organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Propane-1,3-diyldi­­oxy)dibenz­aldehyde

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 June 2010; accepted 3 June 2010; online 9 June 2010)

The title compound, C17H16O4, is a dialdehyde in which two formyl­phen­oxy units are linked by a –CH2CH2CH2– chain; the mol­ecule is V-shaped with the middle methyl­ene C atom as the apex. The two benzene rings are aligned at 77.4 (1)°. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of non-classical C—H⋯O hydrogen bonds.

Related literature

For background to Schiff bases derived by condensing similar dialdehydes with primary amines, see: Zhang et al. (2008[Zhang, Y., Deng, X., Wang, L. & Wei, T. (2008). J. Incl. Phenom. Macrocycl. Chem. 60, 313-319.]). For the crystal structure of the 2,2′-disubstituted analog, see: Hu et al. (2005[Hu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775-o2777.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O4

  • Mr = 284.30

  • Monoclinic, P 21 /n

  • a = 15.3323 (15) Å

  • b = 4.6173 (5) Å

  • c = 20.2800 (19) Å

  • β = 104.783 (1)°

  • V = 1388.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 8297 measured reflections

  • 3113 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.03

  • 3113 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.95 2.41 3.287 (2) 154
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The two-arm aldehyde is intended for condensation with primary amines to form Schiff bases, which, in a subsequent step, will be reacted with β-cyclodextrin to furnish inclusion compounds. The idea for this theme draws on a report on such compounds of poly(Schiff bases) (Zhang et al., 2008). The flexibilty of the Schiff base can be controlled by varying the position of the formyl group; the title compound has the the formyl groups in the 4,4'-positions. The crystal structure of the 2,2'-substituted compound has been reported (Hu et al., 2005). The molecule of C17H16O4 (Scheme I) is V-shaped with the middle methylene carbon as the apex (Fig. 1).

Related literature top

For background to Schiff bases derived by condensing similar dialdehydes with primary amines, see: Zhang et al. (2008). For the crystal structure of the 2,2'-disubstituted analog, see: Hu et al. (2005).

Experimental top

4-Hydroxybenzaldehyde (1 g, 8.2 mmol) was dissolved in acetone (25 ml). To the solution was added potassium carbonate (2.3 g, 16.4 mmol). The mixture was heated for 1 h. 1,3-Dibromopropane (0.29 ml, 2.7 mmol) was added and the mixture heated for another hour. The mixture was set aside for 8 h. The solvent was removed and the solid material was extracted with ethyl acetate. The solvent was again removed and the product purified by column chromatography by using dichloromethane-hexane (1:4) as mobile phase. Single crystals were obtained by recrystallization from dichloromethane.

Refinement top

H atoms were placed in calculated positions [C–H = 0.95–0.99 Å] and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C17H16O4 at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.
4,4'-(Propane-1,3-diyldioxy)dibenzaldehyde top
Crystal data top
C17H16O4F(000) = 600
Mr = 284.30Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2677 reflections
a = 15.3323 (15) Åθ = 3.1–28.0°
b = 4.6173 (5) ŵ = 0.10 mm1
c = 20.2800 (19) ÅT = 100 K
β = 104.783 (1)°Plate, colourless
V = 1388.2 (2) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
ω scansh = 1919
8297 measured reflectionsk = 55
3113 independent reflectionsl = 1926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4617P]
where P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H16O4V = 1388.2 (2) Å3
Mr = 284.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.3323 (15) ŵ = 0.10 mm1
b = 4.6173 (5) ÅT = 100 K
c = 20.2800 (19) Å0.25 × 0.20 × 0.10 mm
β = 104.783 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2538 reflections with I > 2σ(I)
8297 measured reflectionsRint = 0.027
3113 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3113 reflectionsΔρmin = 0.22 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33791 (6)1.4272 (2)0.27971 (5)0.0247 (2)
O20.37445 (6)0.5332 (2)0.52487 (5)0.0191 (2)
O30.36450 (6)0.5695 (2)0.70403 (5)0.0191 (2)
O40.58320 (6)1.2514 (2)0.97043 (5)0.0290 (3)
C10.28543 (9)1.3387 (3)0.31097 (7)0.0193 (3)
H10.22601.41540.29920.023*
C20.30737 (8)1.1217 (3)0.36563 (7)0.0171 (3)
C30.24107 (8)1.0286 (3)0.39613 (7)0.0183 (3)
H30.18161.10280.38050.022*
C40.25983 (8)0.8289 (3)0.44913 (7)0.0182 (3)
H40.21370.76570.46940.022*
C50.34744 (8)0.7227 (3)0.47213 (6)0.0166 (3)
C60.41484 (8)0.8113 (3)0.44128 (7)0.0188 (3)
H60.47420.73610.45660.023*
C70.39463 (9)1.0082 (3)0.38860 (7)0.0192 (3)
H70.44041.06780.36760.023*
C80.30783 (8)0.4333 (3)0.55834 (7)0.0182 (3)
H8A0.25900.32830.52570.022*
H8B0.28100.59910.57710.022*
C90.35588 (9)0.2331 (3)0.61526 (7)0.0190 (3)
H9A0.39010.08690.59640.023*
H9B0.31030.12900.63310.023*
C100.42019 (8)0.3892 (3)0.67370 (7)0.0176 (3)
H10A0.45440.24860.70740.021*
H10B0.46350.50840.65670.021*
C110.40426 (8)0.7236 (3)0.76107 (6)0.0164 (3)
C120.34516 (8)0.8830 (3)0.78886 (7)0.0189 (3)
H120.28210.87620.76850.023*
C130.37858 (9)1.0507 (3)0.84602 (7)0.0202 (3)
H130.33831.16110.86470.024*
C140.47139 (8)1.0595 (3)0.87679 (7)0.0187 (3)
C150.52930 (8)0.8986 (3)0.84844 (7)0.0189 (3)
H150.59230.90380.86910.023*
C160.49718 (8)0.7308 (3)0.79069 (7)0.0174 (3)
H160.53750.62270.77160.021*
C170.50495 (9)1.2379 (3)0.93787 (7)0.0235 (3)
H170.46221.35160.95310.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (5)0.0271 (5)0.0213 (5)0.0011 (4)0.0081 (4)0.0041 (4)
O20.0179 (4)0.0231 (5)0.0158 (5)0.0023 (4)0.0036 (4)0.0036 (4)
O30.0165 (4)0.0234 (5)0.0163 (5)0.0004 (4)0.0020 (3)0.0030 (4)
O40.0248 (5)0.0375 (6)0.0228 (6)0.0053 (4)0.0027 (4)0.0083 (5)
C10.0220 (6)0.0177 (6)0.0168 (7)0.0004 (5)0.0027 (5)0.0033 (5)
C20.0200 (6)0.0162 (6)0.0139 (6)0.0002 (5)0.0020 (5)0.0036 (5)
C30.0168 (6)0.0190 (6)0.0169 (7)0.0015 (5)0.0006 (5)0.0027 (5)
C40.0171 (6)0.0207 (6)0.0165 (7)0.0013 (5)0.0039 (5)0.0019 (5)
C50.0197 (6)0.0166 (6)0.0118 (6)0.0005 (5)0.0010 (5)0.0027 (5)
C60.0166 (6)0.0212 (7)0.0177 (7)0.0022 (5)0.0026 (5)0.0018 (5)
C70.0189 (6)0.0211 (7)0.0180 (7)0.0012 (5)0.0055 (5)0.0017 (5)
C80.0187 (6)0.0199 (7)0.0158 (7)0.0021 (5)0.0039 (5)0.0018 (5)
C90.0208 (6)0.0174 (6)0.0181 (7)0.0019 (5)0.0035 (5)0.0009 (5)
C100.0184 (6)0.0182 (6)0.0160 (7)0.0010 (5)0.0038 (5)0.0005 (5)
C110.0191 (6)0.0155 (6)0.0135 (6)0.0013 (5)0.0022 (5)0.0025 (5)
C120.0154 (6)0.0218 (7)0.0192 (7)0.0006 (5)0.0037 (5)0.0012 (5)
C130.0194 (6)0.0205 (7)0.0221 (7)0.0011 (5)0.0077 (5)0.0014 (6)
C140.0205 (6)0.0190 (6)0.0163 (7)0.0018 (5)0.0037 (5)0.0006 (5)
C150.0160 (6)0.0204 (7)0.0186 (7)0.0006 (5)0.0015 (5)0.0027 (5)
C160.0165 (6)0.0190 (6)0.0173 (7)0.0016 (5)0.0053 (5)0.0009 (5)
C170.0242 (7)0.0258 (7)0.0214 (7)0.0022 (6)0.0073 (5)0.0026 (6)
Geometric parameters (Å, º) top
O1—C11.2152 (16)C8—H8A0.99
O2—C51.3620 (15)C8—H8B0.99
O2—C81.4389 (15)C9—C101.5167 (17)
O3—C111.3623 (15)C9—H9A0.99
O3—C101.4382 (15)C9—H9B0.99
O4—C171.2145 (17)C10—H10A0.99
C1—C21.4682 (19)C10—H10B0.99
C1—H10.95C11—C121.3931 (18)
C2—C31.3863 (18)C11—C161.3981 (17)
C2—C71.4014 (18)C12—C131.3796 (19)
C3—C41.3894 (19)C12—H120.95
C3—H30.95C13—C141.4009 (17)
C4—C51.3938 (18)C13—H130.95
C4—H40.95C14—C151.3895 (19)
C5—C61.3989 (18)C14—C171.4674 (19)
C6—C71.3765 (19)C15—C161.3859 (18)
C6—H60.95C15—H150.95
C7—H70.95C16—H160.95
C8—C91.5153 (18)C17—H170.95
C5—O2—C8117.78 (10)C10—C9—H9A108.9
C11—O3—C10118.66 (9)C8—C9—H9B108.9
O1—C1—C2124.65 (12)C10—C9—H9B108.9
O1—C1—H1117.7H9A—C9—H9B107.7
C2—C1—H1117.7O3—C10—C9105.71 (10)
C3—C2—C7118.83 (12)O3—C10—H10A110.6
C3—C2—C1119.72 (11)C9—C10—H10A110.6
C7—C2—C1121.44 (12)O3—C10—H10B110.6
C2—C3—C4121.36 (12)C9—C10—H10B110.6
C2—C3—H3119.3H10A—C10—H10B108.7
C4—C3—H3119.3O3—C11—C12115.02 (11)
C3—C4—C5118.95 (12)O3—C11—C16124.28 (11)
C3—C4—H4120.5C12—C11—C16120.69 (12)
C5—C4—H4120.5C13—C12—C11119.74 (11)
O2—C5—C4124.25 (12)C13—C12—H12120.1
O2—C5—C6115.34 (11)C11—C12—H12120.1
C4—C5—C6120.40 (12)C12—C13—C14120.51 (12)
C7—C6—C5119.66 (12)C12—C13—H13119.7
C7—C6—H6120.2C14—C13—H13119.7
C5—C6—H6120.2C15—C14—C13118.95 (12)
C6—C7—C2120.77 (12)C15—C14—C17121.73 (12)
C6—C7—H7119.6C13—C14—C17119.32 (12)
C2—C7—H7119.6C16—C15—C14121.44 (12)
O2—C8—C9106.81 (10)C16—C15—H15119.3
O2—C8—H8A110.4C14—C15—H15119.3
C9—C8—H8A110.4C15—C16—C11118.67 (12)
O2—C8—H8B110.4C15—C16—H16120.7
C9—C8—H8B110.4C11—C16—H16120.7
H8A—C8—H8B108.6O4—C17—C14124.94 (13)
C8—C9—C10113.45 (11)O4—C17—H17117.5
C8—C9—H9A108.9C14—C17—H17117.5
O1—C1—C2—C3177.57 (13)C11—O3—C10—C9176.03 (10)
O1—C1—C2—C73.3 (2)C8—C9—C10—O365.84 (13)
C7—C2—C3—C40.75 (19)C10—O3—C11—C12177.41 (11)
C1—C2—C3—C4178.41 (12)C10—O3—C11—C163.47 (18)
C2—C3—C4—C50.48 (19)O3—C11—C12—C13178.89 (12)
C8—O2—C5—C40.89 (18)C16—C11—C12—C130.26 (19)
C8—O2—C5—C6179.69 (11)C11—C12—C13—C140.7 (2)
C3—C4—C5—O2178.02 (12)C12—C13—C14—C150.6 (2)
C3—C4—C5—C61.37 (19)C12—C13—C14—C17179.52 (13)
O2—C5—C6—C7178.41 (11)C13—C14—C15—C160.0 (2)
C4—C5—C6—C71.0 (2)C17—C14—C15—C16179.92 (12)
C5—C6—C7—C20.2 (2)C14—C15—C16—C110.42 (19)
C3—C2—C7—C61.1 (2)O3—C11—C16—C15179.37 (12)
C1—C2—C7—C6178.04 (12)C12—C11—C16—C150.29 (19)
C5—O2—C8—C9178.76 (10)C15—C14—C17—O43.7 (2)
O2—C8—C9—C1070.22 (13)C13—C14—C17—O4176.44 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.573.508 (2)168
C16—H16···O1ii0.952.413.287 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H16O4
Mr284.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.3323 (15), 4.6173 (5), 20.2800 (19)
β (°) 104.783 (1)
V3)1388.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8297, 3113, 2538
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.03
No. of reflections3113
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.952.413.287 (2)154
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the University of Karachi and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775–o2777.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZhang, Y., Deng, X., Wang, L. & Wei, T. (2008). J. Incl. Phenom. Macrocycl. Chem. 60, 313–319.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds