organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium perchlorate 18-crown-6 monohydrate clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: gjz@seu.edu.cn

(Received 29 May 2010; accepted 17 June 2010; online 23 June 2010)

The reaction of dimethyl­amine, 18-crown-6, and perchloric acid in methanol yields the title compound, C2H8N+·ClO4·C12H24O6·H2O. The dimethyl­ammonium cation and the water mol­ecule inter­act with the 18-crown-6 unit: N—H⋯O hydrogen bonds are formed between the ammonium NH2+ group and four O atoms of the crown ether, while the water mol­ecule on the other side of 18-crown-6 ring forms O—H⋯O hydrogen bonds with two other O atoms of the crown ether. All conventional donors and acceptors in the cations are thus engaged in hydrogen bonding. The ClO4 anion is disordered over two sites, and occupancies for the disordered O atoms were fixed at 0.5. In the crystal, the cations and anions are arranged in alternating layers.

Related literature

For the similar structure, 18-crown-6 clathrate, see: Pedersen (1967[Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.]). For the ferroelectric properties of related materials, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8N+·ClO4·C12H24O6·H2O

  • Mr = 427.87

  • Orthorhombic, P 21 21 21

  • a = 10.684 (2) Å

  • b = 13.954 (3) Å

  • c = 14.583 (3) Å

  • V = 2174.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.955

  • 22574 measured reflections

  • 4973 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.171

  • S = 1.00

  • 4973 reflections

  • 283 parameters

  • 51 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2164 Friedel pairs

  • Flack parameter: 0.02 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1AA⋯O6 1.05 2.00 2.979 (4) 154
N1—H1BB⋯O3 0.86 2.14 2.979 (4) 164
O20—H20B⋯O4i 0.90 2.12 3.013 (4) 171
O20—H20A⋯O1i 0.76 2.21 2.927 (3) 158
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The crown ethers are of a great interest since their discovery by Pedersen (1967). The ability of these macrocycles to form non-covalent, H-bonding complexes with ammonium cations has been actively investigated. Both the size of the crown ether and the nature of the ammonium cation (NH4+, RNH3+, etc) can influence on the stoichiometry and stability of these host-guest complexes. The host molecules combine with the guest species by intermolecular interactions, and if the host molecule has some specific sites, it is easy to realize high selectivity in ion or molecular recognition. 18-crown-6 has the highest affinity for ammonium cations RNH3+, and most studies of 18-crown-6 and its derivatives invariably showed the 1:1 stoichiometry with RNH3+ cations.

The title compound dielectric permittivity was tested to systematically investigate the ferroelectric phase transitions of these materials (Fu et al., 2007; Ye et al., 2009; Zhang et al., 2009). The title compound has no dielectric anomalies, with the relative permittivity at 1 MHz being in the range 4–5 between 80 and 330 K (m.p. is 353 K), suggesting that no phase transition occurred within the measured temperature range.

The title compound is composed of cation [(CH3)2NH2(18-Crown-6)]+, one isolated anion (ClO4)-, and one lattice water molecule (Fig 1). The protonated dimethylamine [(CH3)2NH2]+ and 18-crown-6 form a supramolecular structure through N—H···O hydrogen bonds between the ammonium NH2+ group and four O atoms of the crown ether. The water molecule on the other side of the 18-crown-6 ring forms O—H···O hydrogen bonds between the O—H groups of water and two other O atoms of the crown ether. The intramolecular N—H···O hydrogen bond lengths are within the usual range: 2.979 (4)–3.285 (4) Å, and the intramolecular O—H···O hydrogen bond lengths are from 2.927 (3) to 3.013 (4) Å. The crown ring shows severe distortions. The six O atoms of the crown ether take the approximate "boat-shape" conformation. The four O atoms bonding to the NH2+ cation lie on the bottom of the boat, while the other two O atoms bonded to the water molecule lie on the head and tail of the boat.

The (ClO4)- anion is disordered, as detectable from the large displacement parameters for O atoms and short Cl—O bond lengths. The disorder was modelled with two sites with equal occupancies for O atoms, and the geometry of the anion was regularized through soft restraints.

Fig. 2 shows a view of the crystal structure down the b axis. The cations [(CH3)2NH2(18-Crown-6)]+ are arranged into layers almost parallel to (101). The anions (ClO4)- are placed in the voids formed by the cations. The title compound is stabilized by intramolecular N—H···O and O—H···O hydrogen bonds, as above described, but no intermolecular hydrogen bonds are observed.

Related literature top

For 18-crown-6 clathrate, see: Pedersen (1967). For the erroelectric properties of related materials, see: Fu et al. (2007); Ye et al. (2009); Zhang et al. (2009).

Experimental top

Dimethylamine (2 mmol, 0.09 g) and an excess of perchloric acid (3 mmol, 0.302 g) were dissolved in methanol. Then, 18-crown-6 (2 mmol, 0.528 g) was added to the mixture. The precipitate was filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature over two days.

Refinement top

All C-bonded H atoms were placed geometrically, with the C—H distances ranging from 0.96 to 0.97 Å. Isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(C) for methylene groups and Uiso(H) = 1.5Ueq(C) for methyl groups. H atoms bonded to N and O atoms were found in a difference map and refined as riding atoms and with Uiso(H) = 1.5Ueq(carrier atom). O atoms for the perchlorate ion were splited over two sites, with equal occupancies fixed to 0.5. Cl—O bond lengths were restrained, as well as displacement parameters for disordered O atoms (51 restraints).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and a single orientation for the disordered perchlorate anion is shown.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
Dimethylammonium perchlorate 18-crown-6 monohydrate clathrate top
Crystal data top
C2H8N+·ClO4·C12H24O6·H2ODx = 1.307 Mg m3
Mr = 427.87Melting point: 353 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2814 reflections
a = 10.684 (2) Åθ = 3.2–27.5°
b = 13.954 (3) ŵ = 0.23 mm1
c = 14.583 (3) ÅT = 293 K
V = 2174.1 (8) Å3Block, white
Z = 40.4 × 0.3 × 0.2 mm
F(000) = 920
Data collection top
Rigaku SCXmini
diffractometer
4973 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1313
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
k = 1818
Tmin = 0.955, Tmax = 0.955l = 1818
22574 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.2447P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.007
4973 reflectionsΔρmax = 0.29 e Å3
283 parametersΔρmin = 0.15 e Å3
51 restraintsAbsolute structure: Flack (1983), 2168 Friedel pairs
0 constraintsAbsolute structure parameter: 0.02 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
C2H8N+·ClO4·C12H24O6·H2OV = 2174.1 (8) Å3
Mr = 427.87Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.684 (2) ŵ = 0.23 mm1
b = 13.954 (3) ÅT = 293 K
c = 14.583 (3) Å0.4 × 0.3 × 0.2 mm
Data collection top
Rigaku SCXmini
diffractometer
4973 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku, 2005)
2814 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.955Rint = 0.070
22574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.171Δρmax = 0.29 e Å3
S = 1.00Δρmin = 0.15 e Å3
4973 reflectionsAbsolute structure: Flack (1983), 2168 Friedel pairs
283 parametersAbsolute structure parameter: 0.02 (10)
51 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.98649 (9)0.31614 (6)0.61639 (6)0.0683 (3)
O10.26118 (19)0.62910 (16)0.62120 (17)0.0615 (6)
O40.72647 (19)0.61810 (16)0.58783 (16)0.0580 (6)
O50.6370 (2)0.58013 (18)0.76505 (16)0.0661 (7)
O20.3466 (2)0.56628 (17)0.44918 (16)0.0631 (6)
O30.6070 (2)0.51865 (17)0.43975 (16)0.0659 (7)
O60.3742 (2)0.54342 (19)0.77918 (17)0.0686 (7)
C60.1812 (3)0.6189 (3)0.5450 (3)0.0666 (10)
H6A0.11240.66400.54980.080*
H6B0.14660.55470.54390.080*
C120.8060 (3)0.6151 (3)0.6658 (3)0.0690 (10)
H12A0.87690.65750.65670.083*
H12B0.83750.55060.67450.083*
C50.2518 (3)0.6370 (3)0.4595 (3)0.0655 (9)
H5A0.19540.63480.40740.079*
H5B0.28950.70010.46180.079*
C70.1976 (3)0.6136 (3)0.7052 (3)0.0729 (11)
H7A0.15920.55070.70500.088*
H7B0.13200.66110.71260.088*
C110.7341 (4)0.6456 (3)0.7479 (3)0.0683 (10)
H11A0.78930.64870.80060.082*
H11B0.69930.70900.73780.082*
C30.5202 (4)0.5127 (3)0.3647 (2)0.0742 (11)
H3A0.48250.44940.36420.089*
H3B0.56550.52070.30750.089*
C20.7006 (4)0.5896 (3)0.4281 (3)0.0743 (11)
H2A0.66210.65250.42470.089*
H2B0.74560.57840.37140.089*
C40.4200 (4)0.5857 (3)0.3699 (2)0.0745 (10)
H4A0.45630.64930.37410.089*
H4B0.36810.58300.31540.089*
C100.5660 (4)0.6078 (3)0.8436 (3)0.0758 (11)
H10A0.53410.67240.83570.091*
H10B0.61850.60660.89790.091*
C90.4614 (4)0.5398 (3)0.8540 (3)0.0822 (12)
H9A0.49480.47540.85870.099*
H9B0.41740.55390.91060.099*
C10.7897 (3)0.5862 (3)0.5074 (3)0.0697 (10)
H1A0.81950.52110.51610.084*
H1B0.86120.62700.49520.084*
C80.2889 (4)0.6209 (3)0.7833 (3)0.0818 (12)
H8A0.33400.68100.77950.098*
H8B0.24410.61940.84120.098*
O71.0420 (16)0.4009 (9)0.6144 (13)0.197 (9)0.50
O81.0022 (13)0.2735 (7)0.6991 (6)0.140 (5)0.50
O90.8759 (8)0.3033 (10)0.5711 (8)0.152 (4)0.50
O101.0765 (12)0.2850 (9)0.5452 (6)0.172 (4)0.50
O7'0.9855 (17)0.4068 (8)0.6012 (13)0.186 (8)0.50
O8'0.960 (2)0.2425 (11)0.5730 (13)0.276 (10)0.50
O9'1.072 (2)0.2849 (18)0.6660 (13)0.313 (13)0.50
O10'0.8799 (10)0.3385 (8)0.6824 (10)0.184 (5)0.50
N10.4833 (3)0.45369 (18)0.61194 (19)0.0711 (9)
H1AA0.46150.50250.66430.107*
H1BB0.51390.48360.56510.107*
O200.9938 (2)0.7613 (2)0.3947 (2)0.0993 (10)
H20A0.93120.78090.37820.149*
H20B1.06110.80000.39420.149*
C980.5941 (4)0.3948 (3)0.6317 (4)0.0945 (14)
H98A0.66570.43560.63950.142*
H98B0.60870.35150.58170.142*
H98C0.58030.35890.68700.142*
C990.3696 (4)0.3968 (3)0.6010 (3)0.0905 (13)
H99A0.30090.43830.58610.136*
H99B0.35190.36360.65720.136*
H99C0.38130.35110.55260.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0842 (6)0.0557 (5)0.0649 (5)0.0032 (5)0.0152 (5)0.0061 (5)
O10.0462 (11)0.0691 (15)0.0693 (14)0.0068 (10)0.0032 (12)0.0023 (13)
O40.0470 (12)0.0637 (14)0.0632 (14)0.0053 (11)0.0018 (11)0.0033 (11)
O50.0686 (15)0.0762 (17)0.0535 (14)0.0004 (14)0.0026 (13)0.0064 (12)
O20.0706 (15)0.0653 (14)0.0533 (13)0.0008 (12)0.0002 (12)0.0075 (12)
O30.0718 (15)0.0691 (15)0.0569 (15)0.0070 (13)0.0017 (13)0.0003 (13)
O60.0656 (15)0.0867 (19)0.0535 (14)0.0118 (14)0.0089 (13)0.0105 (13)
C60.0490 (19)0.068 (2)0.083 (3)0.0046 (17)0.005 (2)0.007 (2)
C120.0472 (18)0.073 (2)0.087 (3)0.0077 (17)0.015 (2)0.000 (2)
C50.059 (2)0.061 (2)0.076 (2)0.0041 (18)0.011 (2)0.0118 (19)
C70.0488 (19)0.089 (3)0.081 (3)0.0001 (19)0.019 (2)0.014 (2)
C110.061 (2)0.072 (2)0.071 (2)0.0045 (19)0.013 (2)0.0100 (19)
C30.092 (3)0.087 (3)0.0432 (19)0.016 (2)0.003 (2)0.0128 (18)
C20.089 (3)0.079 (3)0.054 (2)0.012 (2)0.018 (2)0.008 (2)
C40.087 (2)0.090 (3)0.046 (2)0.002 (2)0.005 (2)0.001 (2)
C100.083 (2)0.095 (3)0.049 (2)0.008 (2)0.008 (2)0.008 (2)
C90.105 (3)0.095 (3)0.047 (2)0.015 (3)0.004 (2)0.0011 (19)
C10.058 (2)0.073 (3)0.078 (3)0.0017 (19)0.017 (2)0.006 (2)
C80.081 (3)0.093 (3)0.071 (3)0.011 (3)0.016 (2)0.026 (2)
O70.232 (15)0.149 (12)0.209 (14)0.154 (12)0.056 (12)0.047 (10)
O80.219 (14)0.133 (7)0.067 (4)0.045 (10)0.007 (6)0.056 (4)
O90.089 (5)0.204 (11)0.161 (9)0.010 (6)0.055 (6)0.045 (9)
O100.192 (9)0.221 (12)0.103 (6)0.045 (9)0.057 (6)0.033 (7)
O7'0.269 (19)0.070 (7)0.220 (14)0.042 (9)0.012 (14)0.085 (8)
O8'0.36 (2)0.156 (11)0.31 (2)0.123 (13)0.08 (2)0.159 (14)
O9'0.295 (19)0.40 (3)0.248 (19)0.26 (2)0.030 (16)0.118 (17)
O10'0.127 (7)0.174 (9)0.251 (13)0.008 (7)0.059 (8)0.045 (9)
N10.121 (3)0.0387 (14)0.0533 (16)0.0026 (17)0.009 (2)0.0043 (12)
O200.0592 (15)0.0859 (19)0.153 (3)0.0080 (15)0.0083 (19)0.0404 (18)
C980.103 (3)0.065 (2)0.115 (4)0.013 (2)0.009 (3)0.008 (3)
C990.092 (3)0.070 (2)0.110 (4)0.007 (2)0.002 (3)0.013 (3)
Geometric parameters (Å, º) top
Cl1—O8'1.239 (9)C11—H11A0.9700
Cl1—O9'1.246 (13)C11—H11B0.9700
Cl1—O7'1.285 (9)C3—C41.481 (5)
Cl1—O71.324 (9)C3—H3A0.9700
Cl1—O81.356 (8)C3—H3B0.9700
Cl1—O91.365 (7)C2—C11.498 (5)
Cl1—O101.480 (8)C2—H2A0.9700
Cl1—O10'1.523 (10)C2—H2B0.9700
O1—C61.409 (4)C4—H4A0.9700
O1—C71.418 (4)C4—H4B0.9700
O4—C121.420 (4)C10—C91.474 (6)
O4—C11.425 (4)C10—H10A0.9700
O5—C111.405 (4)C10—H10B0.9700
O5—C101.427 (4)C9—H9A0.9700
O2—C51.422 (4)C9—H9B0.9700
O2—C41.422 (4)C1—H1A0.9700
O3—C21.418 (5)C1—H1B0.9700
O3—C31.437 (4)C8—H8A0.9700
O6—C81.415 (5)C8—H8B0.9700
O6—C91.435 (4)N1—C991.460 (5)
C6—C51.479 (5)N1—C981.469 (5)
C6—H6A0.9700N1—H1AA1.0493
C6—H6B0.9700N1—H1BB0.8642
C12—C111.485 (5)O20—H20A0.7616
C12—H12A0.9700O20—H20B0.9001
C12—H12B0.9700C98—H98A0.9600
C5—H5A0.9700C98—H98B0.9600
C5—H5B0.9700C98—H98C0.9600
C7—C81.502 (5)C99—H99A0.9600
C7—H7A0.9700C99—H99B0.9600
C7—H7B0.9700C99—H99C0.9600
O7—Cl1—O8110.8 (9)O3—C2—H2A109.8
O7—Cl1—O9119.6 (10)C1—C2—H2A109.8
O8—Cl1—O9118.7 (8)O3—C2—H2B109.8
O7—Cl1—O1087.5 (10)C1—C2—H2B109.8
O8—Cl1—O10114.5 (8)H2A—C2—H2B108.2
O9—Cl1—O10100.7 (7)O2—C4—C3108.0 (3)
O8'—Cl1—O9'99.9 (16)O2—C4—H4A110.1
O8'—Cl1—O7'136.6 (14)C3—C4—H4A110.1
O9'—Cl1—O7'116.8 (15)O2—C4—H4B110.1
O8'—Cl1—O10'109.0 (10)C3—C4—H4B110.1
O9'—Cl1—O10'104.7 (9)H4A—C4—H4B108.4
O7'—Cl1—O10'84.3 (10)O5—C10—C9108.2 (3)
C6—O1—C7112.1 (2)O5—C10—H10A110.1
C12—O4—C1111.5 (2)C9—C10—H10A110.1
C11—O5—C10111.0 (3)O5—C10—H10B110.1
C5—O2—C4110.3 (3)C9—C10—H10B110.1
C2—O3—C3113.9 (3)H10A—C10—H10B108.4
C8—O6—C9114.4 (3)O6—C9—C10113.1 (3)
O1—C6—C5109.8 (3)O6—C9—H9A109.0
O1—C6—H6A109.7C10—C9—H9A109.0
C5—C6—H6A109.7O6—C9—H9B109.0
O1—C6—H6B109.7C10—C9—H9B109.0
C5—C6—H6B109.7H9A—C9—H9B107.8
H6A—C6—H6B108.2O4—C1—C2108.9 (3)
O4—C12—C11109.1 (3)O4—C1—H1A109.9
O4—C12—H12A109.9C2—C1—H1A109.9
C11—C12—H12A109.9O4—C1—H1B109.9
O4—C12—H12B109.9C2—C1—H1B109.9
C11—C12—H12B109.9H1A—C1—H1B108.3
H12A—C12—H12B108.3O6—C8—C7109.5 (3)
O2—C5—C6109.6 (3)O6—C8—H8A109.8
O2—C5—H5A109.8C7—C8—H8A109.8
C6—C5—H5A109.8O6—C8—H8B109.8
O2—C5—H5B109.8C7—C8—H8B109.8
C6—C5—H5B109.8H8A—C8—H8B108.2
H5A—C5—H5B108.2C99—N1—C98112.8 (3)
O1—C7—C8109.5 (3)C99—N1—H1AA104.3
O1—C7—H7A109.8C98—N1—H1AA113.5
C8—C7—H7A109.8C99—N1—H1BB119.3
O1—C7—H7B109.8C98—N1—H1BB97.0
C8—C7—H7B109.8H1AA—N1—H1BB110.2
H7A—C7—H7B108.2H20A—O20—H20B118.8
O5—C11—C12109.8 (3)N1—C98—H98A109.5
O5—C11—H11A109.7N1—C98—H98B109.5
C12—C11—H11A109.7H98A—C98—H98B109.5
O5—C11—H11B109.7N1—C98—H98C109.5
C12—C11—H11B109.7H98A—C98—H98C109.5
H11A—C11—H11B108.2H98B—C98—H98C109.5
O3—C3—C4112.8 (3)N1—C99—H99A109.5
O3—C3—H3A109.0N1—C99—H99B109.5
C4—C3—H3A109.0H99A—C99—H99B109.5
O3—C3—H3B109.0N1—C99—H99C109.5
C4—C3—H3B109.0H99A—C99—H99C109.5
H3A—C3—H3B107.8H99B—C99—H99C109.5
O3—C2—C1109.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1AA···O61.052.002.979 (4)154
N1—H1AA···O51.052.623.285 (4)121
N1—H1BB···O30.862.142.979 (4)164
O20—H20B···O4i0.902.123.013 (4)171
O20—H20A···O1i0.762.212.927 (3)158
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC2H8N+·ClO4·C12H24O6·H2O
Mr427.87
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.684 (2), 13.954 (3), 14.583 (3)
V3)2174.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
CrystalClear (Rigaku, 2005)
Tmin, Tmax0.955, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
22574, 4973, 2814
Rint0.070
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.171, 1.00
No. of reflections4973
No. of parameters283
No. of restraints51
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.15
Absolute structureFlack (1983), 2168 Friedel pairs
Absolute structure parameter0.02 (10)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1AA···O61.052.002.979 (4)153.9
N1—H1BB···O30.862.142.979 (4)164.1
O20—H20B···O4i0.902.123.013 (4)171.4
O20—H20A···O1i0.762.212.927 (3)157.7
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the start-up projects for the Postdoctoral Research Funds of Southeast University (grant No. 1112000047) and the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017–7036.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds