organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)quinoxaline

aSchool of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology, Liaoning Anshan 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 4 May 2010; accepted 11 May 2010; online 19 May 2010)

In the title compound, C14H9BrN2, the benzene and quinoxaline rings are almost coplanar [r.m.s. deviation = 0.0285 (3) Å and dihedral angle = 2.1 (2)°].

Related literature

For the synthesis of quinoxaline derivatives, see: Raw et al. (2003[Raw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286- 2287.]); Bhosale et al. (2005[Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett. 46, 7183-7186.]). For their applications, see: Brock et al. (1999[Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). (The Procter & Gamble Company, USA), World Patent WO 9 951 688.]); Seitz et al. (2002[Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604-5606.]); He et al. (2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]). For typical bond lengths in a related structure, see: Rong et al. (2006[Rong, L.-C., Li, X.-Y., Yao, C.-S., Wang, H.-Y. & Shi, D.-Q. (2006). Acta Cryst. E62, o1959-o1960.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9BrN2

  • Mr = 285.14

  • Monoclinic, P 21 /c

  • a = 13.959 (3) Å

  • b = 5.9031 (12) Å

  • c = 14.497 (3) Å

  • β = 109.53 (3)°

  • V = 1125.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 153 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku MM-OO7/Saturn 70 CCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.531, Tmax = 0.713

  • 8910 measured reflections

  • 2683 independent reflections

  • 1763 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 0.96

  • 2683 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoxaline derivatives are an important class of nitrogen containing heterocycles, finding use as intermediates in organic synthesis and in addition have been reported as having applications as anticancer, antiviral, and antibacterial agents (Seitz et al., 2002; He et al., 2003) and dyes (Brock et al., 1999). In recent years, many syntheses of quinoxaline derivatives have been reported (Raw et al., 2003; Bhosale et al., 2005). The title compound C14H9BrN2 (I) is one of such quinoxaline derivates which we have synthesized and now report its crystal structure.

The molecular structure of title compound is as shown in Fig.1. The bond lengths and angles are usual for this type of compound (Rong et al., 2006). The dihedral angle between the benzene ring and quinoxaline ring is 2.1 (2)°, which means that the benzene ring and the quinoxaline ring are approximately coplanar with a r.m.s deviation of 0.0285 (3) Å, the Br atom lying in the plane of the substituent benzene ring [r.m.s deviation, 0.0271 (3) Å]. The crystal packing (Fig. 2) is stabilized by van der Waals forces.

Related literature top

For the synthesis of quinoxaline derivatives, see: Raw et al. (2003); Bhosale et al. (2005). For their applications, see: Brock et al. (1999); Seitz et al. (2002); He et al. (2003). For typical bond lengths, see: Rong et al. (2006).

Experimental top

A suspension of hydrated 2-(4-bromophenyl)-2-oxoacetaldehyde (2.0 mmol) and benzene-1,2-diamine (3.0 mmol) in ethanol (5 ml) was stirred at room temperature with the reaction progress monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the title compound as a light yellow solid (92.5% yield: m.p. 418 K). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically and refined as riding with C—H = 0.95 Å and Uiso(H) set equal to 1.2Ueq(carrier atom).

Structure description top

Quinoxaline derivatives are an important class of nitrogen containing heterocycles, finding use as intermediates in organic synthesis and in addition have been reported as having applications as anticancer, antiviral, and antibacterial agents (Seitz et al., 2002; He et al., 2003) and dyes (Brock et al., 1999). In recent years, many syntheses of quinoxaline derivatives have been reported (Raw et al., 2003; Bhosale et al., 2005). The title compound C14H9BrN2 (I) is one of such quinoxaline derivates which we have synthesized and now report its crystal structure.

The molecular structure of title compound is as shown in Fig.1. The bond lengths and angles are usual for this type of compound (Rong et al., 2006). The dihedral angle between the benzene ring and quinoxaline ring is 2.1 (2)°, which means that the benzene ring and the quinoxaline ring are approximately coplanar with a r.m.s deviation of 0.0285 (3) Å, the Br atom lying in the plane of the substituent benzene ring [r.m.s deviation, 0.0271 (3) Å]. The crystal packing (Fig. 2) is stabilized by van der Waals forces.

For the synthesis of quinoxaline derivatives, see: Raw et al. (2003); Bhosale et al. (2005). For their applications, see: Brock et al. (1999); Seitz et al. (2002); He et al. (2003). For typical bond lengths, see: Rong et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis.
2-(4-Bromophenyl)quinoxaline top
Crystal data top
C14H9BrN2F(000) = 568
Mr = 285.14Dx = 1.682 Mg m3
Monoclinic, P21/cMelting point: 418 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.959 (3) ÅCell parameters from 3221 reflections
b = 5.9031 (12) Åθ = 2.9–27.9°
c = 14.497 (3) ŵ = 3.63 mm1
β = 109.53 (3)°T = 153 K
V = 1125.9 (4) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Model name? CCD area-detector
diffractometer
2683 independent reflections
Radiation source: rotating anode1763 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.052
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.9°
φ and ω scansh = 1811
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 77
Tmin = 0.531, Tmax = 0.713l = 1919
8910 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0337P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
2683 reflectionsΔρmax = 0.76 e Å3
155 parametersΔρmin = 0.69 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0540 (17)
Crystal data top
C14H9BrN2V = 1125.9 (4) Å3
Mr = 285.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.959 (3) ŵ = 3.63 mm1
b = 5.9031 (12) ÅT = 153 K
c = 14.497 (3) Å0.20 × 0.18 × 0.10 mm
β = 109.53 (3)°
Data collection top
Rigaku Model name? CCD area-detector
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1763 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.713Rint = 0.052
8910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.96Δρmax = 0.76 e Å3
2683 reflectionsΔρmin = 0.69 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.460263 (18)1.10538 (4)0.33474 (2)0.03213 (13)
N10.12149 (15)0.6560 (3)0.02060 (15)0.0218 (5)
N20.05847 (15)1.0700 (3)0.12055 (14)0.0169 (4)
C10.00712 (17)0.9095 (4)0.11986 (16)0.0150 (5)
C20.02653 (17)0.7012 (4)0.07034 (17)0.0210 (6)
H20.02290.58820.07360.025*
C30.19054 (16)0.8203 (4)0.02054 (16)0.0160 (5)
C40.29514 (17)0.7808 (4)0.02863 (17)0.0204 (6)
H40.31680.64360.06360.024*
C50.36496 (18)0.9398 (4)0.02576 (17)0.0213 (6)
H50.43520.91260.05880.026*
C60.33379 (19)1.1438 (4)0.02573 (18)0.0229 (6)
H60.38331.25230.02790.028*
C70.23291 (17)1.1877 (4)0.07274 (17)0.0176 (5)
H70.21261.32750.10600.021*
C80.15888 (16)1.0252 (4)0.07190 (15)0.0150 (5)
C90.11683 (17)0.9532 (4)0.17107 (16)0.0157 (5)
C100.19145 (17)0.7987 (4)0.16884 (17)0.0186 (5)
H100.17210.66090.13370.022*
C110.29343 (17)0.8427 (4)0.21702 (18)0.0206 (6)
H110.34370.73600.21520.025*
C120.32117 (17)1.0434 (4)0.26773 (17)0.0186 (5)
C130.24914 (17)1.2017 (4)0.27042 (17)0.0196 (5)
H130.26921.34060.30450.023*
C140.14782 (18)1.1554 (4)0.22297 (16)0.0186 (5)
H140.09801.26270.22550.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01429 (15)0.0399 (2)0.03931 (19)0.00711 (11)0.00519 (12)0.00733 (13)
N10.0176 (11)0.0191 (10)0.0248 (11)0.0017 (8)0.0021 (9)0.0045 (9)
N20.0157 (10)0.0175 (10)0.0176 (9)0.0015 (8)0.0054 (9)0.0003 (8)
C10.0153 (11)0.0153 (12)0.0148 (11)0.0002 (9)0.0058 (10)0.0002 (9)
C20.0158 (12)0.0198 (12)0.0246 (13)0.0035 (10)0.0029 (11)0.0052 (11)
C30.0148 (12)0.0172 (11)0.0147 (11)0.0002 (9)0.0031 (10)0.0018 (9)
C40.0188 (13)0.0194 (12)0.0193 (11)0.0026 (10)0.0015 (11)0.0002 (10)
C50.0115 (12)0.0273 (14)0.0216 (12)0.0004 (9)0.0009 (10)0.0039 (10)
C60.0248 (14)0.0213 (13)0.0234 (13)0.0085 (11)0.0090 (12)0.0048 (10)
C70.0188 (12)0.0135 (11)0.0209 (12)0.0022 (10)0.0070 (11)0.0018 (10)
C80.0149 (12)0.0165 (12)0.0141 (11)0.0005 (9)0.0053 (10)0.0022 (9)
C90.0149 (12)0.0169 (12)0.0151 (11)0.0009 (9)0.0048 (10)0.0013 (9)
C100.0173 (12)0.0158 (11)0.0227 (12)0.0020 (10)0.0068 (10)0.0043 (10)
C110.0156 (12)0.0210 (13)0.0268 (13)0.0021 (10)0.0090 (11)0.0011 (10)
C120.0124 (11)0.0229 (13)0.0198 (12)0.0047 (9)0.0045 (10)0.0007 (10)
C130.0212 (13)0.0171 (11)0.0203 (12)0.0051 (10)0.0068 (11)0.0018 (10)
C140.0182 (12)0.0200 (13)0.0172 (11)0.0029 (10)0.0055 (11)0.0018 (10)
Geometric parameters (Å, º) top
Br1—C121.894 (2)C6—C71.369 (3)
N1—C21.307 (3)C6—H60.9500
N1—C31.367 (3)C7—C81.413 (3)
N2—C11.320 (3)C7—H70.9500
N2—C81.368 (3)C9—C101.393 (3)
C1—C21.422 (3)C9—C141.400 (3)
C1—C91.484 (3)C10—C111.385 (3)
C2—H20.9500C10—H100.9500
C3—C81.411 (3)C11—C121.379 (3)
C3—C41.414 (3)C11—H110.9500
C4—C51.364 (3)C12—C131.383 (3)
C4—H40.9500C13—C141.378 (3)
C5—C61.407 (3)C13—H130.9500
C5—H50.9500C14—H140.9500
C2—N1—C3116.11 (19)C8—C7—H7120.0
C1—N2—C8116.82 (18)N2—C8—C3121.6 (2)
N2—C1—C2120.8 (2)N2—C8—C7119.4 (2)
N2—C1—C9118.30 (19)C3—C8—C7119.0 (2)
C2—C1—C9120.9 (2)C10—C9—C14118.1 (2)
N1—C2—C1123.9 (2)C10—C9—C1121.96 (19)
N1—C2—H2118.0C14—C9—C1119.9 (2)
C1—C2—H2118.0C11—C10—C9121.1 (2)
N1—C3—C8120.74 (19)C11—C10—H10119.5
N1—C3—C4119.5 (2)C9—C10—H10119.5
C8—C3—C4119.7 (2)C12—C11—C10119.2 (2)
C5—C4—C3119.9 (2)C12—C11—H11120.4
C5—C4—H4120.0C10—C11—H11120.4
C3—C4—H4120.0C11—C12—C13121.2 (2)
C4—C5—C6120.5 (2)C11—C12—Br1119.76 (18)
C4—C5—H5119.7C13—C12—Br1119.03 (17)
C6—C5—H5119.7C14—C13—C12119.1 (2)
C7—C6—C5120.7 (2)C14—C13—H13120.4
C7—C6—H6119.7C12—C13—H13120.4
C5—C6—H6119.7C13—C14—C9121.3 (2)
C6—C7—C8120.1 (2)C13—C14—H14119.4
C6—C7—H7120.0C9—C14—H14119.4
C8—N2—C1—C20.1 (3)C4—C3—C8—C70.2 (3)
C8—N2—C1—C9179.40 (19)C6—C7—C8—N2179.0 (2)
C3—N1—C2—C12.1 (3)C6—C7—C8—C31.2 (3)
N2—C1—C2—N12.2 (4)N2—C1—C9—C10176.0 (2)
C9—C1—C2—N1177.1 (2)C2—C1—C9—C103.3 (4)
C2—N1—C3—C80.0 (3)N2—C1—C9—C143.5 (3)
C2—N1—C3—C4177.7 (2)C2—C1—C9—C14177.2 (2)
N1—C3—C4—C5177.3 (2)C14—C9—C10—C110.4 (4)
C8—C3—C4—C50.4 (3)C1—C9—C10—C11179.9 (2)
C3—C4—C5—C60.1 (4)C9—C10—C11—C120.2 (4)
C4—C5—C6—C70.8 (4)C10—C11—C12—C130.6 (4)
C5—C6—C7—C81.5 (4)C10—C11—C12—Br1179.59 (19)
C1—N2—C8—C32.2 (3)C11—C12—C13—C141.2 (4)
C1—N2—C8—C7178.0 (2)Br1—C12—C13—C14179.02 (17)
N1—C3—C8—N22.2 (3)C12—C13—C14—C91.0 (4)
C4—C3—C8—N2179.9 (2)C10—C9—C14—C130.2 (4)
N1—C3—C8—C7177.9 (2)C1—C9—C14—C13179.4 (2)

Experimental details

Crystal data
Chemical formulaC14H9BrN2
Mr285.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)13.959 (3), 5.9031 (12), 14.497 (3)
β (°) 109.53 (3)
V3)1125.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.63
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Model name? CCD area-detector
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.531, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
8910, 2683, 1763
Rint0.052
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 0.96
No. of reflections2683
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.69

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge support of this work by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

References

First citationBhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett. 46, 7183–7186.  Web of Science CrossRef CAS Google Scholar
First citationBrock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). (The Procter & Gamble Company, USA), World Patent WO 9 951 688.  Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRaw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286– 2287.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRong, L.-C., Li, X.-Y., Yao, C.-S., Wang, H.-Y. & Shi, D.-Q. (2006). Acta Cryst. E62, o1959–o1960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds