organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1841-o1842

2-Amino-5-methyl­pyridinium 4-carb­­oxy­butano­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 April 2010; accepted 23 June 2010; online 26 June 2010)

In the title salt, C6H9N2+·C5H7O4, the 2-amino-5-methyl­pyridinium cation is essentially planar, with a maximum deviation of 0.008 (1) Å. In the crystal, the protonated N atom and the 2-amino group are hydrogen bonded to the carboxyl­ate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The 4-carb­oxy­butano­ate anions are linked via O—H⋯O hydrogen bonds. The crystal structure is further stabilized by weak C—H⋯O inter­actions.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For applications of glutaric acid, see: Windholz (1976[Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.]); Saraswathi et al. (2001[Saraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366-371.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o621.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623-o624.]); Fun et al. (2010[Fun, H.-K., Chantrapromma, S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o622.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C5H7O4

  • Mr = 240.26

  • Orthorhombic, P 21 21 21

  • a = 5.3159 (10) Å

  • b = 14.383 (3) Å

  • c = 15.625 (3) Å

  • V = 1194.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.29 × 0.17 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.990

  • 7996 measured reflections

  • 2028 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.05

  • 2028 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.82 2.672 (2) 170
N2—H2A⋯O2i 0.86 2.00 2.853 (3) 174
N2—H2B⋯O2 0.86 2.08 2.854 (2) 149
O4—H4⋯O1ii 0.82 1.76 2.5729 (19) 169
C2—H2⋯O3iii 0.93 2.59 3.441 (2) 152
C5—H5⋯O3iv 0.93 2.50 3.379 (2) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Glutaric acid (pentanedioic acid) is a dicarboxylic acid with five carbon atoms, occurring in plant and animal tissues. Glutaric acid is found in the blood and urine. It is used in the synthesis of pharmaceuticals, surfactants and metal finishing compounds. Alpha-ketoglutaric acid is used in dietary supplements to improve protein synthesis (Windholz, 1976). We have recently reported the crystal structures of 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium nicotinate (Fun et al., 2010) and 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010b). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit (Fig. 1) contains a 2-amino-5-methylpyridinium cation and a 4-carboxybutanoate anion. The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.008 (1) Å for atom N1. In the 2-amino-5-methylpyridinium cation, a wide angle (123.09 (16)°) is subtended at the protonated N1 atom. The backbone conformation of the 4-carboxybutanoate anion can be described by the two torsion angles C11-C10-C9-C8 of -179.18 (14)° and C10-C9-C8-C7 of -72.74 (19)°. As evident from the torsion angles, the backbone is in a fully extended conformation (Saraswathi et al., 2001) of the two carboxyl groups, one is deprotonated while the other is not. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1···O1 and N2—H2A···O2 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The 4-carboxybutanoate anions self-assemble via O4—H4···O1 hydrogen bonds. The crystal structure is further stabilized by weak C2—H2···O3 and C5—H5···O3 (Table 1) hydrogen bonds.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For applications of glutaric acid, see: Windholz (1976); Saraswathi et al. (2001). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For related structures, see: Hemamalini & Fun (2010a,b); Fun et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and glutaric acid (33 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å, N–H = 0.86 Å and O–H = 0.82 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. In the absence of significant anomalous scattering effects, 1457 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms are not involing the hydrogen bond interactions are omitted for clarity.
2-Amino-5-methylpyridinium 4-carboxybutanoate top
Crystal data top
C6H9N2+·C5H7O4F(000) = 512
Mr = 240.26Dx = 1.336 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2351 reflections
a = 5.3159 (10) Åθ = 3.1–29.9°
b = 14.383 (3) ŵ = 0.10 mm1
c = 15.625 (3) ÅT = 100 K
V = 1194.7 (4) Å3Block, colourless
Z = 40.29 × 0.17 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2028 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.971, Tmax = 0.990k = 1320
7996 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.0024P]
where P = (Fo2 + 2Fc2)/3
2028 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H9N2+·C5H7O4V = 1194.7 (4) Å3
Mr = 240.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3159 (10) ŵ = 0.10 mm1
b = 14.383 (3) ÅT = 100 K
c = 15.625 (3) Å0.29 × 0.17 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1752 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.990Rint = 0.037
7996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2028 reflectionsΔρmin = 0.20 e Å3
156 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1366 (3)0.23633 (10)0.72155 (9)0.0178 (3)
H10.25680.19700.71490.021*
N20.2291 (4)0.29299 (12)0.58707 (9)0.0238 (4)
H2A0.34510.25160.58280.029*
H2B0.20300.33130.54570.029*
C10.0899 (4)0.29783 (12)0.65773 (10)0.0187 (4)
C20.1037 (4)0.36383 (13)0.67157 (11)0.0232 (4)
H20.13920.40840.63010.028*
C30.2378 (4)0.36172 (14)0.74603 (12)0.0237 (4)
H30.36530.40510.75430.028*
C40.1888 (4)0.29528 (12)0.81139 (11)0.0198 (4)
C50.0019 (4)0.23393 (12)0.79573 (10)0.0184 (3)
H50.04080.18940.83680.022*
C60.3412 (4)0.29045 (14)0.89247 (13)0.0266 (4)
H6A0.50640.26730.87970.040*
H6B0.35440.35140.91700.040*
H6C0.26010.24950.93240.040*
O10.0252 (3)0.40052 (9)0.28998 (7)0.0196 (3)
O20.0882 (3)0.35424 (10)0.42007 (7)0.0238 (3)
O30.7031 (3)0.57159 (10)0.58440 (8)0.0245 (3)
O40.3325 (3)0.54500 (10)0.64750 (8)0.0240 (3)
H40.41080.55880.69090.036*
C70.1204 (4)0.40279 (12)0.35520 (10)0.0160 (3)
C80.3451 (4)0.46878 (12)0.34924 (10)0.0172 (3)
H8A0.45870.44600.30540.021*
H8B0.28520.52940.33110.021*
C90.4914 (4)0.48016 (12)0.43228 (10)0.0177 (3)
H9A0.65090.51020.42050.021*
H9B0.52610.41940.45650.021*
C100.3435 (4)0.53813 (13)0.49684 (10)0.0191 (4)
H10A0.30620.59820.47170.023*
H10B0.18470.50740.50860.023*
C110.4815 (4)0.55288 (11)0.58018 (10)0.0167 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0184 (8)0.0183 (7)0.0169 (6)0.0033 (6)0.0006 (6)0.0006 (5)
N20.0275 (9)0.0264 (8)0.0176 (6)0.0062 (7)0.0001 (7)0.0053 (5)
C10.0203 (9)0.0176 (7)0.0181 (7)0.0002 (7)0.0050 (7)0.0006 (6)
C20.0236 (9)0.0193 (8)0.0268 (8)0.0038 (8)0.0040 (8)0.0049 (7)
C30.0194 (9)0.0179 (8)0.0339 (9)0.0052 (8)0.0008 (9)0.0002 (7)
C40.0185 (9)0.0177 (7)0.0233 (8)0.0028 (7)0.0012 (8)0.0017 (6)
C50.0206 (9)0.0175 (7)0.0170 (7)0.0001 (7)0.0010 (7)0.0002 (5)
C60.0259 (10)0.0230 (9)0.0308 (9)0.0021 (9)0.0070 (9)0.0045 (7)
O10.0215 (7)0.0246 (6)0.0126 (5)0.0056 (6)0.0017 (5)0.0022 (4)
O20.0298 (8)0.0269 (6)0.0146 (5)0.0080 (6)0.0044 (6)0.0058 (5)
O30.0200 (7)0.0339 (7)0.0195 (6)0.0022 (6)0.0026 (6)0.0033 (5)
O40.0230 (7)0.0354 (7)0.0136 (5)0.0054 (6)0.0003 (6)0.0058 (5)
C70.0175 (8)0.0166 (7)0.0138 (6)0.0002 (7)0.0006 (7)0.0015 (5)
C80.0176 (8)0.0204 (8)0.0136 (6)0.0029 (7)0.0003 (7)0.0017 (6)
C90.0172 (8)0.0196 (7)0.0163 (7)0.0013 (7)0.0008 (7)0.0027 (6)
C100.0182 (9)0.0236 (8)0.0155 (7)0.0037 (7)0.0045 (7)0.0054 (6)
C110.0198 (8)0.0154 (7)0.0150 (6)0.0028 (7)0.0022 (7)0.0012 (5)
Geometric parameters (Å, º) top
N1—C11.356 (2)C6—H6C0.9600
N1—C51.363 (2)O1—C71.280 (2)
N1—H10.8600O2—C71.243 (2)
N2—C11.331 (2)O3—C111.210 (2)
N2—H2A0.8600O4—C111.321 (2)
N2—H2B0.8600O4—H40.8200
C1—C21.417 (3)C7—C81.528 (3)
C2—C31.365 (3)C8—C91.522 (2)
C2—H20.9300C8—H8A0.9700
C3—C41.423 (3)C8—H8B0.9700
C3—H30.9300C9—C101.527 (2)
C4—C51.366 (3)C9—H9A0.9700
C4—C61.505 (3)C9—H9B0.9700
C5—H50.9300C10—C111.509 (2)
C6—H6A0.9600C10—H10A0.9700
C6—H6B0.9600C10—H10B0.9700
C1—N1—C5123.09 (16)H6B—C6—H6C109.5
C1—N1—H1118.5C11—O4—H4109.5
C5—N1—H1118.5O2—C7—O1123.48 (17)
C1—N2—H2A120.0O2—C7—C8120.42 (15)
C1—N2—H2B120.0O1—C7—C8116.09 (14)
H2A—N2—H2B120.0C9—C8—C7114.48 (13)
N2—C1—N1118.31 (16)C9—C8—H8A108.6
N2—C1—C2124.45 (16)C7—C8—H8A108.6
N1—C1—C2117.24 (16)C9—C8—H8B108.6
C3—C2—C1119.66 (16)C7—C8—H8B108.6
C3—C2—H2120.2H8A—C8—H8B107.6
C1—C2—H2120.2C8—C9—C10111.04 (15)
C2—C3—C4122.08 (18)C8—C9—H9A109.4
C2—C3—H3119.0C10—C9—H9A109.4
C4—C3—H3119.0C8—C9—H9B109.4
C5—C4—C3116.18 (16)C10—C9—H9B109.4
C5—C4—C6121.36 (16)H9A—C9—H9B108.0
C3—C4—C6122.44 (17)C11—C10—C9113.37 (15)
N1—C5—C4121.73 (16)C11—C10—H10A108.9
N1—C5—H5119.1C9—C10—H10A108.9
C4—C5—H5119.1C11—C10—H10B108.9
C4—C6—H6A109.5C9—C10—H10B108.9
C4—C6—H6B109.5H10A—C10—H10B107.7
H6A—C6—H6B109.5O3—C11—O4123.98 (16)
C4—C6—H6C109.5O3—C11—C10123.45 (17)
H6A—C6—H6C109.5O4—C11—C10112.56 (15)
C5—N1—C1—N2178.57 (16)C3—C4—C5—N10.2 (3)
C5—N1—C1—C22.0 (3)C6—C4—C5—N1178.30 (16)
N2—C1—C2—C3178.99 (19)O2—C7—C8—C99.4 (2)
N1—C1—C2—C31.7 (3)O1—C7—C8—C9171.50 (15)
C1—C2—C3—C40.4 (3)C7—C8—C9—C1072.74 (19)
C2—C3—C4—C50.5 (3)C8—C9—C10—C11179.18 (14)
C2—C3—C4—C6177.97 (18)C9—C10—C11—O342.8 (2)
C1—N1—C5—C41.1 (3)C9—C10—C11—O4138.56 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.822.672 (2)170
N2—H2A···O2i0.862.002.853 (3)174
N2—H2B···O20.862.082.854 (2)149
O4—H4···O1ii0.821.762.5729 (19)169
C2—H2···O3iii0.932.593.441 (2)152
C5—H5···O3iv0.932.503.379 (2)158
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C5H7O4
Mr240.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.3159 (10), 14.383 (3), 15.625 (3)
V3)1194.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.17 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7996, 2028, 1752
Rint0.037
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.05
No. of reflections2028
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86001.82002.672 (2)170.00
N2—H2A···O2i0.86002.00002.853 (3)174.00
N2—H2B···O20.86002.08002.854 (2)149.00
O4—H4···O1ii0.82001.76002.5729 (19)169.00
C2—H2···O3iii0.93002.59003.441 (2)152.00
C5—H5···O3iv0.93002.50003.379 (2)158.00
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623–o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSaraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366–371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (1976). The Merck Index, 9th ed. Boca Raton, USA: Merck & Co. Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1841-o1842
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds