organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-De­oxy­aconitine from the root of Aconitum Carmichaeli Debx.

aAgromomy College, Sichuan Agriculture University, Yaan 625014, People's Republic of China
*Correspondence e-mail: dr.gaof@gmail.com

(Received 4 May 2010; accepted 9 May 2010; online 15 May 2010)

The title compound (systematic name: 8β-acet­oxy-14α-benzo­yloxy-N-ethyl-13β,15α-dihydr­oxy-1α,6α,16β-trimeth­oxy-4β-methoxy­methyl­eneaconitane), C34H47NO10, is a typical aconitine-type C19-diterpenoid alkaloid, and was isolated from the roots of the Aconitum carmichaeli Debx. The mol­ecule has an aconitine carbon skeleton with four six-membered rings and two five-membered rings, whose geometry is similar to these observed in other C19-diterpenoid alkaloids; both of five-membered rings have the envelope configurations and the six-membered N-containing heterocyclic ring displays a chair conformation. Intra­molecular O—H⋯O hydrogen bonding occurs. Weak inter­molecular C—H⋯O hydrogen bonding is observed in the crystal structure.

Related literature

The title compound is a C19-diterpenoid alkaloid: for a review of diterpenoid alkaloids, see Wang et al. (2009[Wang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1-78. New York: Elsevier.], 2010[Wang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529-570.]). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984[Pelletier, S. W., Mody, N. V., Joshi, B. S. & Schramm, L. C. (1984). The Alkaloids: Chemistry and Perspectives, Vol. 2, edited by S. W. Pelletier, pp. 206-264. New York: Wiley.]). For the structures of related C19-diterpenoid alkaloids, see: Tashkhodjaev & Sultankhodjaev (2009[Tashkhodjaev, B. & Sultankhodjaev, M. N. (2009). Acta Cryst. E65, o1543-o1544.]); He et al. (2008[He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.]).

[Scheme 1]

Experimental

Crystal data
  • C34H47NO10

  • Mr = 629.73

  • Orthorhombic, P 21 21 21

  • a = 12.039 (3) Å

  • b = 15.805 (4) Å

  • c = 17.320 (3) Å

  • V = 3295.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.58 × 0.52 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3323 measured reflections

  • 3317 independent reflections

  • 1669 reflections with I > 2σ(I)

  • Rint = 0.006

  • 3 standard reflections every 300 reflections intensity decay: 3.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.245

  • S = 0.97

  • 3317 reflections

  • 395 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O6 0.86 2.03 2.563 (9) 120
O5—H5O⋯O10 0.88 2.12 2.792 (8) 133
C31—H31⋯O1i 0.93 2.59 3.508 (12) 171
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIFRAC (Flack et al., 1992[Flack, H. D., Blanc, E. & Schwarzenbach, D. (1992). J. Appl. Cryst. 25, 455-459.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The plant belonging to the genus A. carmichaeli Debx., which has been therapeutically used to treat rheumatic pain, paralysis due tostroke, rheumatoid arthritis and some other inflammations. The diterpenoid alkaloid, 3-deoxyaconitine, was previously isolated from A. carmichaeli Debx. (Pelletier et al. 1984), and its structure was established from the NMR and MS data. In our recent investigation, it was isolated from A. carmichaeli Debx., and its crystal structure was determined. The naming and the rings conforming referred to the literature (He et al., 2008). The molecular structure of the title compound is shown in Fig. 1. Six-membered rings A (C1/C2/C3/C4/C5/C11) and B (C7/C8/C9/C10/C11/C17) adopt chair conformations; six-membered heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopt the same chair conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display an envelope conformation. while the six-membered ring D (C8/C9/C14/C13/C16/C15) adopt boat conformations. The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxy group and carbonyl O atom. The absolute configuration of the title compound can not confirmed by the MoKa diffraction data. But it could be determined throngh the comparion of the similar natural products for their unique and same configuration (Tashkhodjaev et al., 2009).

Related literature top

The title compound is a C19-diterpenoid alkaloid: for a review of diterpenoid alkaloids, see Wang et al. (2009, 2010). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984). For the structures of related C19-diterpenoid alkaloids, see: Tashkhodjaev & Sultankhodjaev (2009); He et al. (2008).

Experimental top

Air-dried and powdered roots (400 g) were percolated with 0.1 M HCl solution (5 L). The obtained acid aqueous solution was basified with 10% aqueous NH4OH to pH 10 and then extracted with ethyl acetate (6 L×3). Removal of the solvent under reduced pressure afforded the total crude alkaloids (2.0 g) as a yellowish amorphous powder, which was chromatographed over a silica gel column, eluting with cyclohexane-acetone (9:11:2) gradient system, to afford deoxyaconitine (180 mg) in cyclohexane-acetone (7:1) gradient system. The crystals suitable for X-ray structure analysis were obtained by slow evaporation from an acetone solution at room temperature.

Refinement top

Hydroxy H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were located geometrically with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others. The absolute configuration has not been determined from the X-ray analysis, owing to the absence of strong anomalous scattering, and Friedel's pairs were merged. Bond distance restraints for three bonds were applied.

Structure description top

The plant belonging to the genus A. carmichaeli Debx., which has been therapeutically used to treat rheumatic pain, paralysis due tostroke, rheumatoid arthritis and some other inflammations. The diterpenoid alkaloid, 3-deoxyaconitine, was previously isolated from A. carmichaeli Debx. (Pelletier et al. 1984), and its structure was established from the NMR and MS data. In our recent investigation, it was isolated from A. carmichaeli Debx., and its crystal structure was determined. The naming and the rings conforming referred to the literature (He et al., 2008). The molecular structure of the title compound is shown in Fig. 1. Six-membered rings A (C1/C2/C3/C4/C5/C11) and B (C7/C8/C9/C10/C11/C17) adopt chair conformations; six-membered heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopt the same chair conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display an envelope conformation. while the six-membered ring D (C8/C9/C14/C13/C16/C15) adopt boat conformations. The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxy group and carbonyl O atom. The absolute configuration of the title compound can not confirmed by the MoKa diffraction data. But it could be determined throngh the comparion of the similar natural products for their unique and same configuration (Tashkhodjaev et al., 2009).

The title compound is a C19-diterpenoid alkaloid: for a review of diterpenoid alkaloids, see Wang et al. (2009, 2010). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984). For the structures of related C19-diterpenoid alkaloids, see: Tashkhodjaev & Sultankhodjaev (2009); He et al. (2008).

Computing details top

Data collection: DIFRAC (Flack et al., 1992); cell refinement: DIFRAC (Flack et al., 1992); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. H atoms not including in hydrogen bonding have been omitted for clarity.
8β-acetoxy-14α-benzoyloxy-N-ethyl-13β,15α-dihydroxy-1α,6α,16β- trimethoxy-4β-methoxymethyleneaconitane top
Crystal data top
C34H47NO10F(000) = 1352
Mr = 629.73Dx = 1.269 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 12.039 (3) Åθ = 4.3–7.6°
b = 15.805 (4) ŵ = 0.09 mm1
c = 17.320 (3) ÅT = 292 K
V = 3295.5 (13) Å3Block, colourless
Z = 40.58 × 0.52 × 0.42 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.006
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 1.7°
Graphite monochromatorh = 114
ω/2θ scansk = 518
3323 measured reflectionsl = 220
3317 independent reflections3 standard reflections every 300 reflections
1669 reflections with I > 2σ(I) intensity decay: 3.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.245H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1607P)2]
where P = (Fo2 + 2Fc2)/3
3317 reflections(Δ/σ)max = 0.003
395 parametersΔρmax = 0.64 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
C34H47NO10V = 3295.5 (13) Å3
Mr = 629.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.039 (3) ŵ = 0.09 mm1
b = 15.805 (4) ÅT = 292 K
c = 17.320 (3) Å0.58 × 0.52 × 0.42 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.006
3323 measured reflections3 standard reflections every 300 reflections
3317 independent reflections intensity decay: 3.3%
1669 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0763 restraints
wR(F2) = 0.245H-atom parameters constrained
S = 0.97Δρmax = 0.64 e Å3
3317 reflectionsΔρmin = 0.42 e Å3
395 parameters
Special details top

Experimental. The absolute structure of the title compound can not be determined by the X-ray analysis, owing to the absence of strong anomalous scatterers. But it can be deduced by the comparision to the known diterpenoid alkaloids, for the unique absolute configuration of the similar natural products.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0042 (5)0.5837 (4)0.1632 (4)0.098 (2)
O20.3230 (5)0.6590 (3)0.0985 (3)0.0716 (15)
O30.1594 (6)0.4053 (4)0.1289 (4)0.0941 (19)
O40.7008 (5)0.6091 (4)0.0024 (3)0.0801 (16)
H4O0.74750.57610.01950.120*
O50.4878 (5)0.3582 (3)0.0478 (3)0.0765 (16)
H5O0.46530.30890.03090.115*
O60.7160 (5)0.4502 (4)0.0251 (3)0.0810 (16)
O70.6524 (4)0.4866 (3)0.1332 (3)0.0657 (13)
O80.6094 (6)0.5188 (4)0.2555 (4)0.097 (2)
O90.4517 (4)0.3843 (3)0.1433 (3)0.0662 (14)
O100.4394 (6)0.2592 (3)0.0814 (4)0.0903 (18)
N10.1910 (6)0.4752 (4)0.0645 (4)0.0707 (18)
C10.2542 (6)0.6538 (4)0.0315 (4)0.0600 (18)
H10.26780.70440.00020.072*
C20.1342 (6)0.6562 (5)0.0579 (5)0.072 (2)
H2A0.12430.61770.10100.086*
H2B0.11590.71280.07540.086*
C30.0569 (7)0.6311 (5)0.0073 (6)0.079 (2)
H3A0.06010.67420.04720.095*
H3B0.01860.62950.01210.095*
C40.0844 (6)0.5465 (5)0.0428 (4)0.067 (2)
C50.2014 (6)0.5512 (5)0.0806 (4)0.0605 (18)
H50.20180.59310.12230.073*
C60.2419 (6)0.4646 (5)0.1107 (5)0.065 (2)
H60.28730.47420.15690.078*
C70.3190 (6)0.4311 (5)0.0448 (4)0.0615 (19)
H70.30030.37240.03190.074*
C80.4374 (6)0.4373 (4)0.0720 (4)0.0560 (17)
C90.4578 (6)0.5269 (4)0.1040 (4)0.0593 (18)
H90.42910.53110.15680.071*
C100.4051 (6)0.5967 (4)0.0526 (4)0.0573 (18)
H100.39660.64740.08460.069*
C110.2878 (6)0.5758 (4)0.0169 (4)0.0528 (17)
C120.4988 (6)0.6149 (4)0.0071 (4)0.0627 (19)
H12A0.47530.59850.05860.075*
H12B0.51710.67470.00750.075*
C130.5991 (6)0.5623 (5)0.0184 (4)0.0603 (18)
C140.5799 (6)0.5508 (5)0.1023 (4)0.0607 (19)
H140.59140.60440.12950.073*
C150.5311 (6)0.4083 (5)0.0126 (4)0.0616 (19)
H150.58220.37190.04160.074*
C160.6017 (7)0.4775 (5)0.0235 (4)0.066 (2)
H160.57670.48630.07670.079*
C170.2933 (7)0.4900 (4)0.0239 (4)0.0599 (19)
H170.35560.48940.06040.072*
C180.0072 (7)0.5272 (5)0.1004 (5)0.081 (2)
H18A0.07940.53440.07630.097*
H18B0.00110.46930.11830.097*
C190.0878 (7)0.4761 (5)0.0181 (5)0.080 (2)
H19A0.08010.42190.00770.096*
H19B0.02490.48270.05250.096*
C200.2009 (12)0.4007 (9)0.1144 (6)0.143 (2)
H20A0.15670.35510.09290.172*
H20B0.27780.38230.11510.172*
C210.1628 (12)0.4177 (9)0.1978 (6)0.143 (2)
H21A0.09320.44730.19710.215*
H21B0.15390.36480.22450.215*
H21C0.21750.45140.22390.215*
C220.3336 (8)0.7427 (5)0.1300 (5)0.084 (2)
H22A0.26610.75780.15610.126*
H22B0.39430.74390.16590.126*
H22C0.34740.78220.08900.126*
C230.0678 (9)0.5696 (9)0.2290 (5)0.143 (2)
H23A0.14280.58380.21540.215*
H23B0.04400.60430.27130.215*
H23C0.06430.51110.24380.215*
C240.1575 (13)0.3699 (8)0.2060 (5)0.143 (2)
H24A0.22450.38510.23270.215*
H24B0.15230.30930.20280.215*
H24C0.09450.39160.23360.215*
C250.4466 (7)0.2997 (5)0.1407 (6)0.076 (2)
C260.4554 (10)0.2620 (6)0.2188 (5)0.106 (3)
H26A0.42660.20540.21780.159*
H26B0.41330.29540.25470.159*
H26C0.53190.26090.23440.159*
C270.6552 (7)0.4755 (5)0.2098 (5)0.071 (2)
C280.7279 (7)0.4016 (5)0.2299 (4)0.066 (2)
C290.7361 (9)0.3785 (6)0.3065 (5)0.086 (3)
H290.69880.40960.34400.104*
C300.8009 (9)0.3079 (6)0.3281 (6)0.094 (3)
H300.80660.29160.37960.113*
C310.8551 (8)0.2644 (6)0.2714 (6)0.087 (3)
H310.89860.21800.28450.104*
C320.8465 (9)0.2878 (6)0.1959 (5)0.087 (3)
H320.88460.25710.15850.104*
C330.7841 (7)0.3543 (5)0.1741 (5)0.073 (2)
H330.77830.36860.12210.088*
C340.7429 (9)0.3915 (7)0.0847 (6)0.107 (3)
H34A0.70780.33820.07420.160*
H34B0.82200.38390.08670.160*
H34C0.71710.41290.13340.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.082 (4)0.111 (5)0.101 (4)0.021 (4)0.031 (4)0.007 (4)
O20.082 (4)0.070 (3)0.062 (3)0.010 (3)0.005 (3)0.012 (3)
O30.094 (5)0.080 (4)0.107 (4)0.008 (4)0.011 (4)0.013 (4)
O40.060 (3)0.085 (4)0.095 (4)0.007 (3)0.002 (3)0.013 (3)
O50.088 (4)0.066 (3)0.076 (3)0.003 (3)0.003 (3)0.022 (3)
O60.064 (4)0.095 (4)0.084 (4)0.016 (3)0.008 (3)0.006 (3)
O70.067 (3)0.075 (3)0.055 (3)0.010 (3)0.011 (2)0.004 (3)
O80.113 (5)0.107 (5)0.071 (4)0.035 (4)0.006 (4)0.024 (3)
O90.075 (4)0.061 (3)0.063 (3)0.008 (3)0.001 (3)0.005 (2)
O100.103 (5)0.060 (3)0.107 (4)0.002 (3)0.009 (4)0.010 (3)
N10.084 (5)0.056 (4)0.072 (4)0.002 (4)0.013 (4)0.024 (3)
C10.070 (5)0.054 (4)0.056 (4)0.009 (4)0.005 (4)0.001 (3)
C20.062 (5)0.077 (5)0.076 (5)0.011 (4)0.011 (4)0.015 (4)
C30.051 (4)0.073 (5)0.112 (7)0.008 (4)0.003 (5)0.002 (5)
C40.053 (5)0.076 (5)0.074 (5)0.002 (4)0.004 (4)0.000 (4)
C50.059 (4)0.060 (4)0.063 (4)0.004 (4)0.001 (4)0.002 (4)
C60.061 (5)0.063 (4)0.070 (4)0.008 (4)0.003 (4)0.007 (4)
C70.074 (5)0.052 (4)0.059 (4)0.001 (4)0.007 (4)0.007 (3)
C80.059 (4)0.053 (4)0.057 (4)0.000 (4)0.009 (4)0.003 (3)
C90.062 (5)0.066 (4)0.050 (4)0.002 (4)0.000 (3)0.003 (3)
C100.065 (5)0.046 (4)0.061 (4)0.004 (4)0.011 (4)0.006 (3)
C110.061 (4)0.048 (4)0.049 (4)0.001 (3)0.004 (3)0.004 (3)
C120.067 (5)0.052 (4)0.069 (5)0.006 (4)0.003 (4)0.005 (4)
C130.059 (5)0.063 (4)0.060 (4)0.009 (4)0.001 (4)0.012 (4)
C140.057 (5)0.058 (4)0.068 (4)0.003 (4)0.011 (4)0.009 (4)
C150.066 (5)0.062 (4)0.056 (4)0.009 (4)0.008 (4)0.014 (4)
C160.072 (5)0.073 (5)0.052 (4)0.011 (4)0.003 (4)0.003 (4)
C170.071 (5)0.054 (4)0.055 (4)0.005 (4)0.008 (4)0.006 (3)
C180.063 (5)0.073 (5)0.107 (7)0.009 (4)0.017 (5)0.003 (5)
C190.063 (6)0.077 (5)0.100 (6)0.005 (4)0.032 (5)0.003 (5)
C200.156 (6)0.139 (6)0.135 (5)0.016 (5)0.006 (5)0.005 (4)
C210.156 (6)0.139 (6)0.135 (5)0.016 (5)0.006 (5)0.005 (4)
C220.084 (6)0.089 (6)0.078 (5)0.003 (5)0.007 (5)0.014 (5)
C230.156 (6)0.139 (6)0.135 (5)0.016 (5)0.006 (5)0.005 (4)
C240.156 (6)0.139 (6)0.135 (5)0.016 (5)0.006 (5)0.005 (4)
C250.068 (6)0.060 (5)0.099 (7)0.001 (4)0.010 (5)0.006 (5)
C260.131 (9)0.080 (6)0.107 (7)0.007 (6)0.012 (7)0.036 (6)
C270.072 (5)0.070 (5)0.070 (5)0.013 (5)0.017 (5)0.001 (4)
C280.064 (5)0.065 (5)0.069 (5)0.001 (4)0.014 (4)0.003 (4)
C290.109 (7)0.087 (6)0.063 (5)0.016 (6)0.014 (5)0.001 (4)
C300.122 (8)0.080 (6)0.079 (6)0.008 (6)0.025 (6)0.017 (5)
C310.082 (6)0.073 (5)0.105 (7)0.007 (5)0.018 (6)0.000 (6)
C320.101 (7)0.077 (6)0.083 (6)0.013 (6)0.002 (5)0.004 (5)
C330.086 (6)0.074 (5)0.059 (4)0.004 (5)0.012 (4)0.001 (4)
C340.098 (8)0.099 (7)0.124 (8)0.025 (6)0.026 (7)0.007 (7)
Geometric parameters (Å, º) top
O1—C181.413 (10)C11—C171.531 (9)
O1—C231.449 (12)C12—C131.531 (10)
O2—C11.427 (9)C12—H12A0.9700
O2—C221.437 (9)C12—H12B0.9700
O3—C61.401 (9)C13—C141.482 (10)
O3—C241.448 (12)C13—C161.525 (11)
O4—C131.457 (9)C14—H140.9800
O4—H4O0.8549C15—C161.520 (11)
O5—C151.411 (8)C15—H150.9800
O5—H5O0.8753C16—H160.9800
O6—C341.425 (11)C17—H170.9800
O6—C161.442 (9)C18—H18A0.9700
O7—C271.338 (9)C18—H18B0.9700
O7—C141.442 (9)C19—H19A0.9700
O8—C271.183 (10)C19—H19B0.9700
O9—C251.340 (9)C20—C211.539 (15)
O9—C81.501 (8)C20—H20A0.9700
O10—C251.213 (10)C20—H20B0.9700
N1—C171.437 (9)C21—H21A0.9600
N1—C201.466 (15)C21—H21B0.9600
N1—C191.480 (11)C21—H21C0.9600
C1—C21.516 (11)C22—H22A0.9600
C1—C111.544 (10)C22—H22B0.9600
C1—H10.9800C22—H22C0.9600
C2—C31.517 (11)C23—H23A0.9600
C2—H2A0.9700C23—H23B0.9600
C2—H2B0.9700C23—H23C0.9600
C3—C41.508 (11)C24—H24A0.9600
C3—H3A0.9700C24—H24B0.9600
C3—H3B0.9700C24—H24C0.9600
C4—C181.519 (11)C25—C261.482 (12)
C4—C191.534 (12)C26—H26A0.9600
C4—C51.555 (11)C26—H26B0.9600
C5—C61.543 (10)C26—H26C0.9600
C5—C111.566 (10)C27—C281.501 (12)
C5—H50.9800C28—C291.379 (10)
C6—C71.565 (11)C28—C331.397 (11)
C6—H60.9800C29—C301.412 (12)
C7—C81.504 (10)C29—H290.9300
C7—C171.542 (10)C30—C311.365 (13)
C7—H70.9800C30—H300.9300
C8—C91.541 (10)C31—C321.363 (12)
C8—C151.594 (11)C31—H310.9300
C9—C141.518 (10)C32—C331.345 (12)
C9—C101.553 (9)C32—H320.9300
C9—H90.9800C33—H330.9300
C10—C121.557 (10)C34—H34A0.9600
C10—C111.577 (10)C34—H34B0.9600
C10—H100.9800C34—H34C0.9600
C18—O1—C23116.7 (7)O5—C15—C8112.2 (6)
C1—O2—C22114.4 (6)C16—C15—C8117.0 (6)
C6—O3—C24118.5 (8)O5—C15—H15106.4
C13—O4—H4O109.1C16—C15—H15106.4
C15—O5—H5O111.5C8—C15—H15106.4
C34—O6—C16115.2 (7)O6—C16—C15109.0 (6)
C27—O7—C14118.3 (6)O6—C16—C13107.0 (6)
C25—O9—C8121.5 (6)C15—C16—C13115.2 (6)
C17—N1—C20110.4 (7)O6—C16—H16108.5
C17—N1—C19116.9 (6)C15—C16—H16108.5
C20—N1—C19113.3 (8)C13—C16—H16108.5
O2—C1—C2107.8 (6)N1—C17—C11109.4 (6)
O2—C1—C11109.5 (5)N1—C17—C7116.9 (6)
C2—C1—C11115.7 (6)C11—C17—C7100.8 (5)
O2—C1—H1107.9N1—C17—H17109.8
C2—C1—H1107.9C11—C17—H17109.8
C11—C1—H1107.9C7—C17—H17109.8
C1—C2—C3110.7 (6)O1—C18—C4107.9 (6)
C1—C2—H2A109.5O1—C18—H18A110.1
C3—C2—H2A109.5C4—C18—H18A110.1
C1—C2—H2B109.5O1—C18—H18B110.1
C3—C2—H2B109.5C4—C18—H18B110.1
H2A—C2—H2B108.1H18A—C18—H18B108.4
C4—C3—C2113.6 (7)N1—C19—C4113.7 (6)
C4—C3—H3A108.8N1—C19—H19A108.8
C2—C3—H3A108.8C4—C19—H19A108.8
C4—C3—H3B108.8N1—C19—H19B108.8
C2—C3—H3B108.8C4—C19—H19B108.8
H3A—C3—H3B107.7H19A—C19—H19B107.7
C3—C4—C18106.6 (7)N1—C20—C21112.9 (11)
C3—C4—C19111.7 (7)N1—C20—H20A109.0
C18—C4—C19109.0 (7)C21—C20—H20A109.0
C3—C4—C5109.2 (6)N1—C20—H20B109.0
C18—C4—C5113.0 (6)C21—C20—H20B109.0
C19—C4—C5107.4 (6)H20A—C20—H20B107.8
C6—C5—C4112.8 (6)C20—C21—H21A109.5
C6—C5—C11104.4 (6)C20—C21—H21B109.5
C4—C5—C11108.5 (6)H21A—C21—H21B109.5
C6—C5—H5110.3C20—C21—H21C109.5
C4—C5—H5110.3H21A—C21—H21C109.5
C11—C5—H5110.3H21B—C21—H21C109.5
O3—C6—C5116.4 (6)O2—C22—H22A109.5
O3—C6—C7110.9 (6)O2—C22—H22B109.5
C5—C6—C7103.9 (6)H22A—C22—H22B109.5
O3—C6—H6108.4O2—C22—H22C109.5
C5—C6—H6108.4H22A—C22—H22C109.5
C7—C6—H6108.4H22B—C22—H22C109.5
C8—C7—C17113.1 (6)O1—C23—H23A109.5
C8—C7—C6108.1 (6)O1—C23—H23B109.5
C17—C7—C6103.9 (6)H23A—C23—H23B109.5
C8—C7—H7110.5O1—C23—H23C109.5
C17—C7—H7110.5H23A—C23—H23C109.5
C6—C7—H7110.5H23B—C23—H23C109.5
O9—C8—C7109.3 (6)O3—C24—H24A109.5
O9—C8—C9101.4 (5)O3—C24—H24B109.5
C7—C8—C9108.8 (6)H24A—C24—H24B109.5
O9—C8—C15106.9 (5)O3—C24—H24C109.5
C7—C8—C15116.7 (6)H24A—C24—H24C109.5
C9—C8—C15112.6 (6)H24B—C24—H24C109.5
C14—C9—C8112.0 (6)O10—C25—O9124.0 (8)
C14—C9—C10102.0 (6)O10—C25—C26124.4 (8)
C8—C9—C10112.4 (6)O9—C25—C26111.5 (8)
C14—C9—H9110.1C25—C26—H26A109.5
C8—C9—H9110.1C25—C26—H26B109.5
C10—C9—H9110.1H26A—C26—H26B109.5
C9—C10—C12102.5 (6)C25—C26—H26C109.5
C9—C10—C11116.3 (6)H26A—C26—H26C109.5
C12—C10—C11115.2 (5)H26B—C26—H26C109.5
C9—C10—H10107.4O8—C27—O7125.2 (8)
C12—C10—H10107.4O8—C27—C28124.5 (8)
C11—C10—H10107.4O7—C27—C28110.2 (8)
C17—C11—C1117.9 (5)C29—C28—C33119.2 (8)
C17—C11—C597.7 (6)C29—C28—C27118.1 (8)
C1—C11—C5114.0 (6)C33—C28—C27122.6 (7)
C17—C11—C10109.1 (6)C28—C29—C30120.3 (9)
C1—C11—C10106.3 (5)C28—C29—H29119.8
C5—C11—C10111.7 (5)C30—C29—H29119.8
C13—C12—C10106.2 (5)C31—C30—C29118.0 (9)
C13—C12—H12A110.5C31—C30—H30121.0
C10—C12—H12A110.5C29—C30—H30121.0
C13—C12—H12B110.5C30—C31—C32121.2 (9)
C10—C12—H12B110.5C30—C31—H31119.4
H12A—C12—H12B108.7C32—C31—H31119.4
O4—C13—C14112.4 (6)C33—C32—C31121.6 (9)
O4—C13—C16109.7 (6)C33—C32—H32119.2
C14—C13—C16111.2 (6)C31—C32—H32119.2
O4—C13—C12109.4 (6)C32—C33—C28119.6 (8)
C14—C13—C12103.1 (6)C32—C33—H33120.2
C16—C13—C12110.9 (6)C28—C33—H33120.2
O7—C14—C13110.9 (6)O6—C34—H34A109.5
O7—C14—C9113.9 (6)O6—C34—H34B109.5
C13—C14—C9101.6 (6)H34A—C34—H34B109.5
O7—C14—H14110.1O6—C34—H34C109.5
C13—C14—H14110.1H34A—C34—H34C109.5
C9—C14—H14110.1H34B—C34—H34C109.5
O5—C15—C16107.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O60.862.032.563 (9)120
O5—H5O···O100.882.122.792 (8)133
C31—H31···O1i0.932.593.508 (12)171
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC34H47NO10
Mr629.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)12.039 (3), 15.805 (4), 17.320 (3)
V3)3295.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.52 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3323, 3317, 1669
Rint0.006
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.245, 0.97
No. of reflections3317
No. of parameters395
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.42

Computer programs: DIFRAC (Flack et al., 1992), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O60.862.032.563 (9)120
O5—H5O···O100.882.122.792 (8)133
C31—H31···O1i0.932.593.508 (12)171
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

This project was supported by grants from the Education Department of Sichuan Province of China (No. 09ZB048) and the National Innovation Experiment Program for University Students (No. 091062632).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D., Blanc, E. & Schwarzenbach, D. (1992). J. Appl. Cryst. 25, 455–459.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033–o1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPelletier, S. W., Mody, N. V., Joshi, B. S. & Schramm, L. C. (1984). The Alkaloids: Chemistry and Perspectives, Vol. 2, edited by S. W. Pelletier, pp. 206–264. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashkhodjaev, B. & Sultankhodjaev, M. N. (2009). Acta Cryst. E65, o1543–o1544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1–78. New York: Elsevier.  Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529–570.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds