organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(2H-Benzotriazol-2-yl)prop­­oxy]-3-meth­oxy­benzaldehyde

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry & Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China, and band School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 6 December 2009; accepted 27 April 2010; online 8 May 2010)

In the title compound, C17H17N3O3, the 3-methoxy­benzalde­hyde group and the benzotriazole fragment are connected through a flexible oxypropyl chain. The O—C—C—C torsion angle in the central link is −63.9 (2)°, while the plane of the benzene ring of the 3-methoxy­benzaldehyde substituent forms a dihedral angle of 56.4 (4)° with the benzotriazole plane.

Related literature

For general background to the biological activity of 1H-benzotriazole and its derivatives, see: Al-Soud et al. (2003[Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. E.-R. S. (2003). Bioorg. Med. Chem. 11, 1701-1708.]); Khalafi-Nezhad et al. (2005[Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931-1938.]); Nanjunda Swamy et al. (2006[Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999-1004.]). For a related structure, see: Jin et al. (2009[Jin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O3

  • Mr = 311.34

  • Monoclinic, P 21 /n

  • a = 11.328 (2) Å

  • b = 8.1278 (16) Å

  • c = 16.156 (3) Å

  • β = 100.301 (3)°

  • V = 1463.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.34 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.982

  • 7400 measured reflections

  • 2716 independent reflections

  • 2257 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.02

  • 2716 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The incorporation of azole nucleus is an important synthetic strategy in drug discovery. The high therapeutic properties of the related drugs have encouraged the medicinal chemists to synthesize large number of novel chemotherapeutic agents. 1H-Benzotriazole and many of its derivatives exhibit important biological properties, some are showing anti-inflammatory, antiviral, antifungal, antineoplastic and antidepressant activities (Al-Soud et al., 2003; Nanjunda Swamy et al., 2006). Recently, the structure of aralkyl nitroimidazole ether, which shows inhibitory effects on several types of pathogenic bacteria, has been published (Khalafi-Nezhad et al., 2005; Jin et al., 2009). Taking into account promising therapeutic applications of benzotriazole derivatives, we are focusing on the development of new drugs belonging to this class. Herein we report the crystal structure of the title compound (Fig. 1).

The 3-methoxybenzaldehyde group and benzotriazole fragment in the molecule of the title compound are connected through the flexible oxypropyl chain. The O3—C9—C10—C11 torsion angle in the central link is equal to -63.9 (2)°, whereas the planes of the benzene ring C2—C7 and benzotriazole system N1—N3, C12—C17 form the dihedral angle of 56.4 (4)°.

Related literature top

For general background to the biological activity of 1H-benzotriazole and its derivatives, see: Al-Soud et al. (2003); Khalafi-Nezhad et al. (2005); Nanjunda Swamy et al. (2006). For a related structure, see: Jin et al. (2009).

Experimental top

A solution of benzotriazole (0.119 g, 1 mmol), 4-(3-bromopropoxy)-3-methoxy benzaldehyde (0.273 g, 1 mmol) and triethyl amine (1.01 g, 0.01 mol) in anhydrous MeCN (40 ml) was refluxed for approximately 10 h, when TLC monitoring indicated disappearance of benzotriazole; the solvent was then evaporated and the crude mixture was suspended in 200 ml of water. The organic materials were extracted with CH2Cl2 (2 × 150 ml). Both portions were combined, dried over anhydrous Na2SO4, and then evaporated to give the crude product, further purified by column chromatography on silica gel with EtOAc to afford the title compound (yield: 0.241 g, 78%; colourless solid; Mp. 411–413 K). Single crystal used in X-ray diffraction analysis was obtained at room temperature by slow evaporation of the solution of title compound in the mixture of ethyl acetate and dichloromethane.

Refinement top

Hydrogen atoms were placed in geometrically calculated positions (C—H 0.95 Å for aromatic and formyl, 0.99 Å for methylene and 0.98 Å for methyl) and included in the refinement in a riding motion approximation with Uiso(H) = 1.2Ueq(C) [for methyl groups Uiso(H) = 1.5Ueq(C)].

Structure description top

The incorporation of azole nucleus is an important synthetic strategy in drug discovery. The high therapeutic properties of the related drugs have encouraged the medicinal chemists to synthesize large number of novel chemotherapeutic agents. 1H-Benzotriazole and many of its derivatives exhibit important biological properties, some are showing anti-inflammatory, antiviral, antifungal, antineoplastic and antidepressant activities (Al-Soud et al., 2003; Nanjunda Swamy et al., 2006). Recently, the structure of aralkyl nitroimidazole ether, which shows inhibitory effects on several types of pathogenic bacteria, has been published (Khalafi-Nezhad et al., 2005; Jin et al., 2009). Taking into account promising therapeutic applications of benzotriazole derivatives, we are focusing on the development of new drugs belonging to this class. Herein we report the crystal structure of the title compound (Fig. 1).

The 3-methoxybenzaldehyde group and benzotriazole fragment in the molecule of the title compound are connected through the flexible oxypropyl chain. The O3—C9—C10—C11 torsion angle in the central link is equal to -63.9 (2)°, whereas the planes of the benzene ring C2—C7 and benzotriazole system N1—N3, C12—C17 form the dihedral angle of 56.4 (4)°.

For general background to the biological activity of 1H-benzotriazole and its derivatives, see: Al-Soud et al. (2003); Khalafi-Nezhad et al. (2005); Nanjunda Swamy et al. (2006). For a related structure, see: Jin et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-[3-(2H-Benzotriazol-2-yl)propoxy]-3-methoxybenzaldehyde top
Crystal data top
C17H17N3O3F(000) = 656
Mr = 311.34Dx = 1.413 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2314 reflections
a = 11.328 (2) Åθ = 2.4–26.8°
b = 8.1278 (16) ŵ = 0.10 mm1
c = 16.156 (3) ÅT = 173 K
β = 100.301 (3)°Block, colourless
V = 1463.6 (5) Å30.34 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
2716 independent reflections
Radiation source: fine-focus sealed tube2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.967, Tmax = 0.982k = 99
7400 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2971P]
where P = (Fo2 + 2Fc2)/3
2716 reflections(Δ/σ)max = 0.002
209 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H17N3O3V = 1463.6 (5) Å3
Mr = 311.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.328 (2) ŵ = 0.10 mm1
b = 8.1278 (16) ÅT = 173 K
c = 16.156 (3) Å0.34 × 0.20 × 0.18 mm
β = 100.301 (3)°
Data collection top
Bruker SMART
diffractometer
2716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2257 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.982Rint = 0.030
7400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2716 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30868 (15)0.3509 (2)0.18483 (10)0.0304 (4)
H10.26040.41720.22610.036*
C20.32240 (13)0.40484 (19)0.09726 (9)0.0252 (4)
C30.38488 (13)0.30819 (19)0.03210 (9)0.0247 (4)
H30.41940.20680.04470.030*
C40.39637 (13)0.35957 (18)0.04991 (9)0.0233 (3)
C50.34662 (13)0.51165 (19)0.06848 (9)0.0231 (3)
C60.28450 (14)0.60657 (19)0.00395 (10)0.0266 (4)
H60.25030.70850.01610.032*
C70.27228 (14)0.5522 (2)0.07870 (10)0.0283 (4)
H70.22900.61710.12290.034*
C80.50723 (16)0.12187 (19)0.10204 (11)0.0336 (4)
H8A0.44510.04770.07300.050*
H8B0.54570.07170.15520.050*
H8C0.56750.14120.06650.050*
C90.33302 (15)0.71678 (19)0.17160 (10)0.0269 (4)
H9A0.24510.73180.15630.032*
H9B0.37250.79820.14000.032*
C100.37338 (14)0.74091 (19)0.26499 (10)0.0260 (4)
H10A0.35840.85630.27980.031*
H10B0.46070.72030.27980.031*
C110.30818 (14)0.6269 (2)0.31527 (9)0.0283 (4)
H11A0.22120.65120.30220.034*
H11B0.31980.51190.29810.034*
C120.42907 (13)0.73940 (19)0.52211 (10)0.0236 (4)
C130.48871 (14)0.8333 (2)0.59075 (10)0.0288 (4)
H130.52550.93570.58290.035*
C140.49051 (14)0.7689 (2)0.66857 (10)0.0296 (4)
H140.52960.82850.71620.036*
C150.43636 (14)0.6163 (2)0.68129 (10)0.0305 (4)
H150.44080.57650.73710.037*
C160.37797 (15)0.5246 (2)0.61590 (10)0.0297 (4)
H160.34160.42240.62480.036*
C170.37411 (13)0.58889 (18)0.53437 (10)0.0230 (3)
N10.41205 (12)0.77182 (16)0.43877 (8)0.0270 (3)
N20.34983 (11)0.64249 (15)0.40576 (8)0.0238 (3)
N30.32342 (11)0.52833 (16)0.45819 (8)0.0268 (3)
O10.35353 (11)0.22907 (16)0.20936 (7)0.0390 (3)
O20.45409 (10)0.27407 (13)0.11862 (7)0.0294 (3)
O30.36540 (10)0.55293 (13)0.15124 (6)0.0276 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (9)0.0366 (10)0.0234 (9)0.0077 (7)0.0045 (7)0.0009 (7)
C20.0253 (8)0.0294 (9)0.0211 (8)0.0072 (7)0.0044 (6)0.0002 (7)
C30.0268 (8)0.0220 (8)0.0261 (9)0.0023 (6)0.0065 (7)0.0018 (7)
C40.0248 (8)0.0234 (8)0.0216 (8)0.0019 (6)0.0036 (6)0.0017 (6)
C50.0251 (8)0.0246 (8)0.0197 (8)0.0027 (6)0.0043 (6)0.0001 (6)
C60.0308 (9)0.0238 (8)0.0252 (9)0.0024 (7)0.0048 (7)0.0007 (7)
C70.0306 (9)0.0300 (9)0.0235 (9)0.0018 (7)0.0022 (7)0.0062 (7)
C80.0442 (10)0.0256 (9)0.0302 (9)0.0090 (7)0.0047 (8)0.0024 (7)
C90.0361 (9)0.0211 (8)0.0235 (9)0.0044 (7)0.0053 (7)0.0003 (6)
C100.0326 (9)0.0200 (8)0.0248 (9)0.0015 (6)0.0035 (7)0.0016 (6)
C110.0282 (8)0.0353 (9)0.0204 (8)0.0035 (7)0.0014 (6)0.0044 (7)
C120.0228 (8)0.0257 (8)0.0221 (8)0.0018 (6)0.0031 (6)0.0005 (6)
C130.0291 (9)0.0275 (8)0.0284 (9)0.0042 (7)0.0014 (7)0.0023 (7)
C140.0283 (9)0.0362 (10)0.0226 (9)0.0002 (7)0.0001 (7)0.0048 (7)
C150.0311 (9)0.0368 (10)0.0229 (9)0.0029 (7)0.0034 (7)0.0043 (7)
C160.0332 (9)0.0271 (9)0.0294 (9)0.0010 (7)0.0067 (7)0.0038 (7)
C170.0216 (8)0.0225 (8)0.0244 (8)0.0032 (6)0.0026 (6)0.0021 (6)
N10.0311 (8)0.0249 (7)0.0238 (8)0.0048 (6)0.0023 (6)0.0032 (6)
N20.0262 (7)0.0238 (7)0.0214 (7)0.0021 (5)0.0041 (5)0.0019 (5)
N30.0293 (7)0.0246 (7)0.0265 (8)0.0008 (5)0.0053 (6)0.0006 (6)
O10.0457 (8)0.0429 (8)0.0302 (7)0.0049 (6)0.0113 (6)0.0098 (6)
O20.0402 (7)0.0242 (6)0.0225 (6)0.0084 (5)0.0022 (5)0.0009 (5)
O30.0394 (7)0.0226 (6)0.0199 (6)0.0061 (5)0.0029 (5)0.0016 (4)
Geometric parameters (Å, º) top
C1—O11.211 (2)C9—H9B0.9900
C1—C21.463 (2)C10—C111.510 (2)
C1—H10.9500C10—H10A0.9900
C2—C71.381 (2)C10—H10B0.9900
C2—C31.400 (2)C11—N21.459 (2)
C3—C41.373 (2)C11—H11A0.9900
C3—H30.9500C11—H11B0.9900
C4—O21.3723 (18)C12—N11.352 (2)
C4—C51.413 (2)C12—C171.403 (2)
C5—O31.3580 (18)C12—C131.414 (2)
C5—C61.384 (2)C13—C141.359 (2)
C6—C71.390 (2)C13—H130.9500
C6—H60.9500C14—C151.415 (2)
C7—H70.9500C14—H140.9500
C8—O21.4220 (18)C15—C161.363 (2)
C8—H8A0.9800C15—H150.9500
C8—H8B0.9800C16—C171.410 (2)
C8—H8C0.9800C16—H160.9500
C9—O31.4350 (18)C17—N31.3543 (19)
C9—C101.509 (2)N1—N21.3235 (17)
C9—H9A0.9900N2—N31.3261 (18)
O1—C1—C2125.67 (16)C11—C10—H10A109.3
O1—C1—H1117.2C9—C10—H10B109.3
C2—C1—H1117.2C11—C10—H10B109.3
C7—C2—C3119.71 (14)H10A—C10—H10B108.0
C7—C2—C1119.55 (15)N2—C11—C10112.58 (13)
C3—C2—C1120.74 (15)N2—C11—H11A109.1
C4—C3—C2120.20 (15)C10—C11—H11A109.1
C4—C3—H3119.9N2—C11—H11B109.1
C2—C3—H3119.9C10—C11—H11B109.1
O2—C4—C3125.16 (14)H11A—C11—H11B107.8
O2—C4—C5114.95 (13)N1—C12—C17108.84 (13)
C3—C4—C5119.89 (14)N1—C12—C13129.72 (15)
O3—C5—C6124.97 (14)C17—C12—C13121.44 (15)
O3—C5—C4115.28 (13)C14—C13—C12116.34 (15)
C6—C5—C4119.76 (14)C14—C13—H13121.8
C5—C6—C7119.77 (15)C12—C13—H13121.8
C5—C6—H6120.1C13—C14—C15122.49 (15)
C7—C6—H6120.1C13—C14—H14118.8
C2—C7—C6120.67 (15)C15—C14—H14118.8
C2—C7—H7119.7C16—C15—C14121.95 (15)
C6—C7—H7119.7C16—C15—H15119.0
O2—C8—H8A109.5C14—C15—H15119.0
O2—C8—H8B109.5C15—C16—C17116.82 (15)
H8A—C8—H8B109.5C15—C16—H16121.6
O2—C8—H8C109.5C17—C16—H16121.6
H8A—C8—H8C109.5N3—C17—C12108.39 (13)
H8B—C8—H8C109.5N3—C17—C16130.65 (15)
O3—C9—C10107.80 (12)C12—C17—C16120.96 (14)
O3—C9—H9A110.1N2—N1—C12102.55 (12)
C10—C9—H9A110.1N1—N2—N3117.59 (12)
O3—C9—H9B110.1N1—N2—C11121.76 (12)
C10—C9—H9B110.1N3—N2—C11120.63 (12)
H9A—C9—H9B108.5N2—N3—C17102.64 (12)
C9—C10—C11111.61 (13)C4—O2—C8116.40 (12)
C9—C10—H10A109.3C5—O3—C9116.98 (11)
O1—C1—C2—C7175.92 (16)N1—C12—C17—N30.19 (17)
O1—C1—C2—C34.6 (2)C13—C12—C17—N3179.28 (14)
C7—C2—C3—C40.0 (2)N1—C12—C17—C16179.98 (14)
C1—C2—C3—C4179.50 (14)C13—C12—C17—C160.9 (2)
C2—C3—C4—O2179.09 (14)C15—C16—C17—N3179.70 (15)
C2—C3—C4—C51.0 (2)C15—C16—C17—C120.5 (2)
O2—C4—C5—O31.43 (19)C17—C12—N1—N20.25 (16)
C3—C4—C5—O3178.48 (13)C13—C12—N1—N2179.25 (16)
O2—C4—C5—C6178.82 (14)C12—N1—N2—N30.26 (17)
C3—C4—C5—C61.3 (2)C12—N1—N2—C11178.47 (13)
O3—C5—C6—C7179.23 (14)C10—C11—N2—N117.3 (2)
C4—C5—C6—C70.5 (2)C10—C11—N2—N3164.51 (13)
C3—C2—C7—C60.8 (2)N1—N2—N3—C170.14 (17)
C1—C2—C7—C6179.71 (14)C11—N2—N3—C17178.38 (13)
C5—C6—C7—C20.5 (2)C12—C17—N3—N20.03 (16)
O3—C9—C10—C1163.91 (17)C16—C17—N3—N2179.80 (15)
C9—C10—C11—N2177.26 (13)C3—C4—O2—C81.1 (2)
N1—C12—C13—C14179.44 (15)C5—C4—O2—C8178.83 (13)
C17—C12—C13—C140.6 (2)C6—C5—O3—C99.2 (2)
C12—C13—C14—C150.1 (2)C4—C5—O3—C9170.54 (13)
C13—C14—C15—C160.5 (3)C10—C9—O3—C5174.10 (12)
C14—C15—C16—C170.1 (2)

Experimental details

Crystal data
Chemical formulaC17H17N3O3
Mr311.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.328 (2), 8.1278 (16), 16.156 (3)
β (°) 100.301 (3)
V3)1463.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7400, 2716, 2257
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.02
No. of reflections2716
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationAl-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. E.-R. S. (2003). Bioorg. Med. Chem. 11, 1701–1708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds