organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1-benzyl-1H-1,2,3-triazole-4-carboxyl­ate

aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, bDepartment of Natural Science, Taipei Municipal University of Education, Taipei 10048, Taiwan, and cDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: yhlo@mail.tmue.edu.tw

(Received 8 June 2010; accepted 12 June 2010; online 18 June 2010)

In the title compound, C11H11N3O2, prepared by the [3+2] cycloaddition reaction of benzyl azide with methyl propiolate, the dihedral angle between the ring planes is 67.87 (11)°.

Related literature

For catalytic transformations of organic alkynes mediated by ruthenium complexes, see: Naota et al. (1998[Naota, T., Takaya, H. & Murahashi, S.-I. (1998). Chem. Rev. 98, 2599-2660.]); Bruneau & Dixneuf (1999[Bruneau, C. & Dixneuf, P. H. (1999). Acc. Chem. Res. 32, 311-323.]); Trost et al. (2001[Trost, B. M., Toste, F. D. & Pinkerton, A. B. (2001). Chem. Rev. 101, 2067-2096.]); Chen et al. (2009[Chen, C.-K., Tong, H.-C., Chen Hsu, C.-Y., Lee, C.-Y., Fong, Y. H., Chuang, Y.-S., Lo, Y.-H., Lin, Y.-C. & Wang, Y. (2009). Organometallics, 28, 3358-3368.]); Cheng et al. (2009[Cheng, C.-J., Tong, H.-C., Fong, Y.-H., Wang, P.-Y., Kuo, Y.-L., Lo, Y.-H. & Lin, C.-H. (2009). Dalton Trans. pp. 4435-4438.]). For the synthesis of triazoles, see: Padwa (1976[Padwa, A. (1976). Angew. Chem. Int. Ed. Engl. 15, 123-136.]). For applications of triazoles, see: Krivopalov & Shkurko (2005[Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339-379.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O2

  • Mr = 217.23

  • Monoclinic, P 21 /c

  • a = 12.0551 (6) Å

  • b = 5.6285 (3) Å

  • c = 16.7578 (10) Å

  • β = 110.664 (3)°

  • V = 1063.90 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.55 × 0.40 × 0.35 mm

Data collection
  • Nonuis KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.949, Tmax = 0.967

  • 7021 measured reflections

  • 1845 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.01

  • 1845 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Catalytic transformations of organic alkynes mediated by ruthenium complexes are well known, and confirmation for the intermediacy of ruthenium(II) acetylide and vinylidene complexes has been provided (Bruneau & Dixneuf, 1999; Cheng et al., 2009; Naota et al., 1998; Trost et al., 2001). Therefore, ruthenium was a logical choice in our search for a new catalyst of click reaction (Chen et al., 2009). Organic azides are synthetically useful reagents. Amongst many reactions, perhaps the most significant are the 1,3-dipolar cycloaddition reactions with alkynes to synthesize triazoles (Padwa, 1976). Triazoles are nitrogen heteroarenes which have found a range of important applications in the pharmaceutical and agricultural industries (Krivopalov & Shkurko, 2005).

A mixture of benzyl azide and methyl propiolate (1:1.5 equiv, respectively) in toluene was refluxed for 24 h in the presence of 5% moles of {(Tp)(PPh3)2Ru(N3)}, leading to the title compound [Tp is hydridotris(pyrazolyl)borate]. Single crystals of the title compound suitable for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether.

In the title compound (Fig. 1), phenyl and triazole are linked together through a methylene group. Of major interest is the methylene C atom, which presents a C—CH2—N angle of 112.13 (11)°, larger than the ideal tetrahedral value of 109.47°. The N3—C4, C4—C3, C3—N1, N1—N2, and N2—N3 bond lengths are 1.3367 (17), 1.3722 (17), 1.3621 (16), 1.3092 (15) and 1.3560 (15) Å, respectively, which compare with those found for CC, NN and C—N bonds in related compounds.

Related literature top

For catalytic transformations of organic alkynes mediated by ruthenium complexes, see: Naota et al. (1998); Bruneau & Dixneuf (1999); Trost et al. (2001); Chen et al. (2009); Cheng et al. (2009). For the synthesis of triazoles, see: Padwa (1976). For applications of triazoles, see: Krivopalov & Shkurko (2005).

Experimental top

A mixture of benzyl azide, methyl propiolate and {(Tp)(PPh3)2Ru(N3)} in toluene was refluxed for 24 h. The solvent was removed under vacuum and the product was purified by silica gel chromatography. The unreacted alkyne and traces of side products were first eluted out with ether. The pure 1,4-disubstituted triazole product was then obtained by elution with CH2Cl2.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).
Methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate top
Crystal data top
C11H11N3O2F(000) = 456
Mr = 217.23Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3680 reflections
a = 12.0551 (6) Åθ = 2.6–25.0°
b = 5.6285 (3) ŵ = 0.10 mm1
c = 16.7578 (10) ÅT = 200 K
β = 110.664 (3)°Prism, colorless
V = 1063.90 (10) Å30.55 × 0.40 × 0.35 mm
Z = 4
Data collection top
Nonuis KappaCCD
diffractometer
1845 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.8°
CCD rotation images, thick slices scansh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 66
Tmin = 0.949, Tmax = 0.967l = 1918
7021 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2782P]
where P = (Fo2 + 2Fc2)/3
1845 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
0 constraints
Crystal data top
C11H11N3O2V = 1063.90 (10) Å3
Mr = 217.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0551 (6) ŵ = 0.10 mm1
b = 5.6285 (3) ÅT = 200 K
c = 16.7578 (10) Å0.55 × 0.40 × 0.35 mm
β = 110.664 (3)°
Data collection top
Nonuis KappaCCD
diffractometer
1845 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1615 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.967Rint = 0.023
7021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
1845 reflectionsΔρmin = 0.16 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11251 (12)1.1370 (3)0.66802 (10)0.0462 (4)
H1A0.11021.30690.68140.069*
H1B0.10541.04440.71910.069*
H1C0.18781.09910.62260.069*
C20.00887 (11)0.8505 (2)0.61959 (8)0.0359 (3)
C30.09145 (10)0.8061 (2)0.59130 (8)0.0344 (3)
C40.13667 (11)0.5915 (2)0.57855 (8)0.0379 (3)
H40.11020.43730.58640.045*
C50.30857 (12)0.4920 (2)0.53001 (10)0.0441 (3)
H5A0.30670.53340.47210.053*
H5B0.28200.32520.52880.053*
C60.43422 (11)0.5135 (2)0.59233 (8)0.0359 (3)
C70.48209 (14)0.3404 (3)0.65326 (10)0.0508 (4)
H70.43570.20660.65640.061*
C80.59814 (16)0.3616 (4)0.71015 (11)0.0662 (5)
H80.63060.24170.75180.079*
C90.66570 (14)0.5532 (4)0.70663 (11)0.0647 (5)
H90.74480.56690.74560.078*
C100.61865 (14)0.7251 (3)0.64659 (12)0.0630 (5)
H100.66530.85900.64420.076*
C110.50372 (12)0.7062 (3)0.58917 (10)0.0488 (4)
H110.47240.82620.54740.059*
N10.15518 (9)0.98335 (18)0.57253 (7)0.0379 (3)
N20.23722 (9)0.88701 (19)0.54855 (8)0.0404 (3)
N30.22627 (9)0.64798 (18)0.55266 (7)0.0380 (3)
O10.01523 (8)1.07905 (16)0.63991 (6)0.0417 (3)
O20.07666 (8)0.69845 (17)0.62483 (7)0.0480 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (8)0.0438 (8)0.0558 (9)0.0033 (6)0.0239 (7)0.0050 (6)
C20.0330 (6)0.0314 (6)0.0372 (7)0.0041 (5)0.0047 (5)0.0008 (5)
C30.0298 (6)0.0293 (6)0.0373 (7)0.0038 (5)0.0032 (5)0.0005 (5)
C40.0326 (6)0.0298 (6)0.0456 (8)0.0047 (5)0.0067 (6)0.0009 (5)
C50.0396 (7)0.0351 (7)0.0554 (8)0.0013 (6)0.0143 (6)0.0090 (6)
C60.0361 (7)0.0332 (7)0.0416 (7)0.0016 (5)0.0177 (6)0.0016 (5)
C70.0564 (9)0.0444 (8)0.0557 (9)0.0048 (7)0.0248 (7)0.0087 (7)
C80.0688 (11)0.0781 (13)0.0459 (9)0.0277 (10)0.0131 (8)0.0094 (8)
C90.0395 (8)0.0891 (14)0.0590 (10)0.0112 (9)0.0091 (7)0.0207 (10)
C100.0409 (8)0.0662 (11)0.0854 (13)0.0141 (8)0.0266 (8)0.0157 (9)
C110.0439 (8)0.0435 (8)0.0618 (9)0.0029 (6)0.0221 (7)0.0054 (7)
N10.0323 (5)0.0309 (6)0.0472 (7)0.0012 (4)0.0098 (5)0.0001 (5)
N20.0358 (6)0.0300 (6)0.0533 (7)0.0010 (4)0.0134 (5)0.0008 (5)
N30.0329 (5)0.0283 (5)0.0474 (7)0.0015 (4)0.0076 (5)0.0037 (5)
O10.0387 (5)0.0336 (5)0.0555 (6)0.0053 (4)0.0199 (4)0.0067 (4)
O20.0437 (5)0.0365 (5)0.0641 (7)0.0083 (4)0.0196 (5)0.0017 (4)
Geometric parameters (Å, º) top
C1—O11.4469 (16)C5—H5B0.9900
C1—H1A0.9800C6—C71.3817 (19)
C1—H1B0.9800C6—C111.3830 (19)
C1—H1C0.9800C7—C81.392 (2)
C2—O21.2076 (15)C7—H70.9500
C2—O11.3400 (15)C8—C91.365 (3)
C2—C31.4678 (19)C8—H80.9500
C3—N11.3621 (16)C9—C101.367 (3)
C3—C41.3722 (17)C9—H90.9500
C4—N31.3367 (17)C10—C111.384 (2)
C4—H40.9500C10—H100.9500
C5—N31.4713 (17)C11—H110.9500
C5—C61.5110 (18)N1—N21.3092 (15)
C5—H5A0.9900N2—N31.3560 (15)
O1—C1—H1A109.5C11—C6—C5120.62 (12)
O1—C1—H1B109.5C6—C7—C8120.16 (15)
H1A—C1—H1B109.5C6—C7—H7119.9
O1—C1—H1C109.5C8—C7—H7119.9
H1A—C1—H1C109.5C9—C8—C7120.57 (16)
H1B—C1—H1C109.5C9—C8—H8119.7
O2—C2—O1124.12 (13)C7—C8—H8119.7
O2—C2—C3123.97 (12)C8—C9—C10119.48 (15)
O1—C2—C3111.90 (10)C8—C9—H9120.3
N1—C3—C4108.74 (11)C10—C9—H9120.3
N1—C3—C2123.10 (11)C9—C10—C11120.74 (16)
C4—C3—C2128.16 (11)C9—C10—H10119.6
N3—C4—C3104.61 (11)C11—C10—H10119.6
N3—C4—H4127.7C6—C11—C10120.32 (15)
C3—C4—H4127.7C6—C11—H11119.8
N3—C5—C6112.13 (11)C10—C11—H11119.8
N3—C5—H5A109.2N2—N1—C3108.43 (10)
C6—C5—H5A109.2N1—N2—N3107.32 (10)
N3—C5—H5B109.2C4—N3—N2110.89 (11)
C6—C5—H5B109.2C4—N3—C5129.62 (11)
H5A—C5—H5B107.9N2—N3—C5119.49 (11)
C7—C6—C11118.73 (13)C2—O1—C1115.14 (10)
C7—C6—C5120.65 (12)

Experimental details

Crystal data
Chemical formulaC11H11N3O2
Mr217.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.0551 (6), 5.6285 (3), 16.7578 (10)
β (°) 110.664 (3)
V3)1063.90 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.40 × 0.35
Data collection
DiffractometerNonuis KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.949, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
7021, 1845, 1615
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.01
No. of reflections1845
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC 97–2113-M-133–001-MY2). We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray structure analysis and the project of the specific research fields in the Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR—CH.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruneau, C. & Dixneuf, P. H. (1999). Acc. Chem. Res. 32, 311–323.  Web of Science CrossRef CAS Google Scholar
First citationChen, C.-K., Tong, H.-C., Chen Hsu, C.-Y., Lee, C.-Y., Fong, Y. H., Chuang, Y.-S., Lo, Y.-H., Lin, Y.-C. & Wang, Y. (2009). Organometallics, 28, 3358–3368.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, C.-J., Tong, H.-C., Fong, Y.-H., Wang, P.-Y., Kuo, Y.-L., Lo, Y.-H. & Lin, C.-H. (2009). Dalton Trans. pp. 4435–4438.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKrivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339–379.  CrossRef CAS Google Scholar
First citationNaota, T., Takaya, H. & Murahashi, S.-I. (1998). Chem. Rev. 98, 2599–2660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPadwa, A. (1976). Angew. Chem. Int. Ed. Engl. 15, 123–136.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M., Toste, F. D. & Pinkerton, A. B. (2001). Chem. Rev. 101, 2067–2096.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds