organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium 1,1′-bi­naphthyl-2,2′-diyl phosphate

aDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: dchakraborty@iitm.ac.in

(Received 1 May 2010; accepted 28 May 2010; online 16 June 2010)

In the crystal structure of the title compound, C6H16N+·C20H12O4P, an N—H⋯O inter­action links the cation to the anion. The N atom in the triethyl­ammonium cation exhibits a trigonal-bipyramidal coordination geometry and forms an N—H⋯O inter­action with one phosphate O atom of the 1,1′-binaphthyl-2,2′-diyl phosphate ligand. A bifurcated C—H⋯O inter­action with the other phosphate O atom links molecules along the a axis. The dihedral angle between the two naphthyl ring systems is 58.92 (3)°. The refined Flack parameter value of 0.50 (10) indicates inversion twinning.

Related literature

For the use of binolphospho­ric acid in synthesis, see: Jacques et al. (1971[Jacques, J., Fouquet, C. & Viterbo, R. (1971). Tetrahedron Lett. 48, 4617-4620.]); Moreau et al., (2009[Moreau, J., Hubert, C., Batany, J., Toupet, L., Roisnel, T., Hurvois, J.-P. & Renaud, J.-L. (2009). J. Org. Chem. 74, 8963-8973.]). For the binaphthyl unit in host compounds, see: Kyba et al. (1977[Kyba, E. P., Gokel, G. W., De Jong, F., Koga, K., Sousa, L. R., Siegel, M. G., Kaplan, L., Sogah, G. D. Y. & Cram, D. J. (1977). J. Org. Chem. 42, 4173-4184.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C20H12O4P

  • Mr = 449.46

  • Orthorhombic, P 21 21 21

  • a = 8.4605 (2) Å

  • b = 13.3603 (4) Å

  • c = 20.5688 (7) Å

  • V = 2324.99 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 298 K

  • 0.32 × 0.27 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.968

  • 30327 measured reflections

  • 5561 independent reflections

  • 4823 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.04

  • 5561 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.50 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.87 (3) 1.83 (3) 2.689 (2) 172 (2)
C24—H24B⋯O3i 0.97 2.47 3.342 (4) 149
C26—H26A⋯O3i 0.97 2.47 3.373 (3) 155
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a salt of binol phosphoric acid. It represents a useful tool for the resolution of amines. Amines which are unable to resolve using other chiral acids, are resolved using binolphosphoric acid very easily and in high yield (Jacques et al., 1971). Optically active amines are useful as intermediates of medicines, agricultural chemicals, or the like can be produced without special post-treatment in high yield at high optical purity using optically active phosphoric acid derivatives. A recent report depicts phosphoric acid acts as Bronsted acid to catalyze the addition of enolizable β-diketones, β-ketoesters, and vinylogous amides to α,β-unsaturated aldehydes to lead to substituted chromenones, pyranones, and tetra hydroquinolinones in good yields under mild reaction conditions via a formal [3+3] cycloaddition (Moreau et al., 2009).

In the title compound C26H28N O4P, (I), the 1,1'-binaphthyl-2-2'diyl phosphate ligand coordinates with the triethyl ammonium to form an intra molecular N-H..O interaction with one phosphate O atom and with another phosphate O atom with which a bifurcated C-H..O interaction (Table 1) along the a axis extending into a network (Figure 2). The molecular structure viewed down along the C10-C11 pivot, clearly shows the non co-planar geometry of the two naptha rings system with a dihedral angle of 58.92 (3)°.

Related literature top

For the use of binolphosphoric acid in synthesis, see: Jacques et al. (1971); Moreau et al., (2009). For the binaphthyl unit in host compounds, see: Kyba et al. (1977).

Experimental top

To a stirred ice cold solution of 0.2 g (0.69 mole) binol (Evan et. al, 1977) in 20 mL of dichloromethane under nitrogen atmosphere was added 0.07 mL (0.69 mmol) POCl3 drop wise followed by addition of 0.5 mL (3.5 mmol) triethylamine. White fumes of HCl were observed upon addition, reaction mixture was stirred at 0 °C for 30 minutes. Then 0.13 mL (6.9 mmol) H2O was added slowly at 0 °C. Reaction mixture was stirred at 0 °C for 1 h and warmed up to room temperature and stirred for 40 h. The reaction was monitored using thin layer chromatography. The product was extracted using dichloromethane and purified by crystallization in dichloromethane. Yield is found to be 0.26 g (83.9 %).

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C-H = 0.93 Å, aliphatic C-H = 0.98 Å and methyl C-H = 0.96 Å. The displacement parameters were set for phenyl and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C). The Flack parameter was refined as a full least-squares variable, and the refined value of 0.50 (10) suggests inversion twinning.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. The Packing diagram showing the N-H···O (blue dashed line) and the bifurcated C-H···O interactions (red dashed line)
Triethylammonium 1,1'-binaphthyl-2,2'-diyl phosphate top
Crystal data top
C6H16N+·C20H12O4PF(000) = 952
Mr = 449.46Dx = 1.284 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7503 reflections
a = 8.4605 (2) Åθ = 2.5–27.9°
b = 13.3603 (4) ŵ = 0.15 mm1
c = 20.5688 (7) ÅT = 298 K
V = 2324.99 (12) Å3Block, white
Z = 40.32 × 0.27 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5561 independent reflections
Radiation source: fine-focus sealed tube4823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.953, Tmax = 0.968k = 1715
30327 measured reflectionsl = 2727
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.3083P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.54 e Å3
5561 reflectionsΔρmin = 0.31 e Å3
297 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.50 (10)
Crystal data top
C6H16N+·C20H12O4PV = 2324.99 (12) Å3
Mr = 449.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4605 (2) ŵ = 0.15 mm1
b = 13.3603 (4) ÅT = 298 K
c = 20.5688 (7) Å0.32 × 0.27 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5561 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4823 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.968Rint = 0.028
30327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121Δρmax = 0.54 e Å3
S = 1.04Δρmin = 0.31 e Å3
5561 reflectionsAbsolute structure: Flack (1983)
297 parametersAbsolute structure parameter: 0.50 (10)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9569 (2)0.09228 (15)0.66118 (9)0.0337 (4)
C21.0264 (3)0.18489 (16)0.67555 (11)0.0431 (5)
H20.99530.22030.71230.052*
C31.1397 (3)0.22298 (15)0.63547 (12)0.0475 (5)
H31.18370.28530.64440.057*
C41.1909 (3)0.16849 (15)0.58042 (10)0.0423 (5)
C51.3154 (3)0.2041 (2)0.54033 (13)0.0600 (7)
H51.36030.26620.54890.072*
C61.3702 (4)0.1483 (2)0.48930 (14)0.0677 (8)
H61.45180.17280.46350.081*
C71.3040 (3)0.0549 (2)0.47599 (11)0.0546 (6)
H71.34350.01650.44190.065*
C81.1824 (3)0.01962 (17)0.51244 (9)0.0410 (5)
H81.13810.04210.50210.049*
C91.1211 (2)0.07409 (14)0.56575 (9)0.0323 (4)
C100.9960 (2)0.03785 (14)0.60657 (8)0.0298 (4)
C110.9160 (2)0.05934 (13)0.59444 (8)0.0283 (4)
C120.8330 (2)0.07958 (14)0.53500 (8)0.0309 (4)
C130.8099 (3)0.00551 (16)0.48651 (10)0.0408 (5)
H130.85060.05840.49280.049*
C140.7289 (3)0.0268 (2)0.43082 (10)0.0518 (6)
H140.71430.02290.39970.062*
C150.6676 (3)0.1229 (2)0.42019 (11)0.0576 (7)
H150.61530.13710.38150.069*
C160.6841 (3)0.19519 (19)0.46587 (11)0.0506 (6)
H160.64150.25830.45850.061*
C170.7658 (3)0.17582 (15)0.52499 (9)0.0368 (4)
C180.7767 (3)0.24789 (15)0.57516 (10)0.0432 (5)
H180.73580.31160.56840.052*
C190.8456 (2)0.22598 (15)0.63296 (10)0.0368 (4)
H190.84850.27340.66600.044*
C200.9126 (2)0.13082 (14)0.64237 (8)0.0291 (4)
C210.4505 (5)0.0741 (4)0.64124 (17)0.1067 (15)
H21A0.55830.09130.65040.160*
H21B0.38830.13400.63810.160*
H21C0.44540.03830.60080.160*
C220.3853 (4)0.0076 (3)0.69635 (16)0.0853 (10)
H22A0.27110.00390.69280.102*
H22B0.42710.05970.69170.102*
C230.4903 (4)0.1247 (2)0.8033 (2)0.0832 (10)
H23A0.59590.10780.79030.125*
H23B0.44080.16360.76980.125*
H23C0.49360.16290.84280.125*
C240.3995 (4)0.0330 (2)0.81405 (17)0.0715 (8)
H24A0.42780.00520.85600.086*
H24B0.28790.04940.81520.086*
C250.4079 (4)0.1960 (3)0.83499 (17)0.0788 (9)
H25A0.51870.20780.82850.118*
H25B0.39270.15860.87440.118*
H25C0.35360.25890.83820.118*
C260.3437 (3)0.1379 (3)0.77885 (19)0.0791 (9)
H26A0.23520.12000.78870.095*
H26B0.34150.18160.74120.095*
N10.4281 (2)0.04695 (16)0.76106 (11)0.0490 (5)
O10.84192 (17)0.05577 (10)0.70278 (6)0.0372 (3)
O20.98292 (15)0.11072 (10)0.70184 (6)0.0308 (3)
O31.01033 (17)0.00302 (13)0.79917 (7)0.0491 (4)
O40.74028 (17)0.08038 (13)0.77268 (7)0.0451 (4)
P10.89188 (6)0.03523 (4)0.75172 (2)0.03329 (13)
H1N0.529 (4)0.0593 (18)0.7609 (12)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (10)0.0342 (10)0.0342 (9)0.0053 (8)0.0050 (8)0.0002 (7)
C20.0506 (13)0.0361 (10)0.0424 (10)0.0078 (10)0.0115 (10)0.0096 (9)
C30.0560 (15)0.0293 (10)0.0573 (12)0.0071 (10)0.0186 (11)0.0003 (9)
C40.0451 (13)0.0371 (11)0.0446 (11)0.0090 (9)0.0150 (10)0.0086 (8)
C50.0611 (17)0.0540 (14)0.0649 (16)0.0286 (13)0.0112 (13)0.0187 (12)
C60.0567 (18)0.090 (2)0.0565 (15)0.0292 (15)0.0067 (13)0.0209 (14)
C70.0493 (14)0.0724 (17)0.0421 (12)0.0084 (12)0.0076 (10)0.0062 (10)
C80.0397 (12)0.0492 (12)0.0341 (9)0.0076 (9)0.0003 (8)0.0012 (8)
C90.0336 (10)0.0330 (9)0.0303 (8)0.0042 (8)0.0060 (7)0.0057 (7)
C100.0314 (10)0.0295 (8)0.0285 (8)0.0011 (8)0.0059 (7)0.0013 (7)
C110.0272 (9)0.0312 (9)0.0266 (8)0.0016 (7)0.0007 (7)0.0001 (6)
C120.0300 (10)0.0345 (9)0.0281 (8)0.0037 (8)0.0001 (7)0.0002 (7)
C130.0452 (13)0.0416 (11)0.0355 (10)0.0086 (9)0.0082 (9)0.0055 (8)
C140.0579 (15)0.0613 (14)0.0363 (10)0.0111 (12)0.0154 (10)0.0122 (10)
C150.0617 (16)0.0760 (17)0.0351 (11)0.0244 (14)0.0169 (11)0.0014 (11)
C160.0550 (15)0.0526 (13)0.0443 (12)0.0177 (11)0.0136 (11)0.0031 (10)
C170.0364 (11)0.0393 (10)0.0347 (9)0.0072 (9)0.0023 (8)0.0025 (8)
C180.0501 (13)0.0339 (10)0.0456 (11)0.0124 (9)0.0008 (10)0.0005 (8)
C190.0387 (11)0.0341 (9)0.0375 (9)0.0034 (8)0.0028 (8)0.0092 (8)
C200.0251 (9)0.0348 (9)0.0275 (8)0.0043 (7)0.0019 (7)0.0002 (7)
C210.106 (3)0.148 (4)0.066 (2)0.055 (3)0.031 (2)0.016 (2)
C220.0621 (19)0.124 (3)0.0700 (19)0.028 (2)0.0083 (16)0.0116 (19)
C230.066 (2)0.0684 (19)0.115 (3)0.0038 (17)0.019 (2)0.0201 (19)
C240.0518 (16)0.081 (2)0.0814 (19)0.0096 (16)0.0100 (15)0.0077 (16)
C250.067 (2)0.080 (2)0.090 (2)0.0061 (17)0.0116 (18)0.0214 (18)
C260.0399 (14)0.0747 (19)0.123 (3)0.0043 (14)0.0115 (17)0.0150 (19)
N10.0287 (10)0.0563 (11)0.0620 (12)0.0120 (8)0.0041 (8)0.0065 (9)
O10.0352 (7)0.0421 (8)0.0344 (7)0.0118 (6)0.0018 (6)0.0011 (5)
O20.0270 (7)0.0402 (7)0.0253 (6)0.0071 (6)0.0016 (5)0.0022 (5)
O30.0333 (8)0.0790 (11)0.0349 (7)0.0104 (8)0.0052 (6)0.0127 (7)
O40.0269 (7)0.0676 (10)0.0408 (7)0.0058 (7)0.0043 (6)0.0114 (7)
P10.0237 (2)0.0516 (3)0.0245 (2)0.0080 (2)0.00039 (18)0.0002 (2)
Geometric parameters (Å, º) top
C1—C101.378 (3)C18—C191.356 (3)
C1—O11.385 (2)C18—H180.9300
C1—C21.401 (3)C19—C201.405 (3)
C2—C31.363 (4)C19—H190.9300
C2—H20.9300C20—O21.386 (2)
C3—C41.414 (3)C21—C221.542 (5)
C3—H30.9300C21—H21A0.9600
C4—C51.419 (3)C21—H21B0.9600
C4—C91.425 (3)C21—H21C0.9600
C5—C61.368 (4)C22—N11.476 (4)
C5—H50.9300C22—H22A0.9700
C6—C71.396 (4)C22—H22B0.9700
C6—H60.9300C23—C241.463 (4)
C7—C81.358 (3)C23—H23A0.9600
C7—H70.9300C23—H23B0.9600
C8—C91.415 (3)C23—H23C0.9600
C8—H80.9300C24—N11.545 (4)
C9—C101.435 (3)C24—H24A0.9700
C10—C111.485 (3)C24—H24B0.9700
C11—C201.373 (2)C25—C261.494 (4)
C11—C121.436 (2)C25—H25A0.9600
C12—C131.418 (3)C25—H25B0.9600
C12—C171.421 (3)C25—H25C0.9600
C13—C141.365 (3)C26—N11.456 (4)
C13—H130.9300C26—H26A0.9700
C14—C151.402 (3)C26—H26B0.9700
C14—H140.9300N1—H1N0.87 (3)
C15—C161.355 (3)O1—P11.6340 (14)
C15—H150.9300O2—P11.6319 (13)
C16—C171.422 (3)O3—P11.4636 (15)
C16—H160.9300O4—P11.4815 (16)
C17—C181.414 (3)
C10—C1—O1119.10 (18)C18—C19—H19120.3
C10—C1—C2122.5 (2)C20—C19—H19120.3
O1—C1—C2118.39 (18)C11—C20—O2119.33 (16)
C3—C2—C1119.8 (2)C11—C20—C19122.59 (17)
C3—C2—H2120.1O2—C20—C19118.03 (16)
C1—C2—H2120.1C22—C21—H21A109.5
C2—C3—C4120.50 (19)C22—C21—H21B109.5
C2—C3—H3119.7H21A—C21—H21B109.5
C4—C3—H3119.7C22—C21—H21C109.5
C3—C4—C5121.3 (2)H21A—C21—H21C109.5
C3—C4—C9119.9 (2)H21B—C21—H21C109.5
C5—C4—C9118.8 (2)N1—C22—C21111.7 (3)
C6—C5—C4121.0 (2)N1—C22—H22A109.3
C6—C5—H5119.5C21—C22—H22A109.3
C4—C5—H5119.5N1—C22—H22B109.3
C5—C6—C7120.1 (2)C21—C22—H22B109.3
C5—C6—H6120.0H22A—C22—H22B107.9
C7—C6—H6120.0C24—C23—H23A109.5
C8—C7—C6120.4 (3)C24—C23—H23B109.5
C8—C7—H7119.8H23A—C23—H23B109.5
C6—C7—H7119.8C24—C23—H23C109.5
C7—C8—C9121.8 (2)H23A—C23—H23C109.5
C7—C8—H8119.1H23B—C23—H23C109.5
C9—C8—H8119.1C23—C24—N1113.0 (2)
C8—C9—C4117.86 (19)C23—C24—H24A109.0
C8—C9—C10123.39 (17)N1—C24—H24A109.0
C4—C9—C10118.73 (18)C23—C24—H24B109.0
C1—C10—C9118.40 (17)N1—C24—H24B109.0
C1—C10—C11119.26 (17)H24A—C24—H24B107.8
C9—C10—C11122.20 (16)C26—C25—H25A109.5
C20—C11—C12118.06 (16)C26—C25—H25B109.5
C20—C11—C10119.80 (15)H25A—C25—H25B109.5
C12—C11—C10122.05 (16)C26—C25—H25C109.5
C13—C12—C17118.33 (17)H25A—C25—H25C109.5
C13—C12—C11122.32 (17)H25B—C25—H25C109.5
C17—C12—C11119.31 (17)N1—C26—C25116.7 (3)
C14—C13—C12120.9 (2)N1—C26—H26A108.1
C14—C13—H13119.5C25—C26—H26A108.1
C12—C13—H13119.5N1—C26—H26B108.1
C13—C14—C15120.5 (2)C25—C26—H26B108.1
C13—C14—H14119.8H26A—C26—H26B107.3
C15—C14—H14119.8C26—N1—C22113.8 (3)
C16—C15—C14120.4 (2)C26—N1—C24108.8 (2)
C16—C15—H15119.8C22—N1—C24110.6 (2)
C14—C15—H15119.8C26—N1—H1N108.9 (16)
C15—C16—C17120.9 (2)C22—N1—H1N107.8 (17)
C15—C16—H16119.6C24—N1—H1N106.7 (16)
C17—C16—H16119.6C1—O1—P1117.46 (12)
C18—C17—C12118.96 (17)C20—O2—P1118.16 (11)
C18—C17—C16122.1 (2)O3—P1—O4121.23 (9)
C12—C17—C16118.87 (19)O3—P1—O2106.13 (8)
C19—C18—C17121.39 (18)O4—P1—O2109.87 (9)
C19—C18—H18119.3O3—P1—O1111.67 (9)
C17—C18—H18119.3O4—P1—O1104.96 (8)
C18—C19—C20119.30 (18)O2—P1—O1101.22 (7)
C10—C1—C2—C31.5 (3)C12—C13—C14—C150.5 (4)
O1—C1—C2—C3179.86 (19)C13—C14—C15—C161.8 (4)
C1—C2—C3—C41.8 (3)C14—C15—C16—C171.0 (4)
C2—C3—C4—C5176.2 (2)C13—C12—C17—C18174.9 (2)
C2—C3—C4—C91.5 (3)C11—C12—C17—C182.7 (3)
C3—C4—C5—C6176.3 (2)C13—C12—C17—C162.6 (3)
C9—C4—C5—C61.4 (4)C11—C12—C17—C16179.8 (2)
C4—C5—C6—C70.1 (4)C15—C16—C17—C18176.1 (3)
C5—C6—C7—C81.6 (4)C15—C16—C17—C121.3 (4)
C6—C7—C8—C91.7 (4)C12—C17—C18—C192.0 (3)
C7—C8—C9—C40.2 (3)C16—C17—C18—C19175.4 (2)
C7—C8—C9—C10178.0 (2)C17—C18—C19—C202.3 (3)
C3—C4—C9—C8176.4 (2)C12—C11—C20—O2175.82 (16)
C5—C4—C9—C81.3 (3)C10—C11—C20—O20.6 (3)
C3—C4—C9—C101.9 (3)C12—C11—C20—C196.7 (3)
C5—C4—C9—C10179.6 (2)C10—C11—C20—C19176.85 (18)
O1—C1—C10—C9176.82 (16)C18—C19—C20—C112.2 (3)
C2—C1—C10—C94.8 (3)C18—C19—C20—O2179.68 (19)
O1—C1—C10—C111.1 (3)C25—C26—N1—C22165.1 (3)
C2—C1—C10—C11179.47 (18)C25—C26—N1—C2471.1 (3)
C8—C9—C10—C1173.24 (18)C21—C22—N1—C2671.5 (4)
C4—C9—C10—C14.9 (3)C21—C22—N1—C24165.7 (3)
C8—C9—C10—C112.3 (3)C23—C24—N1—C26175.3 (3)
C4—C9—C10—C11179.53 (17)C23—C24—N1—C2259.1 (4)
C1—C10—C11—C2052.0 (3)C10—C1—O1—P176.8 (2)
C9—C10—C11—C20123.5 (2)C2—C1—O1—P1104.78 (18)
C1—C10—C11—C12124.3 (2)C11—C20—O2—P174.93 (19)
C9—C10—C11—C1260.2 (3)C19—C20—O2—P1107.47 (18)
C20—C11—C12—C13170.67 (19)C20—O2—P1—O3162.56 (13)
C10—C11—C12—C135.7 (3)C20—O2—P1—O464.72 (14)
C20—C11—C12—C176.8 (3)C20—O2—P1—O145.86 (14)
C10—C11—C12—C17176.80 (18)C1—O1—P1—O365.43 (15)
C17—C12—C13—C141.7 (3)C1—O1—P1—O4161.44 (14)
C11—C12—C13—C14179.3 (2)C1—O1—P1—O247.12 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.87 (3)1.83 (3)2.689 (2)172 (2)
C24—H24B···O3i0.972.473.342 (4)149
C26—H26A···O3i0.972.473.373 (3)155
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C20H12O4P
Mr449.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.4605 (2), 13.3603 (4), 20.5688 (7)
V3)2324.99 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.32 × 0.27 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.953, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
30327, 5561, 4823
Rint0.028
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.04
No. of reflections5561
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.31
Absolute structureFlack (1983)
Absolute structure parameter0.50 (10)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.87 (3)1.83 (3)2.689 (2)172 (2)
C24—H24B···O3i0.972.473.342 (4)149
C26—H26A···O3i0.972.473.373 (3)155
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacques, J., Fouquet, C. & Viterbo, R. (1971). Tetrahedron Lett. 48, 4617–4620.  CrossRef Google Scholar
First citationKyba, E. P., Gokel, G. W., De Jong, F., Koga, K., Sousa, L. R., Siegel, M. G., Kaplan, L., Sogah, G. D. Y. & Cram, D. J. (1977). J. Org. Chem. 42, 4173–4184.  CrossRef CAS Web of Science Google Scholar
First citationMoreau, J., Hubert, C., Batany, J., Toupet, L., Roisnel, T., Hurvois, J.-P. & Renaud, J.-L. (2009). J. Org. Chem. 74, 8963–8973.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds