metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ4N,N′,N′′,N′′′}bis­­(thio­cyanato-κN)manganese(II)

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wfm99999@126.com

(Received 6 June 2010; accepted 6 June 2010; online 16 June 2010)

The mol­ecule of the title compound, [Mn(NCS)2(C16H18N4)], has crystallographic twofold rotation symmetry, with the MnII atom lying on the rotation axis. The MnII atom is six-coordinated by four N atoms of the Schiff base ligand and by two N atoms of two thio­cyanate ligands, forming a distorted octa­hedral geometry.

Related literature

For background to Schiff base compounds, see: Ruck & Jacobsen (2002[Ruck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882-2883.]); Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]); Polt et al. (2003[Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566-574.]); Mukherjee et al. (2001[Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203-1207.]). For complexes derived from N,N′-bis­(1-(pyridin-2-yl)ethyl­idene)ethane-1,2-diamine, see: Gourbatsis et al. (1998[Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599-604.]); Louloudi et al. (1999[Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479-483.]); Karmakar et al. (2002[Karmakar, T. K., Chandra, S. K., Ribas, J., Mostafa, G., Lu, T. H. & Ghosh, B. K. (2002). Chem. Commun. pp. 2364-2365.]); Banerjee et al. (2004[Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533-2541.]). For related MnII complexes with Schiff bases, see: Louloudi et al. (1999[Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479-483.]); Sra et al. (2000[Sra, A. K., Sutter, J.-P., Guionneau, P., Chasseau, D., Yakhmi, J. V. & Kahn, O. (2000). Inorg. Chim. Acta, 300, 778-782.]); Karmakar et al. (2005[Karmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Riviere, E., Mallah, T., Aromi, G. & Chandra, S. K. (2005). Inorg. Chem. 44, 2391-2399.]); Deoghoria et al. (2005[Deoghoria, S., Bera, S. K., Moulton, B., Zaworotko, M. J., Tuchagues, J.-P., Mostafa, G., Lu, T.-H. & Chandra, S. K. (2005). Polyhedron, 24, 343-350.]). For the synthesis of the Schiff base, see: Gourbatsis et al. (1990[Gourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem. 15, 300-308.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C16H18N4)]

  • Mr = 437.44

  • Monoclinic, C 2/c

  • a = 12.570 (4) Å

  • b = 16.341 (5) Å

  • c = 9.962 (3) Å

  • β = 90.857 (4)°

  • V = 2045.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.881

  • 4479 measured reflections

  • 2173 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.02

  • 2173 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N3 2.127 (2)
Mn1—N2 2.263 (2)
Mn1—N1 2.376 (2)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with Schiff bases have been known since 1840. The Schiff bases and their complexes have played an important role in the development of coordination chemistry, biological and material sciences (Ruck & Jacobsen, 2002; Mukhopadhyay et al., 2003; Polt et al., 2003; Mukherjee et al., 2001). A few complexes derived from N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine have been reported (Gourbatsis et al., 1998; Louloudi et al., 1999; Karmakar et al., 2002; Banerjee et al., 2004). In this paper, the title new Mn(II) complex is reported.

The title compound possesses a crystallographic twofold rotation axis symmetry, Fig. 1. The MnII atom is six-coordinated by four N atoms of the Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine, and by two N atoms from two thiocyanate ligands, forming a distorted octahedral geometry. The coordinate bond lengths (Table 1) are comparable with those observed in other similar manganese(II) complexes with Schiff bases (Louloudi et al., 1999; Sra et al., 2000; Karmakar et al., 2005; Deoghoria et al., 2005).

Related literature top

For background to Schiff base compounds, see: Ruck & Jacobsen (2002); Mukhopadhyay et al. (2003); Polt et al. (2003); Mukherjee et al. (2001). For complexes derived from N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine, see: Gourbatsis et al. (1998); Louloudi et al. (1999); Karmakar et al. (2002); Banerjee et al. (2004). For related MnII complexes with Schiff bases, see: Louloudi et al. (1999); Sra et al. (2000); Karmakar et al. (2005); Deoghoria et al. (2005). For the synthesis of the Schiff base, see: Gourbatsis et al. (1990).

Experimental top

The Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine was synthesized according to the literature method (Gourbatsis et al., 1990). To a stirred methanol solution of the Schiff base ligand (1.0 mmol, 0.266 g) was added a methanol solution of manganese acetate (1.0 mmol, 0.245 g) and ammonium thiocyanate (1.0 mmol, 0.076 g). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, y, 1/2 - z).
{N,N'-Bis[1-(2-pyridyl)ethylidene]ethane-1,2-diamine- κ4N,N',N'',N'''}bis(thiocyanato- κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C16H18N4)]F(000) = 900
Mr = 437.44Dx = 1.420 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1222 reflections
a = 12.570 (4) Åθ = 2.6–25.3°
b = 16.341 (5) ŵ = 0.86 mm1
c = 9.962 (3) ÅT = 298 K
β = 90.857 (4)°Block, brown
V = 2045.9 (10) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2173 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1612
Tmin = 0.867, Tmax = 0.881k = 2020
4479 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.1621P]
where P = (Fo2 + 2Fc2)/3
2173 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn(NCS)2(C16H18N4)]V = 2045.9 (10) Å3
Mr = 437.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.570 (4) ŵ = 0.86 mm1
b = 16.341 (5) ÅT = 298 K
c = 9.962 (3) Å0.17 × 0.15 × 0.15 mm
β = 90.857 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2173 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1590 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.881Rint = 0.023
4479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
2173 reflectionsΔρmin = 0.35 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.28864 (3)0.25000.04525 (18)
N10.42596 (16)0.32743 (14)0.03855 (19)0.0533 (5)
N20.44344 (15)0.17790 (12)0.13277 (18)0.0471 (5)
N30.63772 (18)0.34541 (15)0.1706 (2)0.0648 (6)
S10.82249 (6)0.38624 (6)0.04009 (8)0.0872 (3)
C10.4168 (2)0.40396 (19)0.0058 (3)0.0700 (8)
H10.43540.44630.05230.084*
C20.3812 (2)0.4238 (2)0.1337 (3)0.0770 (9)
H20.37500.47810.16050.092*
C30.3554 (2)0.3616 (2)0.2193 (3)0.0774 (9)
H30.33250.37290.30650.093*
C40.3636 (2)0.28185 (19)0.1753 (3)0.0658 (8)
H40.34550.23880.23230.079*
C50.39910 (18)0.26645 (16)0.0454 (2)0.0492 (6)
C60.40708 (18)0.18264 (16)0.0130 (2)0.0482 (6)
C70.3715 (2)0.11213 (18)0.0729 (3)0.0731 (8)
H7A0.42270.10280.14180.110*
H7B0.30360.12460.11340.110*
H7C0.36540.06390.01840.110*
C80.4512 (2)0.10020 (15)0.2047 (2)0.0563 (7)
H8A0.45560.05550.14100.068*
H8B0.38810.09220.25800.068*
C90.7137 (2)0.36210 (16)0.1152 (2)0.0515 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0431 (3)0.0515 (3)0.0411 (3)0.0000.0002 (2)0.000
N10.0524 (12)0.0574 (14)0.0500 (12)0.0008 (10)0.0029 (9)0.0033 (10)
N20.0468 (11)0.0525 (13)0.0418 (11)0.0001 (9)0.0008 (9)0.0012 (9)
N30.0507 (13)0.0863 (17)0.0575 (13)0.0072 (12)0.0016 (10)0.0114 (12)
S10.0612 (5)0.1388 (9)0.0619 (5)0.0238 (5)0.0102 (4)0.0159 (5)
C10.081 (2)0.0640 (19)0.0650 (17)0.0042 (16)0.0056 (15)0.0044 (15)
C20.080 (2)0.078 (2)0.0727 (19)0.0090 (17)0.0060 (17)0.0206 (17)
C30.069 (2)0.104 (3)0.0589 (17)0.0006 (18)0.0151 (15)0.0212 (18)
C40.0610 (17)0.084 (2)0.0523 (15)0.0075 (15)0.0149 (12)0.0052 (15)
C50.0352 (12)0.0679 (17)0.0444 (13)0.0030 (11)0.0011 (10)0.0014 (12)
C60.0387 (13)0.0629 (16)0.0430 (13)0.0037 (11)0.0018 (10)0.0049 (11)
C70.086 (2)0.077 (2)0.0553 (16)0.0141 (17)0.0139 (15)0.0073 (14)
C80.0657 (17)0.0558 (16)0.0475 (14)0.0064 (13)0.0019 (11)0.0004 (11)
C90.0520 (15)0.0619 (17)0.0405 (12)0.0004 (13)0.0061 (11)0.0071 (11)
Geometric parameters (Å, º) top
Mn1—N32.127 (2)C2—C31.363 (4)
Mn1—N3i2.127 (2)C2—H20.93
Mn1—N22.263 (2)C3—C41.378 (4)
Mn1—N2i2.263 (2)C3—H30.93
Mn1—N1i2.376 (2)C4—C51.386 (3)
Mn1—N12.376 (2)C4—H40.93
N1—C11.331 (3)C5—C61.491 (4)
N1—C51.341 (3)C6—C71.500 (3)
N2—C61.273 (3)C7—H7A0.96
N2—C81.461 (3)C7—H7B0.96
N3—C91.144 (3)C7—H7C0.96
S1—C91.617 (3)C8—C8i1.512 (5)
C1—C21.382 (4)C8—H8A0.97
C1—H10.93C8—H8B0.97
N3—Mn1—N3i128.28 (13)C1—C2—H2120.9
N3—Mn1—N2114.09 (8)C2—C3—C4119.4 (3)
N3i—Mn1—N2106.83 (8)C2—C3—H3120.3
N3—Mn1—N2i106.83 (8)C4—C3—H3120.3
N3i—Mn1—N2i114.09 (8)C3—C4—C5119.3 (3)
N2—Mn1—N2i73.78 (10)C3—C4—H4120.3
N3—Mn1—N1i84.43 (8)C5—C4—H4120.3
N3i—Mn1—N1i82.20 (8)N1—C5—C4121.5 (2)
N2—Mn1—N1i141.89 (7)N1—C5—C6115.1 (2)
N2i—Mn1—N1i68.89 (7)C4—C5—C6123.4 (2)
N3—Mn1—N182.20 (8)N2—C6—C5116.3 (2)
N3i—Mn1—N184.43 (8)N2—C6—C7126.0 (2)
N2—Mn1—N168.89 (7)C5—C6—C7117.7 (2)
N2i—Mn1—N1141.89 (7)C6—C7—H7A109.5
N1i—Mn1—N1149.06 (11)C6—C7—H7B109.5
C1—N1—C5118.1 (2)H7A—C7—H7B109.5
C1—N1—Mn1125.15 (18)C6—C7—H7C109.5
C5—N1—Mn1116.51 (16)H7A—C7—H7C109.5
C6—N2—C8122.2 (2)H7B—C7—H7C109.5
C6—N2—Mn1122.72 (17)N2—C8—C8i109.89 (15)
C8—N2—Mn1115.07 (14)N2—C8—H8A109.7
C9—N3—Mn1166.9 (2)C8i—C8—H8A109.7
N1—C1—C2123.5 (3)N2—C8—H8B109.7
N1—C1—H1118.3C8i—C8—H8B109.7
C2—C1—H1118.3H8A—C8—H8B108.2
C3—C2—C1118.2 (3)N3—C9—S1178.7 (2)
C3—C2—H2120.9
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C16H18N4)]
Mr437.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.570 (4), 16.341 (5), 9.962 (3)
β (°) 90.857 (4)
V3)2045.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.867, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
4479, 2173, 1590
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.02
No. of reflections2173
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.35

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N32.127 (2)Mn1—N12.376 (2)
Mn1—N22.263 (2)
 

Acknowledgements

This work was supported by Dezhou University, People's Republic of China.

References

First citationBanerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.  CSD CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeoghoria, S., Bera, S. K., Moulton, B., Zaworotko, M. J., Tuchagues, J.-P., Mostafa, G., Lu, T.-H. & Chandra, S. K. (2005). Polyhedron, 24, 343–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationGourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem. 15, 300–308.  CrossRef CAS Web of Science Google Scholar
First citationKarmakar, T. K., Chandra, S. K., Ribas, J., Mostafa, G., Lu, T. H. & Ghosh, B. K. (2002). Chem. Commun. pp. 2364–2365.  Web of Science CSD CrossRef Google Scholar
First citationKarmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Riviere, E., Mallah, T., Aromi, G. & Chandra, S. K. (2005). Inorg. Chem. 44, 2391–2399.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLouloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203–1207.  CSD CrossRef CAS Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPolt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566–574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRuck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882–2883.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSra, A. K., Sutter, J.-P., Guionneau, P., Chasseau, D., Yakhmi, J. V. & Kahn, O. (2000). Inorg. Chim. Acta, 300, 778–782.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds