metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)di­bromido(di­methyl sulfoxide-κO)zinc(II)

aDepartment of Chemistry, University of Urmiyeh, Urmyieh, Iran
*Correspondence e-mail: m.esmhosseini@urmia.ac.ir

(Received 10 May 2010; accepted 12 May 2010; online 22 May 2010)

In the mol­ecule of the title compound, [ZnBr2(C10H8N2)(C2H6OS)], the ZnII atom is five-coordinated in a distorted trigonal–bipyramidal configuration by two N atoms from one 2,2′-bipyridine, one O atom from one dimethyl­sulfoxide molecule and two Br atoms. Inter­molecular ππ stacking between parallel pyridine rings [face-to-face distance 3.32 (4) Å] and C—H⋯Br and C—H⋯O hydrogen-bonding interactions are present in the crystal structure.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Alizadeh, Kalateh, Ebadi et al. (2009[Alizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.]); Alizadeh, Kalateh, Khoshtarkib et al. (2009[Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439-m1440.]); Alizadeh, Khoshtarkib et al. (2009[Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.]); Blake et al. (2007[Blake, A. J., Giunta, D., Shannon, J., Solinas, M., Walzer, F. & Woodward, S. (2007). Collect. Czech. Chem. Commun. 72, 1107-1121.]); Khan & Tuck (1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.]); Marjani et al. (2007[Marjani, K., Mousavi, M., Khavasi, H. R., Ansari, M. & Qumi, H. R. (2007). Acta Cryst. E63, m2645.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C10H8N2)(C2H6OS)]

  • Mr = 459.51

  • Monoclinic, P 21 /c

  • a = 9.4802 (10) Å

  • b = 8.3449 (7) Å

  • c = 19.989 (2) Å

  • β = 95.185 (8)°

  • V = 1574.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.76 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.148, Tmax = 0.260

  • 12674 measured reflections

  • 4245 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.140

  • S = 1.13

  • 4245 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.46 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.157 (4)
Zn1—N2 2.141 (4)
Zn1—O1 2.125 (4)
Zn1—Br1 2.4701 (8)
Zn1—Br2 2.4148 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.93 2.86 3.413 (6) 119
C10—H10⋯O1 0.93 2.53 2.979 (7) 110

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several ZnII complexes containing 2,2'-bipyridine and 2,2'-bipyridine derivatives such as, [ZnCl2(bipy)], (II), (Khan & Tuck, 1984), [ZnCl2(5,5'-dmbpy)], (III), (Khalighi et al., 2008), [ZnCl2(6-mbpy)], (IV), (Ahmadi, et al., 2008), [ZnCl2(6,6'-dmbpy)], (V), (Alizadeh, Kalateh, Ebadi, et al., 2009), [ZnBr2(6,6'-dmbpy)], (VI), (Alizadeh, Khoshtarkib et al., 2009), [ZnI2(6,6'-dmbpy)], (VII), (Alizadeh, Kalateh, Khoshtarkib et al., 2009), [ZnCl2(bipy)(DMSO)], (VIII), (Marjani et al., 2007) and [ZnBr2(4,4'-(dtbpy)].(Et2O), (IX), (Blake et al., 2007) [where bipy is 2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dmbpy is 6,6'-dimethyl-2,2'-bipyridine, DMSO is dimethyl sulfoxide and dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the ZnII atom is five-coordinate in a distorted trigonal-bipyramidal configurations by two N atoms from one 2,2'-bipyridine, one atom from one dimethyl sulfoxide and two Br atoms. The Zn—N and Zn—O bond lengths and angles (Table 1) are within normal range (VIII) and Zn—Br bond lengths and angles are within normal range (VI).

The π-π contacts between the pyridine rings, Cg1···Cg3i, Cg2···Cg2ii, Cg2···Cg3i, Cg3···Cg1i and Cg3···Cg2i [symmetry cods: (i) 1-X,1-Y,1-Z, (ii) 1-X,-Y,1-Z, where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C5—C6/N2), (N1/C1—C5) and (N2/C6—C10), respectively] with centroid-centroid distance of 3.475 (3), 3.661 (3), 3.721 (3), 3.476 (3) and 3.721 (3) Å, respectively, and intramolecular C—H···O and C—H···Br hydrogen bonding it seems effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh, Kalateh, Ebadi et al. (2009); Alizadeh, Kalateh, Khoshtarkib et al. (2009); Alizadeh, Khoshtarkib et al. (2009); Blake et al. (2007); Khan & Tuck (1984); Marjani et al. (2007); Khalighi et al. (2008).

Experimental top

For the preparation of the title compound, (I), a solution of 2,2'-bipyridine (0.17 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.25 g, 1.10 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.36 g, 71.2%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å for aromatic and 0.96 Å for methyl, and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Structure description top

There are several ZnII complexes containing 2,2'-bipyridine and 2,2'-bipyridine derivatives such as, [ZnCl2(bipy)], (II), (Khan & Tuck, 1984), [ZnCl2(5,5'-dmbpy)], (III), (Khalighi et al., 2008), [ZnCl2(6-mbpy)], (IV), (Ahmadi, et al., 2008), [ZnCl2(6,6'-dmbpy)], (V), (Alizadeh, Kalateh, Ebadi, et al., 2009), [ZnBr2(6,6'-dmbpy)], (VI), (Alizadeh, Khoshtarkib et al., 2009), [ZnI2(6,6'-dmbpy)], (VII), (Alizadeh, Kalateh, Khoshtarkib et al., 2009), [ZnCl2(bipy)(DMSO)], (VIII), (Marjani et al., 2007) and [ZnBr2(4,4'-(dtbpy)].(Et2O), (IX), (Blake et al., 2007) [where bipy is 2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dmbpy is 6,6'-dimethyl-2,2'-bipyridine, DMSO is dimethyl sulfoxide and dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the ZnII atom is five-coordinate in a distorted trigonal-bipyramidal configurations by two N atoms from one 2,2'-bipyridine, one atom from one dimethyl sulfoxide and two Br atoms. The Zn—N and Zn—O bond lengths and angles (Table 1) are within normal range (VIII) and Zn—Br bond lengths and angles are within normal range (VI).

The π-π contacts between the pyridine rings, Cg1···Cg3i, Cg2···Cg2ii, Cg2···Cg3i, Cg3···Cg1i and Cg3···Cg2i [symmetry cods: (i) 1-X,1-Y,1-Z, (ii) 1-X,-Y,1-Z, where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C5—C6/N2), (N1/C1—C5) and (N2/C6—C10), respectively] with centroid-centroid distance of 3.475 (3), 3.661 (3), 3.721 (3), 3.476 (3) and 3.721 (3) Å, respectively, and intramolecular C—H···O and C—H···Br hydrogen bonding it seems effective in the stabilization of the crystal structure (Fig. 2).

For related structures, see: Ahmadi et al. (2008); Alizadeh, Kalateh, Ebadi et al. (2009); Alizadeh, Kalateh, Khoshtarkib et al. (2009); Alizadeh, Khoshtarkib et al. (2009); Blake et al. (2007); Khan & Tuck (1984); Marjani et al. (2007); Khalighi et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
(2,2'-Bipyridine-κ2N,N')dibromido(dimethyl sulfoxide-κO)zinc(II) top
Crystal data top
[ZnBr2(C10H8N2)(C2H6OS)]F(000) = 896
Mr = 459.51Dx = 1.938 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 653 reflections
a = 9.4802 (10) Åθ = 2.1–29.2°
b = 8.3449 (7) ŵ = 6.76 mm1
c = 19.989 (2) ÅT = 298 K
β = 95.185 (8)°Block, colorless
V = 1574.9 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4245 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.148, Tmax = 0.260k = 1111
12674 measured reflectionsl = 2725
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.8278P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.005
4245 reflectionsΔρmax = 1.08 e Å3
175 parametersΔρmin = 1.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (7)
Crystal data top
[ZnBr2(C10H8N2)(C2H6OS)]V = 1574.9 (3) Å3
Mr = 459.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4802 (10) ŵ = 6.76 mm1
b = 8.3449 (7) ÅT = 298 K
c = 19.989 (2) Å0.30 × 0.25 × 0.20 mm
β = 95.185 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4245 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3229 reflections with I > 2σ(I)
Tmin = 0.148, Tmax = 0.260Rint = 0.078
12674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.13Δρmax = 1.08 e Å3
4245 reflectionsΔρmin = 1.46 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5556 (5)0.1151 (7)0.3831 (3)0.0377 (10)
H10.52860.09800.33780.045*
C20.6783 (5)0.0424 (7)0.4117 (3)0.0425 (12)
H20.73330.02080.38590.051*
C30.7166 (6)0.0660 (7)0.4788 (3)0.0462 (13)
H30.79820.01850.49920.055*
C40.6335 (5)0.1603 (6)0.5155 (3)0.0383 (10)
H40.65810.17720.56110.046*
C50.5129 (5)0.2297 (6)0.4840 (2)0.0295 (9)
C60.4154 (5)0.3323 (6)0.5190 (2)0.0311 (9)
C70.4311 (6)0.3600 (7)0.5883 (2)0.0406 (11)
H70.50560.31370.61500.049*
C80.3346 (6)0.4570 (7)0.6166 (3)0.0432 (12)
H80.34330.47710.66250.052*
C90.2254 (5)0.5234 (7)0.5759 (3)0.0422 (12)
H90.15890.58890.59390.051*
C100.2162 (5)0.4915 (7)0.5085 (3)0.0395 (11)
H100.14210.53660.48120.047*
C110.2234 (7)0.7783 (10)0.2635 (4)0.0621 (18)
H11A0.31670.74120.25640.075*
H11B0.23020.86830.29350.075*
H11C0.17500.80990.22130.075*
C120.0109 (6)0.7414 (10)0.3256 (4)0.0650 (19)
H12A0.02810.82810.35290.078*
H12B0.06980.67650.35140.078*
H12C0.06650.78380.28720.078*
N10.4750 (4)0.2084 (5)0.41813 (19)0.0324 (8)
N20.3090 (4)0.3984 (5)0.48005 (19)0.0324 (8)
O10.2163 (4)0.5774 (5)0.36384 (18)0.0440 (9)
Zn10.29167 (5)0.33824 (7)0.37552 (3)0.03244 (16)
Br10.37506 (6)0.34269 (8)0.26199 (3)0.04918 (19)
Br20.07887 (6)0.17861 (8)0.37356 (3)0.05171 (19)
S10.12833 (14)0.62307 (17)0.29876 (7)0.0413 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.040 (3)0.033 (2)0.006 (2)0.0043 (19)0.001 (2)
C20.042 (3)0.038 (3)0.049 (3)0.009 (2)0.012 (2)0.001 (2)
C30.041 (3)0.044 (3)0.052 (3)0.009 (2)0.002 (2)0.008 (3)
C40.038 (2)0.041 (3)0.035 (2)0.001 (2)0.0051 (18)0.004 (2)
C50.032 (2)0.028 (2)0.028 (2)0.0061 (17)0.0007 (16)0.0022 (17)
C60.0297 (19)0.031 (2)0.032 (2)0.0062 (17)0.0025 (16)0.0013 (19)
C70.043 (3)0.047 (3)0.031 (2)0.006 (2)0.0026 (19)0.001 (2)
C80.052 (3)0.049 (3)0.029 (2)0.008 (2)0.008 (2)0.003 (2)
C90.046 (3)0.040 (3)0.043 (3)0.000 (2)0.018 (2)0.001 (2)
C100.037 (2)0.043 (3)0.039 (2)0.005 (2)0.0079 (19)0.004 (2)
C110.047 (3)0.080 (5)0.060 (4)0.005 (3)0.010 (3)0.026 (4)
C120.040 (3)0.071 (5)0.086 (5)0.006 (3)0.014 (3)0.022 (4)
N10.0333 (18)0.034 (2)0.0299 (18)0.0003 (15)0.0015 (14)0.0026 (16)
N20.0278 (17)0.039 (2)0.0309 (18)0.0022 (15)0.0029 (14)0.0005 (17)
O10.053 (2)0.041 (2)0.0352 (18)0.0093 (16)0.0089 (15)0.0020 (16)
Zn10.0303 (3)0.0378 (3)0.0285 (3)0.0010 (2)0.00125 (19)0.0005 (2)
Br10.0467 (3)0.0704 (4)0.0309 (2)0.0102 (3)0.0059 (2)0.0055 (3)
Br20.0373 (3)0.0562 (4)0.0604 (4)0.0122 (2)0.0025 (2)0.0009 (3)
S10.0409 (6)0.0409 (7)0.0397 (6)0.0015 (5)0.0084 (5)0.0036 (5)
Geometric parameters (Å, º) top
C1—N11.333 (6)C9—H90.9300
C1—C21.388 (7)C10—N21.338 (6)
C1—H10.9300C10—H100.9300
C2—C31.372 (8)C11—S11.761 (7)
C2—H20.9300C11—H11A0.9600
C3—C41.372 (8)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.382 (6)C12—S11.770 (7)
C4—H40.9300C12—H12A0.9600
C5—N11.345 (6)C12—H12B0.9600
C5—C61.480 (6)C12—H12C0.9600
C6—N21.336 (6)Zn1—N12.157 (4)
C6—C71.401 (6)Zn1—N22.141 (4)
C7—C81.380 (8)S1—O11.529 (4)
C7—H70.9300Zn1—O12.125 (4)
C8—C91.374 (8)Zn1—Br12.4701 (8)
C8—H80.9300Zn1—Br22.4148 (8)
C9—C101.369 (7)
N1—C1—C2122.6 (5)S1—C11—H11B109.5
N1—C1—H1118.7H11A—C11—H11B109.5
C2—C1—H1118.7S1—C11—H11C109.5
C3—C2—C1118.5 (5)H11A—C11—H11C109.5
C3—C2—H2120.7H11B—C11—H11C109.5
C1—C2—H2120.7S1—C12—H12A109.5
C2—C3—C4119.4 (5)S1—C12—H12B109.5
C2—C3—H3120.3H12A—C12—H12B109.5
C4—C3—H3120.3S1—C12—H12C109.5
C3—C4—C5119.2 (5)H12A—C12—H12C109.5
C3—C4—H4120.4H12B—C12—H12C109.5
C5—C4—H4120.4C1—N1—C5118.4 (4)
N1—C5—C4121.8 (5)C1—N1—Zn1124.5 (3)
N1—C5—C6114.5 (4)C5—N1—Zn1117.1 (3)
C4—C5—C6123.6 (4)C6—N2—C10118.9 (4)
N2—C6—C7121.0 (4)C6—N2—Zn1117.3 (3)
N2—C6—C5115.8 (4)C10—N2—Zn1123.7 (3)
C7—C6—C5123.2 (4)S1—O1—Zn1118.7 (2)
C8—C7—C6119.1 (5)O1—Zn1—N283.24 (15)
C8—C7—H7120.4O1—Zn1—N1139.98 (15)
C6—C7—H7120.4N2—Zn1—N175.19 (15)
C9—C8—C7119.1 (5)O1—Zn1—Br2104.13 (11)
C9—C8—H8120.4N2—Zn1—Br297.80 (11)
C7—C8—H8120.4N1—Zn1—Br2111.81 (11)
C10—C9—C8118.8 (5)O1—Zn1—Br190.99 (11)
C10—C9—H9120.6N2—Zn1—Br1152.93 (11)
C8—C9—H9120.6N1—Zn1—Br193.27 (11)
N2—C10—C9123.1 (5)Br2—Zn1—Br1109.25 (3)
N2—C10—H10118.5O1—S1—C11105.3 (3)
C9—C10—H10118.5O1—S1—C12104.2 (3)
S1—C11—H11A109.5C11—S1—C1297.7 (4)
N1—C1—C2—C31.0 (9)C9—C10—N2—C60.4 (8)
C1—C2—C3—C40.2 (9)C9—C10—N2—Zn1177.1 (4)
C2—C3—C4—C50.1 (8)S1—O1—Zn1—N2159.5 (3)
C3—C4—C5—N10.5 (8)S1—O1—Zn1—N1143.3 (2)
C3—C4—C5—C6179.5 (5)S1—O1—Zn1—Br263.2 (3)
N1—C5—C6—N24.3 (6)S1—O1—Zn1—Br147.0 (3)
C4—C5—C6—N2175.7 (4)C6—N2—Zn1—O1146.3 (4)
N1—C5—C6—C7175.5 (4)C10—N2—Zn1—O136.9 (4)
C4—C5—C6—C74.5 (7)C6—N2—Zn1—N10.3 (3)
N2—C6—C7—C80.1 (8)C10—N2—Zn1—N1177.1 (4)
C5—C6—C7—C8179.7 (5)C6—N2—Zn1—Br2110.3 (3)
C6—C7—C8—C90.2 (8)C10—N2—Zn1—Br266.5 (4)
C7—C8—C9—C100.2 (8)C6—N2—Zn1—Br167.5 (5)
C8—C9—C10—N20.1 (8)C10—N2—Zn1—Br1115.7 (4)
C2—C1—N1—C51.5 (8)C1—N1—Zn1—O1119.4 (4)
C2—C1—N1—Zn1175.5 (4)C5—N1—Zn1—O157.6 (4)
C4—C5—N1—C11.2 (7)C1—N1—Zn1—N2179.1 (4)
C6—C5—N1—C1178.8 (4)C5—N1—Zn1—N22.2 (3)
C4—C5—N1—Zn1175.9 (4)C1—N1—Zn1—Br288.3 (4)
C6—C5—N1—Zn14.0 (5)C5—N1—Zn1—Br294.7 (3)
C7—C6—N2—C100.4 (7)C1—N1—Zn1—Br124.0 (4)
C5—C6—N2—C10179.4 (4)C5—N1—Zn1—Br1153.0 (3)
C7—C6—N2—Zn1177.3 (4)Zn1—O1—S1—C11120.4 (4)
C5—C6—N2—Zn12.5 (5)Zn1—O1—S1—C12137.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.932.863.413 (6)119
C10—H10···O10.932.532.979 (7)110

Experimental details

Crystal data
Chemical formula[ZnBr2(C10H8N2)(C2H6OS)]
Mr459.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4802 (10), 8.3449 (7), 19.989 (2)
β (°) 95.185 (8)
V3)1574.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.76
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.148, 0.260
No. of measured, independent and
observed [I > 2σ(I)] reflections
12674, 4245, 3229
Rint0.078
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.140, 1.13
No. of reflections4245
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 1.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—N12.157 (4)Zn1—Br12.4701 (8)
Zn1—N22.141 (4)Zn1—Br22.4148 (8)
Zn1—O12.125 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.93002.86003.413 (6)119.00
C10—H10···O10.93002.53002.979 (7)110.00
 

Acknowledgements

The author is grateful to the University of Urmiyeh for financial support.

References

First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Kalateh, K., Ebadi, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlake, A. J., Giunta, D., Shannon, J., Solinas, M., Walzer, F. & Woodward, S. (2007). Collect. Czech. Chem. Commun. 72, 1107–1121.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarjani, K., Mousavi, M., Khavasi, H. R., Ansari, M. & Qumi, H. R. (2007). Acta Cryst. E63, m2645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds