organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzamide–picric acid (1/1)

aPost Graduate and Research Department of Chemistry, Kongunadu College of Arts and Science, Coimbatore 641 029, India, bPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 2 June 2010; accepted 22 June 2010; online 26 June 2010)

In the title compound, C7H7NO·C6H3N3O7, one of the nitro groups of the picric acid mol­ecule lies in the plane of the attached benzene ring [dihedral angle = 1.4 (1)°] while the other two are twisted away by 9.9 (1) and 30.3 (1)°. In the benzamide mol­ecule, the amide group is almost coplanar with the benzene ring [dihedral angle = 4.4 (1)°]. An intra­molecular O—H⋯O hydrogen bond generates an S6 ring motif. In the crystal, mol­ecules are linked into a ribbon-like structure along the b axis by O—H⋯O and N—H⋯O inter­molecular hydrogen bonds. In addition, C—H⋯O hydrogen bonds and short O⋯O contacts [2.828 (2) Å] are observed.

Related literature

For crystal structures of picric acid complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]); Nagata et al. (1995[Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051-1058.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.]); Goto et al. (2004[Goto, M., Kanno, H., Sugaya, E., Osa, Y. & Takayanagi, H. (2004). Anal. Sci. 20, x39-x40.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO·C6H3N3O7

  • Mr = 350.25

  • Monoclinic, P 21 /c

  • a = 7.8644 (3) Å

  • b = 7.0664 (3) Å

  • c = 25.658 (1) Å

  • β = 90.978 (4)°

  • V = 1425.68 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 110 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.977

  • 8136 measured reflections

  • 3309 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.03

  • 3309 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.94 (3) 1.92 (3) 2.6473 (16) 132 (2)
O1—H1⋯O8 0.94 (3) 1.85 (3) 2.5603 (16) 130 (2)
N4—H4A⋯O7i 0.87 (2) 2.33 (2) 3.120 (2) 150 (2)
N4—H4B⋯O8i 0.90 (2) 2.08 (2) 2.9702 (19) 167 (2)
C5—H5⋯O6ii 0.95 2.39 3.257 (2) 152
C9—H9⋯O4iii 0.95 2.50 3.185 (2) 129
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,4,6-Trinitro phenol, popularly known as picric acid, was primarily used to manufacture explosives and also used as an intermediate in dye manufacturing. It is well known that picric acid forms charge transfer molecular complexes with a number of aromatic compounds such as aromatic hydrocarbons, amines etc. through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). The crystal structures of a large number of picrate salts and picric acid complexes have been studied to understand the conformational features and charge transfer processes (Nagata et al., 1995; Smith et al., 2004; Goto et al., 2004). We report here the crystal structure of the title compound.

In the picric acid molecule (Fig.1), one of the nitro groups lies in the plane of the attached benzene ring and other two rings are twisted away by 9.9 (1)° [N1/O2/O3] and 30.3 (1)° [N3/O6/O7]; the hydroxyl O atom deviates from the attached benzene ring by 0.039 (1) Å. In the benzamide molecule, the amide group is almost coplanar with the benzene ring (C7—C12) [dihedral angle is 4.4 (1)°]. The sum of the bond angles around the atom N4 (359.9°) of the amide group is in accordance with sp2 hybridization. An intramolecular O1—H1···O2 hydrogen bond forms an S6 ring motif (Bernstein et al., 1995).

The molecules at (x, y, z) and (1-x, 1-y, 1-z) are linked by pairs of C5—H5···O6 intermolecular hydrogen bonds forming a centrosymmetric dimer containing R22(10) ring motif (Table 1). Atom N4 at (x, y, z) acts as a donor to atom O8 at (-x, 1/2 + y, 1/2 -z) forming a C4 zigzag chain running along the b axis. The crystal packing is controlled by O—H···O, N—H···O and C—H···O types of intermolecular hydrogen bonds, which form a three-dimensional network (Fig.2). An intermolecular O2···O8 short contact of 2.828 (2) Å is observed.

Related literature top

For crystal structures of picric acid complexes, see: In et al. (1997); Zaderenko et al. (1997); Nagata et al. (1995); Smith et al. (2004); Goto et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Picric acid (2.29 g) dissolved in methanol was added dropwise to a methanolic solution of benzamide (1.21 g). The solution was stirred at room temperature for 2 h. Single crystals suitable for X-ray analysis are obtained by repeated recrystallization of the salt from pure methanol.

Refinement top

The O- and N-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically (C–H = 0.95 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis.
Benzamide–picric acid (1/1) top
Crystal data top
C7H7NO·C6H3N3O7F(000) = 720
Mr = 350.25Dx = 1.632 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1043 reflections
a = 7.8644 (3) Åθ = 3.0–29.2°
b = 7.0664 (3) ŵ = 0.14 mm1
c = 25.658 (1) ÅT = 110 K
β = 90.978 (4)°Block, colourless
V = 1425.68 (10) Å30.22 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3309 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 910
Tmin = 0.970, Tmax = 0.977k = 99
8136 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2776P]
where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.011
238 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H7NO·C6H3N3O7V = 1425.68 (10) Å3
Mr = 350.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8644 (3) ŵ = 0.14 mm1
b = 7.0664 (3) ÅT = 110 K
c = 25.658 (1) Å0.22 × 0.19 × 0.17 mm
β = 90.978 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2518 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.977Rint = 0.026
8136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
3309 reflectionsΔρmin = 0.27 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26955 (15)0.56145 (16)0.32065 (4)0.0186 (3)
H10.234 (3)0.606 (4)0.2877 (10)0.065 (8)*
O20.27599 (15)0.83691 (16)0.25079 (4)0.0217 (3)
O30.45097 (16)1.06988 (18)0.26121 (5)0.0302 (3)
O40.70184 (17)1.20512 (18)0.42672 (5)0.0335 (3)
O50.68930 (15)0.99973 (18)0.48912 (4)0.0252 (3)
O60.32595 (16)0.46474 (17)0.46982 (4)0.0249 (3)
O70.32915 (16)0.32061 (16)0.39538 (5)0.0259 (3)
N10.38210 (17)0.92648 (19)0.27671 (5)0.0179 (3)
N20.65720 (17)1.0525 (2)0.44464 (5)0.0203 (3)
N30.35066 (16)0.46102 (18)0.42288 (5)0.0166 (3)
C10.36450 (19)0.6822 (2)0.34693 (6)0.0144 (3)
C20.4245 (2)0.8595 (2)0.32927 (6)0.0148 (3)
C30.5215 (2)0.9797 (2)0.36018 (6)0.0167 (3)
H30.56151.09670.34690.020*
C40.5587 (2)0.9257 (2)0.41060 (6)0.0163 (3)
C50.5038 (2)0.7559 (2)0.43079 (6)0.0156 (3)
H50.52970.72200.46590.019*
C60.41086 (19)0.6370 (2)0.39906 (6)0.0145 (3)
O80.10176 (16)0.49021 (16)0.23654 (4)0.0223 (3)
N40.05714 (19)0.6826 (2)0.18599 (6)0.0213 (3)
H4A0.103 (3)0.705 (3)0.1554 (9)0.039 (6)*
H4B0.060 (3)0.766 (3)0.2127 (8)0.034 (6)*
C70.0404 (2)0.3810 (2)0.15103 (6)0.0156 (3)
C80.1221 (2)0.2114 (2)0.16244 (6)0.0180 (3)
H80.16810.19060.19640.022*
C90.1373 (2)0.0724 (2)0.12491 (6)0.0211 (4)
H90.19300.04330.13320.025*
C100.0710 (2)0.1023 (2)0.07508 (6)0.0231 (4)
H100.08180.00720.04920.028*
C110.0112 (2)0.2708 (2)0.06315 (6)0.0221 (4)
H110.05660.29100.02910.026*
C120.0273 (2)0.4104 (2)0.10097 (6)0.0187 (3)
H120.08420.52550.09280.022*
C130.0304 (2)0.5238 (2)0.19409 (6)0.0162 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (6)0.0159 (6)0.0172 (6)0.0032 (5)0.0053 (4)0.0010 (4)
O20.0253 (6)0.0198 (6)0.0198 (6)0.0010 (5)0.0075 (5)0.0011 (5)
O30.0324 (7)0.0296 (7)0.0285 (7)0.0124 (6)0.0014 (5)0.0119 (5)
O40.0418 (8)0.0196 (7)0.0387 (8)0.0148 (6)0.0071 (6)0.0005 (5)
O50.0269 (7)0.0276 (7)0.0210 (6)0.0035 (6)0.0044 (5)0.0051 (5)
O60.0320 (7)0.0247 (7)0.0180 (6)0.0040 (6)0.0008 (5)0.0045 (5)
O70.0372 (7)0.0128 (6)0.0273 (6)0.0005 (6)0.0080 (5)0.0008 (5)
N10.0181 (7)0.0170 (7)0.0188 (7)0.0025 (6)0.0019 (5)0.0022 (5)
N20.0191 (7)0.0179 (7)0.0237 (7)0.0022 (6)0.0002 (5)0.0053 (6)
N30.0158 (7)0.0133 (7)0.0206 (7)0.0001 (6)0.0046 (5)0.0014 (5)
C10.0127 (7)0.0139 (7)0.0167 (7)0.0022 (7)0.0003 (6)0.0019 (6)
C20.0145 (7)0.0160 (8)0.0141 (7)0.0031 (7)0.0008 (6)0.0007 (6)
C30.0158 (8)0.0126 (7)0.0218 (8)0.0010 (7)0.0034 (6)0.0006 (6)
C40.0145 (8)0.0154 (8)0.0191 (7)0.0014 (7)0.0003 (6)0.0048 (6)
C50.0155 (8)0.0163 (8)0.0149 (7)0.0031 (7)0.0017 (6)0.0015 (6)
C60.0145 (8)0.0117 (7)0.0174 (7)0.0017 (6)0.0009 (6)0.0004 (6)
O80.0302 (7)0.0170 (6)0.0196 (6)0.0018 (5)0.0092 (5)0.0007 (5)
N40.0293 (8)0.0154 (7)0.0190 (7)0.0035 (7)0.0040 (6)0.0007 (6)
C70.0132 (7)0.0158 (8)0.0180 (7)0.0034 (6)0.0005 (6)0.0011 (6)
C80.0161 (8)0.0179 (8)0.0201 (8)0.0014 (7)0.0006 (6)0.0030 (6)
C90.0214 (8)0.0161 (8)0.0260 (9)0.0015 (7)0.0042 (7)0.0023 (6)
C100.0228 (9)0.0230 (9)0.0237 (8)0.0016 (8)0.0035 (7)0.0068 (7)
C110.0202 (9)0.0275 (9)0.0185 (8)0.0009 (8)0.0024 (6)0.0015 (7)
C120.0156 (8)0.0193 (8)0.0211 (8)0.0002 (7)0.0008 (6)0.0018 (6)
C130.0163 (8)0.0139 (8)0.0183 (8)0.0045 (7)0.0008 (6)0.0024 (6)
Geometric parameters (Å, º) top
O1—C11.3126 (19)C5—H50.95
O1—H10.94 (3)O8—C131.2399 (19)
O2—N11.2330 (17)N4—C131.331 (2)
O3—N11.2189 (17)N4—H4A0.87 (2)
O4—N21.2262 (18)N4—H4B0.90 (2)
O5—N21.2230 (18)C7—C81.389 (2)
O6—N31.2237 (17)C7—C121.397 (2)
O7—N31.2275 (17)C7—C131.499 (2)
N1—C21.4623 (19)C8—C91.382 (2)
N2—C41.464 (2)C8—H80.95
N3—C61.468 (2)C9—C101.389 (2)
C1—C21.416 (2)C9—H90.95
C1—C61.417 (2)C10—C111.387 (2)
C2—C31.383 (2)C10—H100.95
C3—C41.375 (2)C11—C121.391 (2)
C3—H30.95C11—H110.95
C4—C51.379 (2)C12—H120.95
C5—C61.372 (2)
C1—O1—H1113.9 (16)C5—C6—N3116.37 (13)
O3—N1—O2123.45 (14)C1—C6—N3120.28 (13)
O3—N1—C2118.32 (13)C13—N4—H4A120.1 (14)
O2—N1—C2118.22 (13)C13—N4—H4B116.6 (13)
O5—N2—O4124.21 (14)H4A—N4—H4B123.2 (19)
O5—N2—C4117.97 (13)C8—C7—C12119.32 (15)
O4—N2—C4117.82 (13)C8—C7—C13117.10 (14)
O6—N3—O7124.09 (14)C12—C7—C13123.59 (15)
O6—N3—C6116.70 (12)C9—C8—C7120.77 (15)
O7—N3—C6119.21 (12)C9—C8—H8119.6
O1—C1—C2126.91 (14)C7—C8—H8119.6
O1—C1—C6118.25 (14)C8—C9—C10119.85 (16)
C2—C1—C6114.82 (13)C8—C9—H9120.1
C3—C2—C1122.92 (14)C10—C9—H9120.1
C3—C2—N1116.43 (14)C11—C10—C9120.01 (15)
C1—C2—N1120.64 (14)C11—C10—H10120.0
C4—C3—C2118.41 (14)C9—C10—H10120.0
C4—C3—H3120.8C10—C11—C12120.18 (16)
C2—C3—H3120.8C10—C11—H11119.9
C3—C4—C5122.10 (14)C12—C11—H11119.9
C3—C4—N2119.57 (14)C11—C12—C7119.87 (16)
C5—C4—N2118.32 (14)C11—C12—H12120.1
C6—C5—C4118.48 (14)C7—C12—H12120.1
C6—C5—H5120.8O8—C13—N4121.60 (15)
C4—C5—H5120.8O8—C13—C7119.32 (14)
C5—C6—C1123.24 (14)N4—C13—C7119.08 (14)
O1—C1—C2—C3178.66 (14)O1—C1—C6—C5177.29 (14)
C6—C1—C2—C30.3 (2)C2—C1—C6—C51.2 (2)
O1—C1—C2—N10.1 (2)O1—C1—C6—N31.1 (2)
C6—C1—C2—N1178.30 (13)C2—C1—C6—N3177.36 (13)
O3—N1—C2—C39.0 (2)O6—N3—C6—C528.3 (2)
O2—N1—C2—C3169.57 (13)O7—N3—C6—C5151.32 (14)
O3—N1—C2—C1172.29 (14)O6—N3—C6—C1148.15 (14)
O2—N1—C2—C19.1 (2)O7—N3—C6—C132.3 (2)
C1—C2—C3—C41.2 (2)C12—C7—C8—C90.2 (2)
N1—C2—C3—C4177.46 (13)C13—C7—C8—C9179.82 (14)
C2—C3—C4—C50.6 (2)C7—C8—C9—C100.3 (2)
C2—C3—C4—N2178.32 (13)C8—C9—C10—C110.4 (2)
O5—N2—C4—C3179.43 (14)C9—C10—C11—C120.1 (2)
O4—N2—C4—C30.8 (2)C10—C11—C12—C70.4 (2)
O5—N2—C4—C51.6 (2)C8—C7—C12—C110.5 (2)
O4—N2—C4—C5178.23 (14)C13—C7—C12—C11179.50 (15)
C3—C4—C5—C60.8 (2)C8—C7—C13—O83.8 (2)
N2—C4—C5—C6179.76 (13)C12—C7—C13—O8176.21 (15)
C4—C5—C6—C11.8 (2)C8—C7—C13—N4175.26 (14)
C4—C5—C6—N3178.05 (13)C12—C7—C13—N44.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.94 (3)1.92 (3)2.6473 (16)132 (2)
O1—H1···O80.94 (3)1.85 (3)2.5603 (16)130 (2)
N4—H4A···O7i0.87 (2)2.33 (2)3.120 (2)150 (2)
N4—H4B···O8i0.90 (2)2.08 (2)2.9702 (19)167 (2)
C5—H5···O6ii0.952.393.257 (2)152
C9—H9···O4iii0.952.503.185 (2)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7NO·C6H3N3O7
Mr350.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)7.8644 (3), 7.0664 (3), 25.658 (1)
β (°) 90.978 (4)
V3)1425.68 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.970, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8136, 3309, 2518
Rint0.026
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.03
No. of reflections3309
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.94 (3)1.92 (3)2.6473 (16)132 (2)
O1—H1···O80.94 (3)1.85 (3)2.5603 (16)130 (2)
N4—H4A···O7i0.87 (2)2.33 (2)3.120 (2)150 (2)
N4—H4B···O8i0.90 (2)2.08 (2)2.9702 (19)167 (2)
C5—H5···O6ii0.952.393.257 (2)152
C9—H9···O4iii0.952.503.185 (2)129
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y3/2, z+1/2.
 

Acknowledgements

The authors wish to thank Dr A. Chandramohan, Department of Chemistry, Sri Ramakrishna Mission Vidyalaya Arts and Science College, Coimbatore, India, for his valuable suggestions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoto, M., Kanno, H., Sugaya, E., Osa, Y. & Takayanagi, H. (2004). Anal. Sci. 20, x39–x40.  CSD CrossRef Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds