organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(7,8,13,14-Tetra­hydrodi­benzo­[a,i]phen­an­thridin-5-yl)benzene-1,2-diol

aChemistry Division, School of Advanced Sciences, VIT University, Vellore 632014, India, bSchool of Chemistry, University of Hyderabad, Hyderabad 500046, India, and cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500046, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 13 June 2010; accepted 18 June 2010; online 23 June 2010)

In the title compound, C27H21NO2, the half-chair conformation of the alicyclic rings gives rise to a slightly folded structure of the central tricyclic tetra­hydrophenanthridine unit. Tandem intra­molecular O—H⋯N and O—H⋯O hydrogen bonds give rise to adjacent S(6) and S(5) rings, respectively, which dictate the conformation of the 5-aryl substituent. In the crystal structure, an inter­molecular C—H⋯O contact generates chains parallel to [101]. Short O—H⋯π and C—H⋯π contacts are also observed.

Related literature

For the medicinal and optoelectronic applications of phenanthridine derivatives and for related structures, see: Sathiyanarayanan et al. (2009[Sathiyanarayanan, K., Karthikeyan, N. S., Aravindan, P. G., Shanthi, S., Rathore, R. S. & Lee, C. W. (2009). J. Heterocycl. Chem. 46, 1142-1144.]); Rathore et al. (2010a[Rathore, R. S., Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2010a). J. Mol. Struct. 963, 45-49.],b[Rathore, R. S., Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2010b). Struct. Chem. In the press. http:/dx.doi.org/10.1007/s11224-010-9624-8. ]). For their synthesis, see: Sathiyanarayanan et al. (2009[Sathiyanarayanan, K., Karthikeyan, N. S., Aravindan, P. G., Shanthi, S., Rathore, R. S. & Lee, C. W. (2009). J. Heterocycl. Chem. 46, 1142-1144.]); Karthikeyan et al. (2009[Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Bull. Kor. Chem. Soc. 30, 2555-2558.]).

[Scheme 1]

Experimental

Crystal data
  • C27H21NO2

  • Mr = 391.45

  • Monoclinic, P 21 /n

  • a = 11.4002 (10) Å

  • b = 10.2254 (7) Å

  • c = 17.3674 (16) Å

  • β = 106.188 (10)°

  • V = 1944.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.42 × 0.36 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.]) Tmin = 0.966, Tmax = 0.983

  • 9150 measured reflections

  • 3974 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.092

  • S = 0.86

  • 3974 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.616 (2) 142
O2—H2⋯O1 0.82 2.20 2.659 (2) 115
C8—H8⋯O2i 0.93 2.60 3.245 (2) 127
O2—H2⋯Cg3ii 0.82 2.99 3.6649 (14) 142
C26—H26⋯Cg3iii 0.93 2.92 3.6663 (19) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Phenanthridine derivatives are attractive candidates for medicinal and optoelectronic applications (Sathiyanarayanan et al., 2009; Rathore et al., 2010a,b). Following our new high-yielding synthetic procedure of simultaneous synthesis of phenanthridine and azabicyclo[3.3.1]nonanone, involving one-step process using tetralone and substituted benzaldehydes (Sathiyanarayanan et al., 2009; Karthikeyan et al., 2009), a series of one of its important pentacyclic derivative i.e., 5-aryl-7,8,13,14-tetrahydro-dibenzo[a,i]phenanthridine (5ATDP) were prepared. In the present work, 5-(2,3-dihydroxyphenyl)-7,8,13,14-tetrahydro-dibenzo[a,i]phenanthridine, (I), is examined. The ring nomenclature, P1—P5 is illustrated in Supplementary Fig. 3.

The structure of (I) with adopted atom-numbering scheme is shown in Fig. 1. Alicyclic P2 (C1—C3/C4/C9/C10) and P4 (C11—C13/C14/C19/C20) rings adopt a half-chair (C2) conformation. Ring puckering parameters are as follows: ring-P2: q2 = 0.5127 (19) Å, q3 = -0.1717 (19) Å, θ = 108.5 (2)°, ϕ = 273.1 (2)°, and total puckering amplitude, Q = 0.5409 (19) Å; ring-P4: q2 = 0.5427 (18) Å, q3 = -0.1448 (18) Å, θ = 104.94 (18)°, ϕ = 278.09 (19)°, and total puckering amplitude, Q = 0.5617 (18) Å. The puckering of P2 and P4 leads to a slightly folded structure of central tetrahydro-phenanthridine tricyclic ring (N1/C1—C4/C9—C14/C19—C21), a characteristic feature among previously investigated 5ATDP analogs (Sathiyanarayanan et al., 2009; Rathore et al., 2010a).

All previously investigated 5ATDP compounds are characterized by the only plausible, cooperative C—H···N bonded R22(14) closed dimers – between axial H atom of alicyclic-P4 ring and pyridine N – and these interactions are sometimes augmented by C—H···π interactions (Sathiyanarayanan et al., 2009; Rathore et al., 2010a). In contrast, the packing arrangement in (I) is different due to the presence of two strong hydroxyl donors. Two tandem intramolecular hydrogen bonds, namely O1—H1···N1 and O2—H2···O1 form hydrogen bonded two adjacent S(6) and S(5) rings (Fig. 1). The intramolecular hydrogen bonds dictate the conformation of 5-aryl substituent. An intermolecular C8—H8···O2i [symmetry code (ii): 1/2 + x, 1/2 - y, -1/2 + z] hydrogen bond give rise to a molecular one-dimensional C(11) chain, parallel to [1 0 1] (Fig. 2). Two short contacts, O2—H2···.Cg3ii [symmetry code (ii): 1 - x, -y, 2 - z] and C26—H26···Cg3iii [symmetry code (iii): 1 - x, 1 - y, 2 - z] are also observed in the crystal structure (Cg3 is the centroids of (C4—C9) ring).

Related literature top

For the medicinal and optoelectronic applications of phenanthridine derivatives and for related structures, see: Sathiyanarayanan et al. (2009); Rathore et al. (2010a,b). For their synthesis, see: Sathiyanarayanan et al. (2009); Karthikeyan et al. (2009).

Experimental top

A mixture of 2-tetralone (0.01 mol) and 2,3-dihydroxy benzaldehyde (0.02 mol) was added to a warm solution of ammonium acetate (0.01 mol) in absolute ethanol (15 ml). The mixture was gently warmed on a water bath until the yellow colour changed to orange and then kept aside for overnight at room temperature. The completion of the reaction was identified with TLC. The solid obtained was separated and the crude compound was purified by silica gel column chromatography with hexane and ethyl acetate as eluant. Suitable single crystals for data collection were grown from ethanol and tetrahydrofuran mixture (in 1:1 ratio). Yield, 66°, m.p. 266–268 °C.

Refinement top

Hydrogen atoms were placed in their stereochemically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic)—H = 0.93 Å, C(methylene)—H = 0.97 Å, O—H = 0.82 Å, and Uiso = 1.2 Ueq(parent) or 1.5 Ueq(for hydroxyl group). The torsion angles for the O—H H atoms were set with reference to a local difference Fourier map.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% level (Farrugia, 1997). H atoms radii are on an arbitrary scale. Dashed lines indicate intra-molecular hydrogen bonds.
[Figure 2] Fig. 2. C—H···O bonded C(11) linear chain along along [1 0 1]-axis.
[Figure 3] Fig. 3. The ring nomenclature, P1—P5, adopted for (I).
3-(7,8,13,14-Tetrahydrodibenzo[a,i]phenanthridin-5-yl)benzene- 1,2-diol top
Crystal data top
C27H21NO2F(000) = 824
Mr = 391.45Dx = 1.337 Mg m3
Monoclinic, P21/nMelting point: 540(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.4002 (10) ÅCell parameters from 2754 reflections
b = 10.2254 (7) Åθ = 2.7–28.9°
c = 17.3674 (16) ŵ = 0.08 mm1
β = 106.188 (10)°T = 294 K
V = 1944.3 (3) Å3Plate, colourless
Z = 40.42 × 0.36 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3974 independent reflections
Radiation source: Enhance (Mo) X-ray Source2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.3291 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 912
Tmin = 0.966, Tmax = 0.983l = 2121
9150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
3974 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
0 constraints
Crystal data top
C27H21NO2V = 1944.3 (3) Å3
Mr = 391.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4002 (10) ŵ = 0.08 mm1
b = 10.2254 (7) ÅT = 294 K
c = 17.3674 (16) Å0.42 × 0.36 × 0.20 mm
β = 106.188 (10)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3974 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2174 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.036
9150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.86Δρmax = 0.15 e Å3
3974 reflectionsΔρmin = 0.19 e Å3
273 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01-2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58139 (16)0.19964 (15)1.00791 (11)0.0382 (4)
C20.68255 (16)0.12360 (17)1.06347 (11)0.0519 (5)
H2A0.67930.03321.04600.062*
H2B0.67300.12531.11720.062*
C30.80504 (17)0.18322 (18)1.06389 (11)0.0517 (5)
H3A0.81090.27151.08500.062*
H3B0.87100.13191.09780.062*
C40.81547 (16)0.18521 (14)0.98005 (11)0.0398 (4)
C50.92342 (16)0.15038 (15)0.96280 (12)0.0471 (5)
H50.99210.13061.00460.057*
C60.93057 (17)0.14457 (15)0.88518 (13)0.0508 (5)
H61.00370.12220.87480.061*
C70.82859 (17)0.17209 (16)0.82289 (12)0.0483 (5)
H70.83250.16700.77020.058*
C80.72046 (16)0.20723 (14)0.83870 (11)0.0417 (4)
H80.65190.22450.79620.050*
C90.71229 (15)0.21729 (14)0.91707 (10)0.0351 (4)
C100.59725 (15)0.25250 (14)0.93686 (10)0.0341 (4)
C110.50312 (15)0.33225 (14)0.89077 (10)0.0335 (4)
C120.51453 (15)0.40983 (14)0.81910 (10)0.0400 (4)
H12A0.48380.35820.77080.048*
H12B0.59990.42900.82500.048*
C130.44307 (16)0.53713 (15)0.81136 (11)0.0445 (5)
H13A0.47740.59180.85780.053*
H13B0.44880.58420.76400.053*
C140.31175 (16)0.50795 (15)0.80502 (10)0.0369 (4)
C150.21463 (18)0.56693 (17)0.74949 (11)0.0475 (5)
H150.22960.63400.71730.057*
C160.09624 (19)0.52755 (17)0.74136 (12)0.0529 (5)
H160.03210.56890.70430.063*
C170.07236 (17)0.42738 (17)0.78777 (12)0.0496 (5)
H170.00730.39870.78100.059*
C180.16807 (16)0.36996 (16)0.84443 (11)0.0425 (5)
H180.15200.30280.87610.051*
C190.28837 (15)0.41046 (14)0.85521 (10)0.0348 (4)
C200.39375 (15)0.34712 (14)0.91349 (10)0.0337 (4)
C210.38970 (15)0.29631 (14)0.98754 (10)0.0352 (4)
C220.29358 (15)0.32283 (14)1.02851 (10)0.0355 (4)
C230.26657 (16)0.23013 (15)1.07973 (10)0.0375 (4)
C240.17524 (16)0.25250 (16)1.11694 (10)0.0408 (4)
C250.11592 (16)0.37071 (16)1.10857 (11)0.0474 (5)
H250.05490.38561.13360.057*
C260.14778 (17)0.46731 (17)1.06260 (12)0.0476 (5)
H260.11040.54881.05860.057*
C270.23424 (15)0.44406 (15)1.02280 (11)0.0424 (4)
H270.25380.50990.99150.051*
N10.48233 (13)0.22200 (12)1.03236 (8)0.0405 (4)
O10.32438 (12)0.11211 (10)1.09616 (8)0.0547 (4)
H10.39040.11581.08610.082*
O20.14479 (13)0.15665 (11)1.16295 (8)0.0580 (4)
H20.18780.09221.16350.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (11)0.0378 (9)0.0325 (10)0.0032 (8)0.0105 (9)0.0031 (8)
C20.0597 (13)0.0584 (11)0.0388 (12)0.0166 (10)0.0157 (10)0.0142 (10)
C30.0477 (13)0.0604 (11)0.0404 (12)0.0116 (10)0.0012 (10)0.0030 (10)
C40.0427 (11)0.0352 (9)0.0386 (11)0.0000 (8)0.0066 (9)0.0007 (8)
C50.0367 (11)0.0421 (10)0.0568 (14)0.0028 (9)0.0034 (10)0.0006 (10)
C60.0399 (12)0.0502 (11)0.0664 (15)0.0017 (9)0.0215 (11)0.0029 (11)
C70.0475 (12)0.0541 (11)0.0493 (13)0.0027 (10)0.0232 (11)0.0031 (10)
C80.0386 (11)0.0458 (10)0.0413 (12)0.0008 (9)0.0119 (9)0.0046 (9)
C90.0363 (10)0.0319 (9)0.0357 (11)0.0016 (8)0.0078 (9)0.0011 (8)
C100.0359 (10)0.0349 (9)0.0312 (10)0.0016 (8)0.0086 (8)0.0001 (8)
C110.0374 (10)0.0345 (9)0.0282 (10)0.0033 (8)0.0087 (8)0.0003 (8)
C120.0384 (11)0.0482 (10)0.0355 (11)0.0016 (8)0.0138 (9)0.0090 (9)
C130.0500 (12)0.0440 (10)0.0404 (11)0.0002 (9)0.0143 (10)0.0101 (9)
C140.0432 (11)0.0348 (9)0.0327 (10)0.0029 (8)0.0105 (9)0.0012 (8)
C150.0566 (13)0.0459 (11)0.0415 (12)0.0114 (10)0.0162 (11)0.0074 (9)
C160.0505 (13)0.0598 (12)0.0427 (12)0.0192 (10)0.0036 (10)0.0024 (10)
C170.0365 (11)0.0591 (12)0.0509 (13)0.0032 (9)0.0086 (10)0.0072 (10)
C180.0397 (11)0.0449 (10)0.0438 (12)0.0003 (9)0.0131 (9)0.0013 (9)
C190.0387 (11)0.0357 (9)0.0304 (10)0.0033 (8)0.0102 (8)0.0022 (8)
C200.0368 (10)0.0321 (9)0.0322 (10)0.0031 (8)0.0096 (8)0.0006 (8)
C210.0406 (11)0.0322 (9)0.0339 (10)0.0021 (8)0.0123 (9)0.0016 (8)
C220.0401 (11)0.0364 (9)0.0320 (10)0.0022 (8)0.0131 (8)0.0011 (8)
C230.0459 (11)0.0356 (10)0.0329 (10)0.0008 (8)0.0142 (9)0.0036 (8)
C240.0483 (12)0.0451 (10)0.0309 (10)0.0119 (9)0.0140 (9)0.0061 (8)
C250.0459 (12)0.0535 (11)0.0491 (13)0.0033 (10)0.0235 (10)0.0110 (10)
C260.0479 (12)0.0435 (10)0.0534 (13)0.0028 (9)0.0171 (10)0.0061 (10)
C270.0452 (11)0.0385 (9)0.0442 (12)0.0013 (9)0.0134 (9)0.0003 (9)
N10.0468 (10)0.0415 (8)0.0358 (9)0.0038 (7)0.0160 (8)0.0050 (7)
O10.0700 (10)0.0442 (7)0.0605 (10)0.0078 (7)0.0356 (8)0.0108 (6)
O20.0769 (11)0.0544 (7)0.0543 (9)0.0078 (7)0.0374 (8)0.0032 (7)
Geometric parameters (Å, º) top
C1—N11.332 (2)C13—H13B0.9700
C1—C101.404 (2)C14—C151.387 (2)
C1—C21.498 (2)C14—C191.398 (2)
C2—C31.522 (2)C15—C161.377 (2)
C2—H2A0.9700C15—H150.9300
C2—H2B0.9700C16—C171.377 (2)
C3—C41.494 (2)C16—H160.9300
C3—H3A0.9700C17—C181.380 (2)
C3—H3B0.9700C17—H170.9300
C4—C51.392 (2)C18—C191.394 (2)
C4—C91.404 (2)C18—H180.9300
C5—C61.374 (3)C19—C201.486 (2)
C5—H50.9300C20—C211.400 (2)
C6—C71.378 (2)C21—N11.357 (2)
C6—H60.9300C21—C221.488 (2)
C7—C81.383 (2)C22—C231.392 (2)
C7—H70.9300C22—C271.402 (2)
C8—C91.394 (2)C23—O11.3665 (18)
C8—H80.9300C23—C241.389 (2)
C9—C101.490 (2)C24—O21.3691 (19)
C10—C111.406 (2)C24—C251.373 (2)
C11—C201.417 (2)C25—C261.381 (2)
C11—C121.512 (2)C25—H250.9300
C12—C131.522 (2)C26—C271.373 (2)
C12—H12A0.9700C26—H260.9300
C12—H12B0.9700C27—H270.9300
C13—C141.500 (2)O1—H10.8200
C13—H13A0.9700O2—H20.8200
N1—C1—C10122.83 (16)C14—C13—H13B109.8
N1—C1—C2116.89 (16)C12—C13—H13B109.8
C10—C1—C2120.08 (16)H13A—C13—H13B108.2
C1—C2—C3109.61 (14)C15—C14—C19119.31 (17)
C1—C2—H2A109.7C15—C14—C13123.46 (16)
C3—C2—H2A109.7C19—C14—C13117.12 (16)
C1—C2—H2B109.7C16—C15—C14120.90 (17)
C3—C2—H2B109.7C16—C15—H15119.5
H2A—C2—H2B108.2C14—C15—H15119.5
C4—C3—C2108.85 (15)C17—C16—C15120.36 (18)
C4—C3—H3A109.9C17—C16—H16119.8
C2—C3—H3A109.9C15—C16—H16119.8
C4—C3—H3B109.9C16—C17—C18119.20 (18)
C2—C3—H3B109.9C16—C17—H17120.4
H3A—C3—H3B108.3C18—C17—H17120.4
C5—C4—C9119.42 (17)C17—C18—C19121.45 (17)
C5—C4—C3121.46 (16)C17—C18—H18119.3
C9—C4—C3119.05 (16)C19—C18—H18119.3
C6—C5—C4121.34 (18)C18—C19—C14118.65 (16)
C6—C5—H5119.3C18—C19—C20122.68 (15)
C4—C5—H5119.3C14—C19—C20118.49 (15)
C5—C6—C7119.57 (17)C21—C20—C11118.24 (15)
C5—C6—H6120.2C21—C20—C19124.05 (15)
C7—C6—H6120.2C11—C20—C19117.64 (15)
C6—C7—C8120.04 (18)N1—C21—C20121.02 (15)
C6—C7—H7120.0N1—C21—C22112.76 (15)
C8—C7—H7120.0C20—C21—C22126.08 (15)
C7—C8—C9121.27 (17)C23—C22—C27117.31 (15)
C7—C8—H8119.4C23—C22—C21120.33 (14)
C9—C8—H8119.4C27—C22—C21122.15 (14)
C8—C9—C4118.30 (16)O1—C23—C24115.39 (14)
C8—C9—C10123.09 (16)O1—C23—C22123.72 (15)
C4—C9—C10118.50 (16)C24—C23—C22120.88 (15)
C1—C10—C11117.29 (15)O2—C24—C25119.64 (16)
C1—C10—C9116.55 (15)O2—C24—C23119.91 (15)
C11—C10—C9126.15 (15)C25—C24—C23120.45 (16)
C10—C11—C20119.65 (15)C24—C25—C26119.33 (17)
C10—C11—C12123.07 (15)C24—C25—H25120.3
C20—C11—C12117.22 (14)C26—C25—H25120.3
C11—C12—C13110.78 (13)C27—C26—C25120.57 (16)
C11—C12—H12A109.5C27—C26—H26119.7
C13—C12—H12A109.5C25—C26—H26119.7
C11—C12—H12B109.5C26—C27—C22121.15 (16)
C13—C12—H12B109.5C26—C27—H27119.4
H12A—C12—H12B108.1C22—C27—H27119.4
C14—C13—C12109.58 (13)C1—N1—C21120.44 (15)
C14—C13—H13A109.8C23—O1—H1109.5
C12—C13—H13A109.8C24—O2—H2109.5
N1—C1—C2—C3139.21 (16)C17—C18—C19—C20177.56 (15)
C10—C1—C2—C335.8 (2)C15—C14—C19—C183.9 (2)
C1—C2—C3—C456.87 (18)C13—C14—C19—C18172.52 (15)
C2—C3—C4—C5137.29 (16)C15—C14—C19—C20179.13 (15)
C2—C3—C4—C939.81 (19)C13—C14—C19—C202.7 (2)
C9—C4—C5—C61.1 (2)C10—C11—C20—C218.8 (2)
C3—C4—C5—C6175.97 (15)C12—C11—C20—C21168.34 (14)
C4—C5—C6—C70.8 (3)C10—C11—C20—C19168.43 (14)
C5—C6—C7—C81.0 (3)C12—C11—C20—C1914.5 (2)
C6—C7—C8—C90.8 (2)C18—C19—C20—C2134.8 (2)
C7—C8—C9—C42.8 (2)C14—C19—C20—C21150.12 (15)
C7—C8—C9—C10178.89 (14)C18—C19—C20—C11142.20 (16)
C5—C4—C9—C82.9 (2)C14—C19—C20—C1132.9 (2)
C3—C4—C9—C8174.29 (14)C11—C20—C21—N17.4 (2)
C5—C4—C9—C10179.17 (13)C19—C20—C21—N1169.61 (14)
C3—C4—C9—C102.0 (2)C11—C20—C21—C22167.95 (14)
N1—C1—C10—C110.1 (2)C19—C20—C21—C2215.1 (2)
C2—C1—C10—C11174.64 (14)N1—C21—C22—C2332.9 (2)
N1—C1—C10—C9179.29 (14)C20—C21—C22—C23151.40 (16)
C2—C1—C10—C96.0 (2)N1—C21—C22—C27141.72 (16)
C8—C9—C10—C1149.50 (15)C20—C21—C22—C2733.9 (2)
C4—C9—C10—C126.6 (2)C27—C22—C23—O1174.59 (15)
C8—C9—C10—C1129.8 (2)C21—C22—C23—O10.3 (3)
C4—C9—C10—C11154.06 (15)C27—C22—C23—C246.5 (3)
C1—C10—C11—C205.2 (2)C21—C22—C23—C24178.57 (15)
C9—C10—C11—C20174.09 (14)O1—C23—C24—O23.2 (2)
C1—C10—C11—C12171.70 (15)C22—C23—C24—O2175.78 (16)
C9—C10—C11—C129.0 (2)O1—C23—C24—C25176.16 (16)
C10—C11—C12—C13147.04 (15)C22—C23—C24—C254.9 (3)
C20—C11—C12—C1329.9 (2)O2—C24—C25—C26179.48 (17)
C11—C12—C13—C1457.30 (19)C23—C24—C25—C260.1 (3)
C12—C13—C14—C15134.66 (16)C24—C25—C26—C272.7 (3)
C12—C13—C14—C1941.6 (2)C25—C26—C27—C220.9 (3)
C19—C14—C15—C162.3 (3)C23—C22—C27—C263.7 (3)
C13—C14—C15—C16173.86 (16)C21—C22—C27—C26178.51 (17)
C14—C15—C16—C170.8 (3)C10—C1—N1—C211.4 (2)
C15—C16—C17—C182.2 (3)C2—C1—N1—C21176.29 (14)
C16—C17—C18—C190.5 (3)C20—C21—N1—C12.4 (2)
C17—C18—C19—C142.5 (2)C22—C21—N1—C1173.55 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.616 (2)142
O2—H2···O10.822.202.659 (2)115
C8—H8···O2i0.932.603.245 (2)127
O2—H2···Cg3ii0.822.993.6649 (14)142
C26—H26···Cg3iii0.932.923.6663 (19)139
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC27H21NO2
Mr391.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)11.4002 (10), 10.2254 (7), 17.3674 (16)
β (°) 106.188 (10)
V3)1944.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.36 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9150, 3974, 2174
Rint0.036
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 0.86
No. of reflections3974
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.616 (2)142
O2—H2···O10.822.202.659 (2)115
C8—H8···O2i0.932.603.245 (2)127
O2—H2···Cg3ii0.822.993.6649 (14)142
C26—H26···Cg3iii0.932.923.6663 (19)139
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The Bioinformatics Infrastructure Facility and the Single Crystal X-ray Diffractometer Facility at the University of Hyderabad are gratefully acknowledged for computation and data collection work. RSR thanks the CSIR, New Delhi, for support under the scientist's pool scheme and NSK thanks the CSIR for a Senior Research Fellowship.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Bull. Kor. Chem. Soc. 30, 2555–2558.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.  Google Scholar
First citationRathore, R. S., Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2010a). J. Mol. Struct. 963, 45–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationRathore, R. S., Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2010b). Struct. Chem. In the press. http:/dx.doi.org/10.1007/s11224-010-9624-8.  Google Scholar
First citationSathiyanarayanan, K., Karthikeyan, N. S., Aravindan, P. G., Shanthi, S., Rathore, R. S. & Lee, C. W. (2009). J. Heterocycl. Chem. 46, 1142–1144.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds