organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Ethyl­phen­yl)-1-(2-oxoindolin-3-yl­­idene)thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 2 June 2010; accepted 3 June 2010; online 9 June 2010)

The title compound, C17H16N4OS, is stabilized in the form of a two-dimensional polymeric network due to inter­molecular N—H⋯S and N—H⋯O hydrogen bonds. An intra­molecular N—H⋯N hydrogen bond forms an S(5) ring, whereas inter­actions of the N—H⋯O and C—H⋯S types complete S(6) ring motifs. ππ inter­actions with a centroid–centroid distance of 3.6514 (10) Å are found between the ethyl-substituted benzene ring and the heterocyclic ring of the isatin derivative.

Related literature

For the preparation of biologically important N4-aryl­substituted isatin-3-thio­semicarbazones, see: Pervez et al. (2007[Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178-1186.]). For a related structure, see: Pervez et al. (2010[Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010). Acta Cryst. E66, o1018.]): For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N4OS

  • Mr = 324.40

  • Monoclinic, C 2/c

  • a = 25.6769 (7) Å

  • b = 7.4340 (2) Å

  • c = 16.6548 (5) Å

  • β = 96.248 (1)°

  • V = 3160.22 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.952

  • 11310 measured reflections

  • 2823 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.04

  • 2823 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.07 2.88 (17) 157
N3—H3A⋯O1 0.86 2.10 2.7711 (17) 134
N4—H4A⋯N2 0.86 2.13 2.5745 (18) 111
N4—H4A⋯S1ii 0.86 2.87 3.5220 (15) 133
C15—H15⋯S1 0.93 2.85 3.283 (2) 110
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig 1) is being reported in continuation of synthesizing biologically important isatin derivatives (Pervez et al., 2007).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010) has been published. The title compound (I) differs from (II) due to the attachment of ethyl instead of fluoro group at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety.

In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and phenyl ring of 2-ethylphenyl C (C10—C16) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are interlinked through N—H···O and N–H···S intermolecular H-bondings. Due to these interactions infinite two-dimensional polymeric network exists. There exist π···π interaction at a distance of 3.6514 (10) Å between the benzene ring (C10—C15) and the heterocyclic ring (N1/C7/C2/C1/C8).

Related literature top

For the preparation of biologically important N4-arylsubstituted isatins-3-thiosemicarbazones, see: Pervez et al. (2007). For a related structure, see: Pervez et al. (2010): For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(2-ethylphenyl)thiosemicarbazide (0.98 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether afforded the target compound (I) in pure form (1.42 g, 88%), m. p. 485 K (d). The single crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted lines indicate the intra-molecular H-bondings.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form two-dimensional polymeric network.
4-(2-Ethylphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide top
Crystal data top
C17H16N4OSF(000) = 1360
Mr = 324.40Dx = 1.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2400 reflections
a = 25.6769 (7) Åθ = 2.9–25.3°
b = 7.4340 (2) ŵ = 0.22 mm1
c = 16.6548 (5) ÅT = 296 K
β = 96.248 (1)°Prism, yellow
V = 3160.22 (15) Å30.32 × 0.24 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2823 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.9°
ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 78
Tmin = 0.942, Tmax = 0.952l = 1919
11310 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0406P)2 + 2.640P]
where P = (Fo2 + 2Fc2)/3
2823 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H16N4OSV = 3160.22 (15) Å3
Mr = 324.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.6769 (7) ŵ = 0.22 mm1
b = 7.4340 (2) ÅT = 296 K
c = 16.6548 (5) Å0.32 × 0.24 × 0.22 mm
β = 96.248 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2823 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2400 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.952Rint = 0.022
11310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
2823 reflectionsΔρmin = 0.18 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23890 (2)0.14366 (7)0.38931 (2)0.0442 (2)
O10.06872 (4)0.02675 (19)0.27866 (7)0.0479 (4)
N10.02670 (5)0.0792 (2)0.15804 (8)0.0442 (5)
N20.16415 (5)0.02887 (19)0.19012 (8)0.0349 (4)
N30.17539 (5)0.03419 (19)0.26578 (8)0.0372 (4)
N40.26102 (5)0.0071 (2)0.24633 (8)0.0393 (4)
C10.06870 (6)0.0291 (2)0.20906 (10)0.0381 (5)
C20.04184 (6)0.1426 (2)0.08419 (10)0.0391 (5)
C30.01121 (7)0.2144 (3)0.01920 (11)0.0516 (6)
C40.03640 (8)0.2668 (3)0.04645 (11)0.0547 (7)
C50.09005 (8)0.2485 (3)0.04709 (11)0.0495 (6)
C60.12070 (7)0.1798 (2)0.01934 (9)0.0409 (5)
C70.09608 (6)0.1274 (2)0.08544 (9)0.0341 (5)
C80.11566 (6)0.0567 (2)0.16408 (9)0.0333 (5)
C90.22671 (6)0.0580 (2)0.29697 (9)0.0342 (5)
C100.31682 (6)0.0090 (2)0.25921 (10)0.0365 (5)
C110.34405 (6)0.0684 (2)0.19598 (10)0.0392 (5)
C120.39859 (7)0.0623 (3)0.20944 (12)0.0511 (7)
C130.42445 (7)0.0001 (3)0.28101 (13)0.0585 (7)
C140.39670 (7)0.0588 (3)0.34154 (12)0.0546 (7)
C150.34255 (7)0.0550 (3)0.33083 (11)0.0452 (6)
C160.31486 (8)0.1327 (3)0.11775 (11)0.0495 (6)
C170.34737 (10)0.2230 (3)0.05832 (13)0.0717 (9)
H10.005190.073230.169150.0531*
H30.024810.227160.019290.0619*
H3A0.150510.059500.294540.0446*
H40.016730.315660.091390.0656*
H4A0.247650.031770.199990.0471*
H50.105610.282670.092610.0594*
H60.156810.169240.019570.0490*
H120.418130.101530.168960.0613*
H130.460880.002280.288090.0702*
H140.414180.101010.389690.0655*
H150.323470.095240.371680.0543*
H16A0.297140.030250.091040.0595*
H16B0.288070.216710.130560.0595*
H17A0.371560.137600.040150.1076*
H17B0.324670.266650.012890.1076*
H17C0.366430.321880.084360.1076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0421 (3)0.0538 (3)0.0371 (2)0.0059 (2)0.0058 (2)0.0088 (2)
O10.0369 (6)0.0701 (9)0.0379 (7)0.0024 (6)0.0097 (5)0.0099 (6)
N10.0265 (7)0.0667 (10)0.0396 (8)0.0015 (7)0.0045 (6)0.0036 (7)
N20.0306 (7)0.0406 (8)0.0334 (7)0.0011 (6)0.0036 (5)0.0002 (6)
N30.0290 (7)0.0488 (9)0.0345 (7)0.0018 (6)0.0061 (5)0.0052 (6)
N40.0294 (7)0.0548 (9)0.0339 (7)0.0038 (6)0.0043 (5)0.0074 (6)
C10.0321 (8)0.0449 (10)0.0379 (9)0.0012 (7)0.0060 (7)0.0007 (7)
C20.0345 (8)0.0455 (10)0.0368 (8)0.0021 (7)0.0013 (7)0.0010 (7)
C30.0384 (9)0.0649 (13)0.0495 (10)0.0047 (9)0.0042 (8)0.0045 (9)
C40.0584 (12)0.0610 (13)0.0418 (10)0.0041 (10)0.0071 (9)0.0092 (9)
C50.0600 (12)0.0511 (12)0.0378 (9)0.0038 (9)0.0069 (8)0.0048 (8)
C60.0425 (9)0.0449 (10)0.0356 (9)0.0032 (8)0.0063 (7)0.0013 (7)
C70.0331 (8)0.0358 (9)0.0329 (8)0.0007 (7)0.0020 (6)0.0035 (7)
C80.0304 (8)0.0374 (9)0.0325 (8)0.0002 (7)0.0049 (6)0.0018 (7)
C90.0314 (8)0.0344 (9)0.0372 (9)0.0042 (6)0.0053 (6)0.0032 (7)
C100.0317 (8)0.0386 (9)0.0394 (9)0.0028 (7)0.0054 (7)0.0084 (7)
C110.0408 (9)0.0359 (9)0.0424 (9)0.0052 (7)0.0118 (7)0.0102 (7)
C120.0419 (10)0.0567 (12)0.0583 (12)0.0099 (9)0.0214 (9)0.0154 (9)
C130.0308 (9)0.0763 (15)0.0682 (13)0.0005 (9)0.0051 (9)0.0178 (11)
C140.0410 (10)0.0684 (14)0.0523 (11)0.0099 (9)0.0040 (8)0.0095 (10)
C150.0391 (9)0.0541 (11)0.0426 (10)0.0009 (8)0.0048 (7)0.0029 (8)
C160.0587 (11)0.0465 (11)0.0448 (10)0.0051 (9)0.0119 (8)0.0032 (8)
C170.0976 (17)0.0655 (15)0.0572 (13)0.0001 (13)0.0317 (12)0.0070 (11)
Geometric parameters (Å, º) top
S1—C91.6625 (15)C10—C151.384 (2)
O1—C11.231 (2)C11—C161.508 (3)
N1—C11.351 (2)C11—C121.395 (2)
N1—C21.411 (2)C12—C131.380 (3)
N2—N31.3460 (19)C13—C141.368 (3)
N2—C81.290 (2)C14—C151.383 (3)
N3—C91.374 (2)C16—C171.519 (3)
N4—C91.339 (2)C3—H30.9300
N4—C101.426 (2)C4—H40.9300
N1—H10.8600C5—H50.9300
N3—H3A0.8600C6—H60.9300
N4—H4A0.8600C12—H120.9300
C1—C81.501 (2)C13—H130.9300
C2—C71.395 (2)C14—H140.9300
C2—C31.375 (2)C15—H150.9300
C3—C41.386 (3)C16—H16A0.9700
C4—C51.386 (3)C16—H16B0.9700
C5—C61.384 (2)C17—H17A0.9600
C6—C71.384 (2)C17—H17B0.9600
C7—C81.450 (2)C17—H17C0.9600
C10—C111.398 (2)
S1···C153.283 (2)C1···H1iii2.7600
S1···N4i3.5220 (15)C1···H3A2.4900
S1···H152.8500C5···H17Avii3.0500
S1···H6ii3.1900C9···H152.8900
S1···H4Ai2.8700C9···H16Biv2.8500
S1···H16Ai3.0500C12···H5vii2.8400
O1···N23.0226 (17)C12···H17A2.8800
O1···N32.7711 (17)C12···H17C2.8900
O1···C5ii3.331 (2)C16···H4A2.6200
O1···N1iii2.8805 (17)C17···H122.6000
O1···H1iii2.0700H1···O1iii2.0700
O1···H3A2.1000H1···C1iii2.7600
N1···O1iii2.8805 (17)H3A···O12.1000
N2···O13.0226 (17)H3A···C12.4900
N2···N42.5745 (18)H4A···N22.1300
N3···O12.7711 (17)H4A···C162.6200
N4···C9iv3.437 (2)H4A···H16A2.3700
N4···N22.5745 (18)H4A···H16B2.4700
N4···S1iv3.5220 (15)H4A···S1iv2.8700
N2···H4A2.1300H5···C12vii2.8400
N4···H16B2.6300H6···S1vi3.1900
N4···H16A2.8500H12···C172.6000
C1···C13iv3.509 (3)H12···H17A2.3500
C1···C12iv3.395 (3)H12···H17C2.4500
C2···C3v3.370 (3)H13···H13viii2.4900
C2···C13iv3.526 (3)H15···S12.8500
C3···C3v3.290 (3)H15···C92.8900
C3···C2v3.370 (3)H16A···N42.8500
C5···O1vi3.331 (2)H16A···H4A2.3700
C7···C14iv3.428 (3)H16A···S1iv3.0500
C8···C12iv3.572 (3)H16B···N42.6300
C9···N4i3.437 (2)H16B···H4A2.4700
C12···C8i3.572 (3)H16B···C9i2.8500
C12···C1i3.395 (3)H17A···C122.8800
C13···C2i3.526 (3)H17A···H122.3500
C13···C1i3.509 (3)H17A···C5vii3.0500
C14···C7i3.428 (3)H17C···C122.8900
C15···S13.283 (2)H17C···H122.4500
C1—N1—C2111.33 (13)C12—C11—C16123.02 (16)
N3—N2—C8118.13 (13)C11—C12—C13122.01 (17)
N2—N3—C9119.86 (13)C12—C13—C14120.24 (17)
C9—N4—C10128.46 (14)C13—C14—C15119.71 (18)
C2—N1—H1124.00C10—C15—C14119.83 (17)
C1—N1—H1124.00C11—C16—C17116.51 (17)
C9—N3—H3A120.00C2—C3—H3121.00
N2—N3—H3A120.00C4—C3—H3121.00
C9—N4—H4A116.00C3—C4—H4119.00
C10—N4—H4A116.00C5—C4—H4119.00
O1—C1—N1127.14 (14)C4—C5—H5120.00
O1—C1—C8126.71 (14)C6—C5—H5120.00
N1—C1—C8106.14 (13)C5—C6—H6121.00
N1—C2—C7109.23 (13)C7—C6—H6121.00
C3—C2—C7121.86 (15)C11—C12—H12119.00
N1—C2—C3128.89 (15)C13—C12—H12119.00
C2—C3—C4117.02 (17)C12—C13—H13120.00
C3—C4—C5121.90 (18)C14—C13—H13120.00
C4—C5—C6120.63 (17)C13—C14—H14120.00
C5—C6—C7118.08 (17)C15—C14—H14120.00
C2—C7—C6120.47 (15)C10—C15—H15120.00
C2—C7—C8106.88 (13)C14—C15—H15120.00
C6—C7—C8132.64 (15)C11—C16—H16A108.00
N2—C8—C7126.10 (14)C11—C16—H16B108.00
N2—C8—C1127.49 (14)C17—C16—H16A108.00
C1—C8—C7106.38 (13)C17—C16—H16B108.00
S1—C9—N3118.38 (12)H16A—C16—H16B107.00
S1—C9—N4128.35 (12)C16—C17—H17A109.00
N3—C9—N4113.27 (13)C16—C17—H17B109.00
C11—C10—C15121.82 (15)C16—C17—H17C109.00
N4—C10—C15120.28 (15)H17A—C17—H17B109.00
N4—C10—C11117.83 (14)H17A—C17—H17C109.00
C10—C11—C12116.40 (15)H17B—C17—H17C109.00
C10—C11—C16120.58 (15)
C1—N1—C2—C3176.03 (18)C2—C3—C4—C50.1 (3)
C2—N1—C1—O1177.74 (16)C3—C4—C5—C61.3 (3)
C2—N1—C1—C81.78 (17)C4—C5—C6—C71.1 (3)
C1—N1—C2—C72.28 (18)C5—C6—C7—C8177.87 (17)
N3—N2—C8—C7178.61 (14)C5—C6—C7—C20.5 (2)
C8—N2—N3—C9177.12 (14)C2—C7—C8—N2177.51 (15)
N3—N2—C8—C10.9 (2)C6—C7—C8—N21.1 (3)
N2—N3—C9—S1177.65 (12)C6—C7—C8—C1179.21 (16)
N2—N3—C9—N42.2 (2)C2—C7—C8—C10.65 (16)
C10—N4—C9—S11.7 (3)N4—C10—C11—C12177.69 (16)
C9—N4—C10—C1545.5 (2)N4—C10—C11—C161.6 (2)
C10—N4—C9—N3178.48 (15)C15—C10—C11—C121.0 (2)
C9—N4—C10—C11137.74 (17)C15—C10—C11—C16178.32 (17)
O1—C1—C8—N20.7 (3)N4—C10—C15—C14177.59 (18)
O1—C1—C8—C7178.83 (16)C11—C10—C15—C140.9 (3)
N1—C1—C8—N2178.80 (16)C10—C11—C12—C130.4 (3)
N1—C1—C8—C70.68 (16)C16—C11—C12—C13178.81 (19)
N1—C2—C3—C4179.90 (17)C10—C11—C16—C17170.19 (16)
C7—C2—C3—C41.8 (3)C12—C11—C16—C1710.6 (3)
N1—C2—C7—C6179.51 (14)C11—C12—C13—C140.1 (3)
N1—C2—C7—C81.72 (17)C12—C13—C14—C150.2 (3)
C3—C2—C7—C62.0 (2)C13—C14—C15—C100.4 (3)
C3—C2—C7—C8176.74 (16)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z; (vi) x, y, z1/2; (vii) x+1/2, y+1/2, z; (viii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.86002.07002.8805 (17)157.00
N3—H3A···O10.86002.10002.7711 (17)134.00
N4—H4A···N20.86002.13002.5745 (18)111.00
N4—H4A···S1iv0.86002.87003.5220 (15)133.00
C15—H15···S10.93002.85003.283 (2)110.00
Symmetry codes: (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H16N4OS
Mr324.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.6769 (7), 7.4340 (2), 16.6548 (5)
β (°) 96.248 (1)
V3)3160.22 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
11310, 2823, 2400
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.04
No. of reflections2823
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86002.07002.8805 (17)157.00
N3—H3A···O10.86002.10002.7711 (17)134.00
N4—H4A···N20.86002.13002.5745 (18)111.00
N4—H4A···S1ii0.86002.87003.5220 (15)133.00
C15—H15···S10.93002.85003.283 (2)110.00
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

HP, MY and MR thank the Ministry of Science & Technology (MoST), Government of Pakistan, for partial financial assistance under `Projects for the Strengthening of S & T Education in Universities' (project No. P&D/S&T/2001/231).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res. 21, 1178–1186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010). Acta Cryst. E66, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds