organic compounds
Methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate
aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, bDepartment of Natural Science, Taipei Municipal University of Education, Taipei 10048, Taiwan, and cDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: yhlo@mail.tmue.edu.tw
In the title compound, C11H11N3O2, prepared by the [3+2] reaction of benzyl azide with methyl propiolate, the dihedral angle between the ring planes is 67.87 (11)°.
Related literature
For catalytic transformations of organic et al. (1998); Bruneau & Dixneuf (1999); Trost et al. (2001); Chen et al. (2009); Cheng et al. (2009). For the synthesis of triazoles, see: Padwa (1976). For applications of triazoles, see: Krivopalov & Shkurko (2005).
mediated by ruthenium complexes, see: NaotaExperimental
Crystal data
|
Data collection: COLLECT (Nonius, 1999); cell DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810022531/bh2294sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810022531/bh2294Isup2.hkl
A mixture of benzyl azide, methyl propiolate and {(Tp)(PPh3)2Ru(N3)} in toluene was refluxed for 24 h. The solvent was removed under vacuum and the product was purified by silica gel
The unreacted alkyne and traces of side products were first eluted out with ether. The pure 1,4-disubstituted triazole product was then obtained by elution with CH2Cl2.H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(C).
Data collection: COLLECT (Nonius, 1999); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius). |
C11H11N3O2 | F(000) = 456 |
Mr = 217.23 | Dx = 1.356 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3680 reflections |
a = 12.0551 (6) Å | θ = 2.6–25.0° |
b = 5.6285 (3) Å | µ = 0.10 mm−1 |
c = 16.7578 (10) Å | T = 200 K |
β = 110.664 (3)° | Prism, colorless |
V = 1063.90 (10) Å3 | 0.55 × 0.40 × 0.35 mm |
Z = 4 |
Nonuis KappaCCD diffractometer | 1845 independent reflections |
Radiation source: fine-focus sealed tube | 1615 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 9 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
CCD rotation images, thick slices scans | h = −14→14 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −6→6 |
Tmin = 0.949, Tmax = 0.967 | l = −19→18 |
7021 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2782P] where P = (Fo2 + 2Fc2)/3 |
1845 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
0 constraints |
C11H11N3O2 | V = 1063.90 (10) Å3 |
Mr = 217.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.0551 (6) Å | µ = 0.10 mm−1 |
b = 5.6285 (3) Å | T = 200 K |
c = 16.7578 (10) Å | 0.55 × 0.40 × 0.35 mm |
β = 110.664 (3)° |
Nonuis KappaCCD diffractometer | 1845 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 1615 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.967 | Rint = 0.023 |
7021 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.15 e Å−3 |
1845 reflections | Δρmin = −0.16 e Å−3 |
145 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | −0.11251 (12) | 1.1370 (3) | 0.66802 (10) | 0.0462 (4) | |
H1A | −0.1102 | 1.3069 | 0.6814 | 0.069* | |
H1B | −0.1054 | 1.0444 | 0.7191 | 0.069* | |
H1C | −0.1878 | 1.0991 | 0.6226 | 0.069* | |
C2 | −0.00887 (11) | 0.8505 (2) | 0.61959 (8) | 0.0359 (3) | |
C3 | 0.09145 (10) | 0.8061 (2) | 0.59130 (8) | 0.0344 (3) | |
C4 | 0.13667 (11) | 0.5915 (2) | 0.57855 (8) | 0.0379 (3) | |
H4 | 0.1102 | 0.4373 | 0.5864 | 0.045* | |
C5 | 0.30857 (12) | 0.4920 (2) | 0.53001 (10) | 0.0441 (3) | |
H5A | 0.3067 | 0.5334 | 0.4721 | 0.053* | |
H5B | 0.2820 | 0.3252 | 0.5288 | 0.053* | |
C6 | 0.43422 (11) | 0.5135 (2) | 0.59233 (8) | 0.0359 (3) | |
C7 | 0.48209 (14) | 0.3404 (3) | 0.65326 (10) | 0.0508 (4) | |
H7 | 0.4357 | 0.2066 | 0.6564 | 0.061* | |
C8 | 0.59814 (16) | 0.3616 (4) | 0.71015 (11) | 0.0662 (5) | |
H8 | 0.6306 | 0.2417 | 0.7518 | 0.079* | |
C9 | 0.66570 (14) | 0.5532 (4) | 0.70663 (11) | 0.0647 (5) | |
H9 | 0.7448 | 0.5669 | 0.7456 | 0.078* | |
C10 | 0.61865 (14) | 0.7251 (3) | 0.64659 (12) | 0.0630 (5) | |
H10 | 0.6653 | 0.8590 | 0.6442 | 0.076* | |
C11 | 0.50372 (12) | 0.7062 (3) | 0.58917 (10) | 0.0488 (4) | |
H11 | 0.4724 | 0.8262 | 0.5474 | 0.059* | |
N1 | 0.15518 (9) | 0.98335 (18) | 0.57253 (7) | 0.0379 (3) | |
N2 | 0.23722 (9) | 0.88701 (19) | 0.54855 (8) | 0.0404 (3) | |
N3 | 0.22627 (9) | 0.64798 (18) | 0.55266 (7) | 0.0380 (3) | |
O1 | −0.01523 (8) | 1.07905 (16) | 0.63991 (6) | 0.0417 (3) | |
O2 | −0.07666 (8) | 0.69845 (17) | 0.62483 (7) | 0.0480 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0442 (8) | 0.0438 (8) | 0.0558 (9) | −0.0033 (6) | 0.0239 (7) | −0.0050 (6) |
C2 | 0.0330 (6) | 0.0314 (6) | 0.0372 (7) | −0.0041 (5) | 0.0047 (5) | 0.0008 (5) |
C3 | 0.0298 (6) | 0.0293 (6) | 0.0373 (7) | −0.0038 (5) | 0.0032 (5) | −0.0005 (5) |
C4 | 0.0326 (6) | 0.0298 (6) | 0.0456 (8) | −0.0047 (5) | 0.0067 (6) | −0.0009 (5) |
C5 | 0.0396 (7) | 0.0351 (7) | 0.0554 (8) | 0.0013 (6) | 0.0143 (6) | −0.0090 (6) |
C6 | 0.0361 (7) | 0.0332 (7) | 0.0416 (7) | 0.0016 (5) | 0.0177 (6) | −0.0016 (5) |
C7 | 0.0564 (9) | 0.0444 (8) | 0.0557 (9) | 0.0048 (7) | 0.0248 (7) | 0.0087 (7) |
C8 | 0.0688 (11) | 0.0781 (13) | 0.0459 (9) | 0.0277 (10) | 0.0131 (8) | 0.0094 (8) |
C9 | 0.0395 (8) | 0.0891 (14) | 0.0590 (10) | 0.0112 (9) | 0.0091 (7) | −0.0207 (10) |
C10 | 0.0409 (8) | 0.0662 (11) | 0.0854 (13) | −0.0141 (8) | 0.0266 (8) | −0.0157 (9) |
C11 | 0.0439 (8) | 0.0435 (8) | 0.0618 (9) | −0.0029 (6) | 0.0221 (7) | 0.0054 (7) |
N1 | 0.0323 (5) | 0.0309 (6) | 0.0472 (7) | −0.0012 (4) | 0.0098 (5) | −0.0001 (5) |
N2 | 0.0358 (6) | 0.0300 (6) | 0.0533 (7) | −0.0010 (4) | 0.0134 (5) | −0.0008 (5) |
N3 | 0.0329 (5) | 0.0283 (5) | 0.0474 (7) | −0.0015 (4) | 0.0076 (5) | −0.0037 (5) |
O1 | 0.0387 (5) | 0.0336 (5) | 0.0555 (6) | −0.0053 (4) | 0.0199 (4) | −0.0067 (4) |
O2 | 0.0437 (5) | 0.0365 (5) | 0.0641 (7) | −0.0083 (4) | 0.0196 (5) | 0.0017 (4) |
C1—O1 | 1.4469 (16) | C5—H5B | 0.9900 |
C1—H1A | 0.9800 | C6—C7 | 1.3817 (19) |
C1—H1B | 0.9800 | C6—C11 | 1.3830 (19) |
C1—H1C | 0.9800 | C7—C8 | 1.392 (2) |
C2—O2 | 1.2076 (15) | C7—H7 | 0.9500 |
C2—O1 | 1.3400 (15) | C8—C9 | 1.365 (3) |
C2—C3 | 1.4678 (19) | C8—H8 | 0.9500 |
C3—N1 | 1.3621 (16) | C9—C10 | 1.367 (3) |
C3—C4 | 1.3722 (17) | C9—H9 | 0.9500 |
C4—N3 | 1.3367 (17) | C10—C11 | 1.384 (2) |
C4—H4 | 0.9500 | C10—H10 | 0.9500 |
C5—N3 | 1.4713 (17) | C11—H11 | 0.9500 |
C5—C6 | 1.5110 (18) | N1—N2 | 1.3092 (15) |
C5—H5A | 0.9900 | N2—N3 | 1.3560 (15) |
O1—C1—H1A | 109.5 | C11—C6—C5 | 120.62 (12) |
O1—C1—H1B | 109.5 | C6—C7—C8 | 120.16 (15) |
H1A—C1—H1B | 109.5 | C6—C7—H7 | 119.9 |
O1—C1—H1C | 109.5 | C8—C7—H7 | 119.9 |
H1A—C1—H1C | 109.5 | C9—C8—C7 | 120.57 (16) |
H1B—C1—H1C | 109.5 | C9—C8—H8 | 119.7 |
O2—C2—O1 | 124.12 (13) | C7—C8—H8 | 119.7 |
O2—C2—C3 | 123.97 (12) | C8—C9—C10 | 119.48 (15) |
O1—C2—C3 | 111.90 (10) | C8—C9—H9 | 120.3 |
N1—C3—C4 | 108.74 (11) | C10—C9—H9 | 120.3 |
N1—C3—C2 | 123.10 (11) | C9—C10—C11 | 120.74 (16) |
C4—C3—C2 | 128.16 (11) | C9—C10—H10 | 119.6 |
N3—C4—C3 | 104.61 (11) | C11—C10—H10 | 119.6 |
N3—C4—H4 | 127.7 | C6—C11—C10 | 120.32 (15) |
C3—C4—H4 | 127.7 | C6—C11—H11 | 119.8 |
N3—C5—C6 | 112.13 (11) | C10—C11—H11 | 119.8 |
N3—C5—H5A | 109.2 | N2—N1—C3 | 108.43 (10) |
C6—C5—H5A | 109.2 | N1—N2—N3 | 107.32 (10) |
N3—C5—H5B | 109.2 | C4—N3—N2 | 110.89 (11) |
C6—C5—H5B | 109.2 | C4—N3—C5 | 129.62 (11) |
H5A—C5—H5B | 107.9 | N2—N3—C5 | 119.49 (11) |
C7—C6—C11 | 118.73 (13) | C2—O1—C1 | 115.14 (10) |
C7—C6—C5 | 120.65 (12) |
Experimental details
Crystal data | |
Chemical formula | C11H11N3O2 |
Mr | 217.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 12.0551 (6), 5.6285 (3), 16.7578 (10) |
β (°) | 110.664 (3) |
V (Å3) | 1063.90 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.55 × 0.40 × 0.35 |
Data collection | |
Diffractometer | Nonuis KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.949, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7021, 1845, 1615 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.01 |
No. of reflections | 1845 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC 97–2113-M-133–001-MY2). We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray structure analysis and the project of the specific research fields in the Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR—CH.
References
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruneau, C. & Dixneuf, P. H. (1999). Acc. Chem. Res. 32, 311–323. Web of Science CrossRef CAS Google Scholar
Chen, C.-K., Tong, H.-C., Chen Hsu, C.-Y., Lee, C.-Y., Fong, Y. H., Chuang, Y.-S., Lo, Y.-H., Lin, Y.-C. & Wang, Y. (2009). Organometallics, 28, 3358–3368. Web of Science CSD CrossRef CAS Google Scholar
Cheng, C.-J., Tong, H.-C., Fong, Y.-H., Wang, P.-Y., Kuo, Y.-L., Lo, Y.-H. & Lin, C.-H. (2009). Dalton Trans. pp. 4435–4438. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339–379. CrossRef CAS Google Scholar
Naota, T., Takaya, H. & Murahashi, S.-I. (1998). Chem. Rev. 98, 2599–2660. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Padwa, A. (1976). Angew. Chem. Int. Ed. Engl. 15, 123–136. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trost, B. M., Toste, F. D. & Pinkerton, A. B. (2001). Chem. Rev. 101, 2067–2096. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Catalytic transformations of organic alkynes mediated by ruthenium complexes are well known, and confirmation for the intermediacy of ruthenium(II) acetylide and vinylidene complexes has been provided (Bruneau & Dixneuf, 1999; Cheng et al., 2009; Naota et al., 1998; Trost et al., 2001). Therefore, ruthenium was a logical choice in our search for a new catalyst of click reaction (Chen et al., 2009). Organic azides are synthetically useful reagents. Amongst many reactions, perhaps the most significant are the 1,3-dipolar cycloaddition reactions with alkynes to synthesize triazoles (Padwa, 1976). Triazoles are nitrogen heteroarenes which have found a range of important applications in the pharmaceutical and agricultural industries (Krivopalov & Shkurko, 2005).
A mixture of benzyl azide and methyl propiolate (1:1.5 equiv, respectively) in toluene was refluxed for 24 h in the presence of 5% moles of {(Tp)(PPh3)2Ru(N3)}, leading to the title compound [Tp is hydridotris(pyrazolyl)borate]. Single crystals of the title compound suitable for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether.
In the title compound (Fig. 1), phenyl and triazole are linked together through a methylene group. Of major interest is the methylene C atom, which presents a C—CH2—N angle of 112.13 (11)°, larger than the ideal tetrahedral value of 109.47°. The N3—C4, C4—C3, C3—N1, N1—N2, and N2—N3 bond lengths are 1.3367 (17), 1.3722 (17), 1.3621 (16), 1.3092 (15) and 1.3560 (15) Å, respectively, which compare with those found for C═C, N═N and C—N bonds in related compounds.