organic compounds
Methyl 1-methyl-1H-1,2,3-triazole-4-carboxylate
aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title molecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) Å, except for the methyl H atoms. In the intermolecular C—H⋯O hydrogen bonds link the molecules into layers parallel to the bc plane. Intermolecular π–π stacking interactions [centroid–centroid distances = 3.685 (2) and 3.697 (2) Å] are observed between the parallel triazole rings.
Related literature
For related structures, see: Prabakaran et al. (2009a,b); Beitelman et al. (2007); Jabli et al. (2010). For the properties and applications of related compounds, see: Dehne (1994); Fan & Katritzky (1996); Genin et al. (2000); Velazquez et al. (1998).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810019173/xu2764sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810019173/xu2764Isup2.hkl
To methyl 1H-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K2CO3 (1.3 g), methyliodide (0.98 ml), the mixture was then stirred at 273 K for 1 h, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant
and high purity. Three fractions were identified by The solvent was evaporated under vacuo and the residue was isolated into individual isomers by The single crystals of the title compound for X-ray structure analysis were obtained from ether solution by slow evaporation.H atoms were positioned geometrically with C—H = 0.93-0.96 Å, and were refined in riding mode with Uiso(H) = 1.2 or 1.5Ueq(C). In the final
cycles, the inconsistent 33 reflections were omitted.1,2,3-Triazoles are useful synthetic targets in organic synthesis and are associated with biological properties such as antiviral, antibacterial, antiepileptic and antiallergic (Velazquez et al., 1998; Genin et al., 2000). They have also found applications as agrochemicals, dyes, hotographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994). In continuous of our earlier reports (Prabakaran et al., 2009a,b), here the
of the title compound is presented.As shown in Fig. 1, the conformation of the title molecule is almost planar, with a maximum deviation of -0.043 (3) Å for O1, except the H atoms of two methyl groups.
In the π–π stacking interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.685 (2) Å and Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.697 (2) Å, where Cg1 is a centroid of the triazole ring] between the parallel triazole rings contribute to the stabilization of the structure.
molecules connect to each other, via the intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), into two-dimensional layers parallel to the bc plane, and intermolecularFor related structures, see: Prabakaran et al. (2009a,b); Beitelman et al. (2007); Jabli et al. (2010). For the properties and applications of related compounds, see: Dehne (1994); Fan & Katritzky (1996); Genin et al. (2000); Velazquez et al. (1998).
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell
CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C5H7N3O2 | Z = 2 |
Mr = 141.14 | F(000) = 148 |
Triclinic, P1 | Dx = 1.445 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.697 (1) Å | Cell parameters from 1326 reflections |
b = 7.1314 (11) Å | θ = 2.0–20.7° |
c = 8.6825 (16) Å | µ = 0.11 mm−1 |
α = 71.053 (16)° | T = 293 K |
β = 86.865 (15)° | Block, colourless |
γ = 76.528 (14)° | 0.15 × 0.10 × 0.05 mm |
V = 324.37 (10) Å3 |
Oxford Xcalibur Eos (Nova) CCD detector diffractometer | 800 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.049 |
Graphite monochromator | θmax = 25.0°, θmin = 3.1° |
ω scans | h = −6→6 |
6915 measured reflections | k = −8→8 |
1108 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0741P)2 + 0.2349P] where P = (Fo2 + 2Fc2)/3 |
1108 reflections | (Δ/σ)max < 0.001 |
93 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C5H7N3O2 | γ = 76.528 (14)° |
Mr = 141.14 | V = 324.37 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.697 (1) Å | Mo Kα radiation |
b = 7.1314 (11) Å | µ = 0.11 mm−1 |
c = 8.6825 (16) Å | T = 293 K |
α = 71.053 (16)° | 0.15 × 0.10 × 0.05 mm |
β = 86.865 (15)° |
Oxford Xcalibur Eos (Nova) CCD detector diffractometer | 800 reflections with I > 2σ(I) |
6915 measured reflections | Rint = 0.049 |
1108 independent reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.26 e Å−3 |
1108 reflections | Δρmin = −0.23 e Å−3 |
93 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6694 (5) | 0.2352 (5) | 0.5832 (3) | 0.0591 (13) | |
O2 | 0.2797 (4) | 0.2639 (4) | 0.6475 (3) | 0.0440 (9) | |
N1 | 0.7108 (5) | 0.2390 (4) | 1.0644 (3) | 0.0361 (10) | |
N2 | 0.4740 (5) | 0.2478 (5) | 1.0897 (4) | 0.0430 (11) | |
N3 | 0.3757 (5) | 0.2534 (5) | 0.9553 (4) | 0.0417 (10) | |
C1 | 0.8687 (7) | 0.2325 (6) | 1.1941 (5) | 0.0471 (14) | |
C2 | 0.7651 (6) | 0.2415 (5) | 0.9131 (4) | 0.0369 (11) | |
C3 | 0.5521 (6) | 0.2492 (5) | 0.8434 (4) | 0.0342 (11) | |
C4 | 0.5106 (6) | 0.2486 (5) | 0.6793 (4) | 0.0373 (12) | |
C5 | 0.2257 (7) | 0.2676 (7) | 0.4852 (5) | 0.0532 (14) | |
H1A | 0.77460 | 0.24230 | 1.28750 | 0.0700* | |
H1B | 0.94680 | 0.34440 | 1.15670 | 0.0700* | |
H1C | 0.98850 | 0.10660 | 1.22340 | 0.0700* | |
H2 | 0.91520 | 0.23860 | 0.86500 | 0.0440* | |
H5A | 0.26750 | 0.38410 | 0.40620 | 0.0790* | |
H5B | 0.05650 | 0.27540 | 0.47490 | 0.0790* | |
H5C | 0.31730 | 0.14580 | 0.46690 | 0.0790* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0354 (15) | 0.103 (3) | 0.0513 (18) | −0.0203 (15) | 0.0119 (13) | −0.0399 (17) |
O2 | 0.0336 (14) | 0.0667 (18) | 0.0370 (15) | −0.0139 (12) | −0.0013 (11) | −0.0216 (13) |
N1 | 0.0315 (16) | 0.0468 (19) | 0.0314 (17) | −0.0104 (13) | 0.0007 (13) | −0.0133 (13) |
N2 | 0.0346 (17) | 0.057 (2) | 0.0386 (18) | −0.0098 (14) | 0.0038 (14) | −0.0178 (15) |
N3 | 0.0348 (16) | 0.055 (2) | 0.0354 (18) | −0.0108 (14) | 0.0002 (14) | −0.0140 (14) |
C1 | 0.045 (2) | 0.062 (3) | 0.036 (2) | −0.0133 (19) | −0.0046 (17) | −0.0165 (19) |
C2 | 0.0306 (18) | 0.047 (2) | 0.036 (2) | −0.0126 (16) | 0.0054 (15) | −0.0155 (17) |
C3 | 0.0286 (18) | 0.038 (2) | 0.039 (2) | −0.0116 (15) | 0.0068 (15) | −0.0144 (16) |
C4 | 0.038 (2) | 0.039 (2) | 0.038 (2) | −0.0120 (16) | −0.0022 (18) | −0.0137 (17) |
C5 | 0.046 (2) | 0.082 (3) | 0.040 (2) | −0.025 (2) | −0.0030 (18) | −0.023 (2) |
O1—C4 | 1.205 (4) | C3—C4 | 1.459 (5) |
O2—C4 | 1.331 (4) | C1—H1A | 0.9600 |
O2—C5 | 1.449 (5) | C1—H1B | 0.9600 |
N1—N2 | 1.345 (4) | C1—H1C | 0.9600 |
N1—C1 | 1.462 (5) | C2—H2 | 0.9300 |
N1—C2 | 1.328 (4) | C5—H5A | 0.9600 |
N2—N3 | 1.307 (5) | C5—H5B | 0.9600 |
N3—C3 | 1.361 (5) | C5—H5C | 0.9600 |
C2—C3 | 1.367 (5) | ||
O1···C5i | 3.277 (5) | C4···N2vii | 3.439 (5) |
O2···N3 | 2.731 (4) | C5···C1x | 3.435 (6) |
O1···H1Aii | 2.5900 | C5···O1vi | 3.277 (5) |
O1···H5A | 2.6300 | C1···H5Bix | 2.8500 |
O1···H5Bi | 2.3900 | C4···H5Aiv | 3.0300 |
O1···H5C | 2.5900 | H1A···O1xi | 2.5900 |
O1···H1Ciii | 2.8400 | H1A···H5Bix | 2.4500 |
O1···H5Aiv | 2.8500 | H1B···N3viii | 2.9100 |
O1···H5Cv | 2.8700 | H1C···O1iii | 2.8400 |
O1···H2 | 2.8900 | H2···O1 | 2.8900 |
O2···H2vi | 2.7300 | H2···O2i | 2.7300 |
N2···C3vii | 3.438 (5) | H2···N3i | 2.8100 |
N2···C4vii | 3.439 (5) | H5A···O1 | 2.6300 |
N3···O2 | 2.731 (4) | H5A···O1iv | 2.8500 |
N3···C1viii | 3.434 (6) | H5A···C4iv | 3.0300 |
N3···C3vii | 3.376 (5) | H5B···O1vi | 2.3900 |
N3···H2vi | 2.8100 | H5B···C1x | 2.8500 |
N3···H1Bviii | 2.9100 | H5B···H1Ax | 2.4500 |
C1···C5ix | 3.435 (6) | H5C···O1 | 2.5900 |
C1···N3viii | 3.434 (6) | H5C···O1v | 2.8700 |
C3···N3vii | 3.376 (5) | H5C···H5Cv | 2.5200 |
C3···N2vii | 3.438 (5) | ||
C4—O2—C5 | 115.6 (3) | N1—C1—H1B | 109.00 |
N2—N1—C1 | 120.4 (3) | N1—C1—H1C | 110.00 |
N2—N1—C2 | 110.7 (3) | H1A—C1—H1B | 109.00 |
C1—N1—C2 | 129.0 (3) | H1A—C1—H1C | 109.00 |
N1—N2—N3 | 107.9 (3) | H1B—C1—H1C | 109.00 |
N2—N3—C3 | 107.9 (3) | N1—C2—H2 | 128.00 |
N1—C2—C3 | 105.0 (3) | C3—C2—H2 | 127.00 |
N3—C3—C2 | 108.6 (3) | O2—C5—H5A | 109.00 |
N3—C3—C4 | 123.5 (3) | O2—C5—H5B | 109.00 |
C2—C3—C4 | 127.9 (3) | O2—C5—H5C | 110.00 |
O1—C4—O2 | 123.8 (3) | H5A—C5—H5B | 109.00 |
O1—C4—C3 | 123.3 (3) | H5A—C5—H5C | 109.00 |
O2—C4—C3 | 112.9 (3) | H5B—C5—H5C | 109.00 |
N1—C1—H1A | 109.00 | ||
C5—O2—C4—O1 | −1.1 (6) | N2—N3—C3—C4 | 178.5 (3) |
C5—O2—C4—C3 | 179.0 (3) | N1—C2—C3—N3 | 0.7 (4) |
C1—N1—N2—N3 | 179.6 (3) | N1—C2—C3—C4 | −178.0 (3) |
C2—N1—N2—N3 | 0.8 (4) | N3—C3—C4—O1 | −176.4 (4) |
N2—N1—C2—C3 | −0.9 (4) | N3—C3—C4—O2 | 3.5 (5) |
C1—N1—C2—C3 | −179.6 (4) | C2—C3—C4—O1 | 2.1 (6) |
N1—N2—N3—C3 | −0.3 (4) | C2—C3—C4—O2 | −178.0 (4) |
N2—N3—C3—C2 | −0.2 (4) |
Symmetry codes: (i) x+1, y, z; (ii) x, y, z−1; (iii) −x+2, −y, −z+2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x−1, y, z; (vii) −x+1, −y, −z+2; (viii) −x+1, −y+1, −z+2; (ix) x+1, y, z+1; (x) x−1, y, z−1; (xi) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1xi | 0.96 | 2.59 | 3.509 (5) | 160 |
C5—H5B···O1vi | 0.96 | 2.39 | 3.277 (5) | 153 |
Symmetry codes: (vi) x−1, y, z; (xi) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C5H7N3O2 |
Mr | 141.14 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.697 (1), 7.1314 (11), 8.6825 (16) |
α, β, γ (°) | 71.053 (16), 86.865 (15), 76.528 (14) |
V (Å3) | 324.37 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.15 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Oxford Xcalibur Eos (Nova) CCD detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6915, 1108, 800 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.173, 1.13 |
No. of reflections | 1108 |
No. of parameters | 93 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.23 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.96 | 2.59 | 3.509 (5) | 160 |
C5—H5B···O1ii | 0.96 | 2.39 | 3.277 (5) | 153 |
Symmetry codes: (i) x, y, z+1; (ii) x−1, y, z. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for the data collection. F·NK thanks the DST for Fast Track Proposal funding.
References
Beitelman, A. D., Sieracki, N. A., Zeller, M. & Ferrence, G. M. (2007). Acta Cryst. E63, o2739–o2741. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th ed., pp. 305–405. Stuttgart: Thieme. Google Scholar
Fan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970. Web of Science CrossRef PubMed CAS Google Scholar
Jabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o231. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Prabakaran, K., Hathwar, V. R., Maiyalagan, T., Kirthana, M. V. & Khan, F. N. (2009a). Acta Cryst. E65, o1752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009b). Acta Cryst. E65, o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Velazquez, S., Alvarez, R., Perez, C., Gago, F., De, C., Balzarini, J. & Camaraza, M. (1998). J. Antivir. Chem. Chemother. 9, 481–489. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,3-Triazoles are useful synthetic targets in organic synthesis and are associated with biological properties such as antiviral, antibacterial, antiepileptic and antiallergic (Velazquez et al., 1998; Genin et al., 2000). They have also found applications as agrochemicals, dyes, hotographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994). In continuous of our earlier reports (Prabakaran et al., 2009a,b), here the crystal structure of the title compound is presented.
As shown in Fig. 1, the conformation of the title molecule is almost planar, with a maximum deviation of -0.043 (3) Å for O1, except the H atoms of two methyl groups.
In the crystal structure, molecules connect to each other, via the intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), into two-dimensional layers parallel to the bc plane, and intermolecular π–π stacking interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.685 (2) Å and Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.697 (2) Å, where Cg1 is a centroid of the triazole ring] between the parallel triazole rings contribute to the stabilization of the structure.