetronothiodin, see: Kim et al. (2000); Jung et al. (2000); Page et al. (2003). For microwave-assisted intramolecular Diels–Alder cycloaddition, see: Wu et al. (2006, 2007); Wang et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
Ethyl (4aR*,7S*,8S*,8aS*)-1-oxo-7-phenyl- 3,4,4a,7,8,8a-hexahydro-1H-isochromene-8-carboxylate top
Crystal data top
C18H20O4F(000) = 1280
Mr = 300.34Dx = 1.223 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 12675 reflections
a = 15.5513 (12) Åθ = 3.1–27.4°
b = 9.9178 (7) ŵ = 0.09 mm1
c = 21.1542 (17) ÅT = 296 K
V = 3262.7 (4) Å3Needle, colorless
Z = 80.36 × 0.16 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1627 reflections with I > 2σ(I)
Radiation source: rolling anodeRint = 0.075
Graphite monochromatorθmax = 26.0°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1h = 1919
ω scansk = 1112
26140 measured reflectionsl = 2626
3200 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0698P)2 + 1.9409P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3200 reflectionsΔρmax = 0.35 e Å3
202 parametersΔρmin = 0.28 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (12)
Crystal data top
C18H20O4V = 3262.7 (4) Å3
Mr = 300.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.5513 (12) ŵ = 0.09 mm1
b = 9.9178 (7) ÅT = 296 K
c = 21.1542 (17) Å0.36 × 0.16 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1627 reflections with I > 2σ(I)
26140 measured reflectionsRint = 0.075
3200 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.197H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
3200 reflectionsΔρmin = 0.28 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.16345 (14)0.3940 (2)0.39009 (15)0.1040 (10)
C170.0706 (3)0.3651 (6)0.3998 (3)0.146 (2)
H17A0.05240.28600.37640.175*
H17B0.03500.44140.38800.175*
C180.0687 (4)0.3407 (8)0.4701 (3)0.205 (3)
H18A0.09930.25910.47960.308*
H18B0.01020.33250.48390.308*
H18C0.09550.41500.49150.308*
O40.18555 (14)0.1796 (2)0.36346 (12)0.0848 (8)
C10.30154 (17)0.3380 (3)0.35293 (14)0.0588 (8)
H10.30830.43300.36450.071*
C90.36348 (18)0.2519 (3)0.39280 (14)0.0642 (8)
H90.34840.15710.38600.077*
C160.21088 (19)0.2931 (3)0.36799 (15)0.0660 (8)
C100.35139 (19)0.2824 (3)0.46291 (15)0.0680 (8)
C80.4540 (2)0.2708 (3)0.37126 (18)0.0765 (9)
H80.49780.24860.39930.092*
O20.27531 (18)0.5007 (3)0.20646 (13)0.1045 (9)
C20.32050 (19)0.3207 (3)0.28126 (15)0.0704 (9)
H20.31270.22490.27140.084*
C50.4213 (2)0.5048 (4)0.24889 (18)0.0856 (10)
H5A0.40500.55860.28530.103*
H5B0.48030.52640.23810.103*
C70.4757 (2)0.3170 (4)0.31524 (19)0.0837 (11)
H70.53400.32580.30650.100*
C60.4140 (2)0.3561 (3)0.26494 (16)0.0730 (9)
H60.42930.30530.22680.088*
C150.3062 (2)0.1947 (4)0.50117 (18)0.0838 (10)
H150.28350.11590.48420.101*
C30.2542 (3)0.3978 (4)0.24313 (18)0.0886 (11)
O10.17953 (19)0.3714 (4)0.24613 (17)0.1447 (14)
C110.3852 (2)0.3990 (4)0.48850 (19)0.0886 (11)
H110.41500.45920.46290.106*
C140.2948 (3)0.2231 (6)0.5638 (2)0.1138 (14)
H140.26360.16410.58910.137*
C130.3294 (4)0.3388 (7)0.5899 (2)0.1200 (16)
H130.32220.35720.63260.144*
C40.3635 (3)0.5372 (5)0.1941 (2)0.1098 (14)
H4A0.36660.63300.18530.132*
H4B0.38350.48930.15700.132*
C120.3746 (3)0.4264 (5)0.5521 (2)0.1144 (15)
H120.39820.50430.56930.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0557 (13)0.0768 (15)0.179 (3)0.0037 (11)0.0323 (15)0.0228 (16)
C170.095 (3)0.127 (4)0.216 (7)0.015 (3)0.045 (4)0.020 (4)
C180.146 (6)0.258 (8)0.211 (8)0.069 (5)0.052 (5)0.007 (7)
O40.0728 (15)0.0589 (13)0.123 (2)0.0162 (11)0.0052 (13)0.0008 (12)
C10.0494 (15)0.0527 (15)0.074 (2)0.0019 (13)0.0044 (14)0.0056 (14)
C90.0597 (17)0.0526 (15)0.080 (2)0.0045 (14)0.0024 (16)0.0035 (15)
C160.0563 (17)0.0572 (17)0.084 (2)0.0022 (14)0.0007 (16)0.0004 (16)
C100.0599 (18)0.0660 (19)0.078 (2)0.0079 (15)0.0042 (16)0.0010 (17)
C80.0546 (18)0.079 (2)0.096 (3)0.0106 (16)0.0022 (18)0.0019 (19)
O20.095 (2)0.116 (2)0.103 (2)0.0024 (16)0.0076 (15)0.0319 (17)
C20.068 (2)0.0661 (18)0.077 (2)0.0033 (16)0.0021 (16)0.0063 (16)
C50.077 (2)0.083 (2)0.096 (3)0.0076 (19)0.018 (2)0.002 (2)
C70.0534 (19)0.091 (2)0.106 (3)0.0064 (17)0.0163 (19)0.010 (2)
C60.068 (2)0.074 (2)0.077 (2)0.0017 (16)0.0155 (17)0.0103 (17)
C150.081 (2)0.092 (2)0.078 (2)0.003 (2)0.0015 (19)0.011 (2)
C30.078 (2)0.106 (3)0.083 (2)0.007 (2)0.010 (2)0.010 (2)
O10.0751 (19)0.195 (3)0.164 (3)0.024 (2)0.0326 (19)0.072 (3)
C110.096 (3)0.078 (2)0.092 (3)0.001 (2)0.003 (2)0.015 (2)
C140.111 (3)0.133 (4)0.098 (4)0.009 (3)0.005 (3)0.022 (3)
C130.127 (4)0.155 (5)0.078 (3)0.037 (4)0.003 (3)0.012 (3)
C40.099 (3)0.111 (3)0.119 (3)0.008 (3)0.014 (3)0.028 (3)
C120.128 (4)0.109 (3)0.106 (4)0.014 (3)0.015 (3)0.031 (3)
Geometric parameters (Å, º) top
O3—C161.327 (4)C2—C31.516 (5)
O3—C171.486 (5)C2—C61.535 (4)
C17—C181.507 (8)C2—H20.9800
C17—H17A0.9700C5—C41.501 (5)
C17—H17B0.9700C5—C61.518 (5)
C18—H18A0.9600C5—H5A0.9700
C18—H18B0.9600C5—H5B0.9700
C18—H18C0.9600C7—C61.485 (5)
O4—C161.197 (3)C7—H70.9300
C1—C161.512 (4)C6—H60.9800
C1—C91.539 (4)C15—C141.367 (6)
C1—C21.554 (4)C15—H150.9300
C1—H10.9800C3—O11.192 (4)
C9—C81.491 (4)C11—C121.382 (6)
C9—C101.525 (4)C11—H110.9300
C9—H90.9800C14—C131.382 (7)
C10—C151.379 (5)C14—H140.9300
C10—C111.381 (4)C13—C121.374 (6)
C8—C71.314 (4)C13—H130.9300
C8—H80.9300C4—H4A0.9700
O2—C31.323 (4)C4—H4B0.9700
O2—C41.442 (5)C12—H120.9300
C16—O3—C17116.3 (3)C1—C2—H2106.9
O3—C17—C18100.7 (4)C4—C5—C6109.6 (3)
O3—C17—H17A111.6C4—C5—H5A109.7
C18—C17—H17A111.6C6—C5—H5A109.7
O3—C17—H17B111.6C4—C5—H5B109.7
C18—C17—H17B111.6C6—C5—H5B109.7
H17A—C17—H17B109.4H5A—C5—H5B108.2
C17—C18—H18A109.5C8—C7—C6124.8 (3)
C17—C18—H18B109.5C8—C7—H7117.6
H18A—C18—H18B109.5C6—C7—H7117.6
C17—C18—H18C109.5C7—C6—C5111.5 (3)
H18A—C18—H18C109.5C7—C6—C2113.0 (3)
H18B—C18—H18C109.5C5—C6—C2110.1 (3)
C16—C1—C9107.8 (2)C7—C6—H6107.3
C16—C1—C2110.5 (2)C5—C6—H6107.3
C9—C1—C2110.8 (2)C2—C6—H6107.3
C16—C1—H1109.3C14—C15—C10120.4 (4)
C9—C1—H1109.3C14—C15—H15119.8
C2—C1—H1109.3C10—C15—H15119.8
C8—C9—C10112.9 (3)O1—C3—O2116.3 (4)
C8—C9—C1110.7 (3)O1—C3—C2121.5 (4)
C10—C9—C1110.2 (2)O2—C3—C2122.2 (3)
C8—C9—H9107.6C10—C11—C12120.0 (4)
C10—C9—H9107.6C10—C11—H11120.0
C1—C9—H9107.6C12—C11—H11120.0
O4—C16—O3123.6 (3)C15—C14—C13120.5 (5)
O4—C16—C1124.5 (3)C15—C14—H14119.8
O3—C16—C1111.8 (2)C13—C14—H14119.8
C15—C10—C11119.4 (3)C12—C13—C14119.5 (4)
C15—C10—C9120.6 (3)C12—C13—H13120.3
C11—C10—C9120.0 (3)C14—C13—H13120.3
C7—C8—C9124.2 (3)O2—C4—C5112.1 (3)
C7—C8—H8117.9O2—C4—H4A109.2
C9—C8—H8117.9C5—C4—H4A109.2
C3—O2—C4122.4 (3)O2—C4—H4B109.2
C3—C2—C6114.1 (3)C5—C4—H4B109.2
C3—C2—C1109.5 (3)H4A—C4—H4B107.9
C6—C2—C1112.0 (2)C13—C12—C11120.2 (4)
C3—C2—H2106.9C13—C12—H12119.9
C6—C2—H2106.9C11—C12—H12119.9
C16—O3—C17—C18100.1 (5)C8—C7—C6—C27.3 (5)
C16—C1—C9—C8168.7 (2)C4—C5—C6—C7175.1 (3)
C2—C1—C9—C847.7 (3)C4—C5—C6—C258.7 (4)
C16—C1—C9—C1065.7 (3)C3—C2—C6—C7160.7 (3)
C2—C1—C9—C10173.3 (2)C1—C2—C6—C735.6 (4)
C17—O3—C16—O49.7 (6)C3—C2—C6—C535.4 (4)
C17—O3—C16—C1173.5 (3)C1—C2—C6—C589.8 (3)
C9—C1—C16—O455.5 (4)C11—C10—C15—C140.1 (5)
C2—C1—C16—O465.7 (4)C9—C10—C15—C14179.3 (3)
C9—C1—C16—O3121.3 (3)C4—O2—C3—O1174.7 (4)
C2—C1—C16—O3117.5 (3)C4—O2—C3—C27.5 (6)
C8—C9—C10—C15133.0 (3)C6—C2—C3—O1172.4 (4)
C1—C9—C10—C15102.6 (3)C1—C2—C3—O161.2 (5)
C8—C9—C10—C1147.5 (4)C6—C2—C3—O29.9 (5)
C1—C9—C10—C1176.9 (4)C1—C2—C3—O2116.5 (4)
C10—C9—C8—C7144.6 (3)C15—C10—C11—C120.9 (5)
C1—C9—C8—C720.5 (4)C9—C10—C11—C12179.7 (3)
C16—C1—C2—C356.2 (3)C10—C15—C14—C131.0 (6)
C9—C1—C2—C3175.6 (3)C15—C14—C13—C120.8 (7)
C16—C1—C2—C6176.1 (2)C3—O2—C4—C531.0 (5)
C9—C1—C2—C656.7 (3)C6—C5—C4—O256.5 (4)
C9—C8—C7—C60.5 (6)C14—C13—C12—C110.2 (7)
C8—C7—C6—C5117.3 (4)C10—C11—C12—C131.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.982.453.401 (4)164
C5—H5A···O4i0.972.483.412 (4)161
C7—H7···O1ii0.932.563.468 (5)165
C13—H13···O2iii0.932.593.356 (6)140
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20O4
Mr300.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)15.5513 (12), 9.9178 (7), 21.1542 (17)
V3)3262.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.16 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26140, 3200, 1627
Rint0.075
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.197, 1.00
No. of reflections3200
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.982.453.401 (4)164
C5—H5A···O4i0.972.483.412 (4)161
C7—H7···O1ii0.932.563.468 (5)165
C13—H13···O2iii0.932.593.356 (6)140
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2.
 

Acknowledgements

This work is supported by the Natural Science Foundation of China (grant No. 20572092). Professor Wei-Min Dai is thanked for his valuable suggestions on this work. Mr Jianming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for his assistance with the crystal structure analysis.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJung, M. E., Huang, A. & Johnson, T. W. (2000). Org. Lett. 2, 1835–1837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, P., Nantz, M. H., Kurth, M. J. & Olmstead, M. M. (2000). Org. Lett. 2, 1831–1834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPage, P. C. B., Vahedi, H., Batchelor, K. J., Hindley, S. J., Edgar, M. & Beswick, P. (2003). Synlett, pp. 1022–1024.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Wu, J. & Dai, W.-M. (2009). Synlett, pp. 2862–2866.  Google Scholar
First citationWu, J., Sun, L. & Dai, W.-M. (2006). Tetrahedron, 62, 8360–8372.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J., Yu, H., Wang, Y., Xing, X. & Dai, W.-M. (2007). Tetrahedron Lett. 48, 6543–6547.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds