organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(2,5-Di­chloro-3-thien­yl)-3-(6-meth­­oxy-2-naphth­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cSeQuent Scientific Ltd, Baikampady, New Mangalore, 575 011, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 10 June 2010; accepted 13 June 2010; online 18 June 2010)

In the title compound, C18H12Cl2O2S, the dihedral angle between the thio­phene ring and the naphthalene ring system is 2.13 (4)°. In the crystal, pairs of weak inter­molecular C—H⋯O hydrogen bonds form centrosymmetric dimers.

Related literature

For the biological activity of thio­phene-containing compounds, see: Ferreira et al. (2006[Ferreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384-1387.]); Bonini et al. (2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Brault, L., Migianu, E., Neguesque, A., Battagalia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]); Kulikova et al. (1980[Kulikova, D. A., Churkin, Y. D. & Panfilova, L. V. (1980). Pharm. Chem. J. 14, 227-229.]). For the anti­radiation activity of thio­phenes, see: Hassan et al. (1998[Hassan, A. Y., Ghorab, M. M. & Nassar, O. M. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 77-86.]). For the synthesis and anti­microbial evaluation of new chalcones, see: Tomar et al. (2007[Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321-5324.]). For the biological activity of chalcone derivatives, see: Nowakowska et al. (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For related structures, see: Butcher et al. (2007[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1430-o1431.]); Harrison et al. (2007a[Harrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007a). Acta Cryst. E63, o4183.],b[Harrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007b). Acta Cryst. E63, o3898.]); Li et al. (2009[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1533.]); Yathirajan et al. (2006[Yathirajan, H. S., Narayana, B., Ashalatha, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o4440-o4441.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12Cl2O2S

  • Mr = 363.24

  • Monoclinic, P 21 /c

  • a = 7.3237 (5) Å

  • b = 9.4919 (6) Å

  • c = 22.4037 (15) Å

  • β = 96.183 (1)°

  • V = 1548.35 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 100 K

  • 0.55 × 0.40 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.748, Tmax = 0.811

  • 17429 measured reflections

  • 4780 independent reflections

  • 4373 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 0.97

  • 4780 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H18⋯O2i 0.93 2.56 3.2051 (14) 127
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophenes are important heterocyclic compounds that are widely used as building blocks in many agrochemicals and pharmaceuticals. Thiophene containing compounds are well known to exhibit various biological activities such as antioxidant activity (Ferreira et al., 2006), anti-inflammatory agents and anti-HIV PR inhibitors (Bonini et al., 2005). Thiophene derivatives not only being biologically active (Kulikova et al., 1980), but also show antiradiation activity (Hassan et al., 1998).

The synthesis and antimicrobial evaluation of new chalcones containing 2,5-dichlorothiophene moiety is reported (Tomar et al., 2007). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Nowakowska et al., 2007). In view of the importance of thiophenes, we report here the crystal structure of the title compound.

In the title molecule, the 2,5-dichloro-3-thienyl and 6-methoxy-2-naphthyl rings are bonded at the opposite ends of the propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the dichlorothienyl and naphtyl rings is 2.13 (4)°. The angles between the mean plane of the prop-2-en-1-one group and the mean planes of the thienyl and naphtyl rings are 3.08 (4)°, and 2.88 (4)° repectively. In the crystal, pairs of weak intermolecular C2—H18···O2 hydrogen bonds form dimers and contribute to crystal stability.

Related literature top

For the biological activity of thiophene-containing compounds, see: Ferreira et al. (2006); Bonini et al. (2005); Kulikova et al. (1980). For the antiradiation activity of thiophenes, see: Hassan et al. (1998). For the synthesis and antimicrobial evaluation of new chalcones, see: Tomar et al. (2007). For the biological activity of chalcone derivatives, see: Nowakowska et al. (2007). For related structures, see: Butcher et al. (2007); Harrison et al. (2007a,b); Li et al. (2009); Yathirajan et al. (2006).

Experimental top

1-(2,5-Dichlorothiophen-3-yl)ethanone (1.95 g, 0.01 mol) was mixed with 6-methoxy-2-naphthaldehyde (1.86 g, 0.01 mol) and dissolved in ethanol (30 ml). To this, 3 ml of KOH (50%) was added (Fig. 3). The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Single crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the acetone-toluene (1:1) solution (m.p. 401–403 K).

Refinement top

H atoms were placed in their calculated positions and then refined using the riding model with C–H = 0.93 or 0.96 Å, and with Uiso(H) = 1.18–1.50Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate weak C—H···O intermolecular interactions which form dimers.
[Figure 3] Fig. 3. Reaction scheme for the title compound.
(2E)-1-(2,5-Dichloro-3-thienyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one top
Crystal data top
C18H12Cl2O2SF(000) = 744
Mr = 363.24Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9959 reflections
a = 7.3237 (5) Åθ = 2.3–31.3°
b = 9.4919 (6) ŵ = 0.56 mm1
c = 22.4037 (15) ÅT = 100 K
β = 96.183 (1)°Block, yellow
V = 1548.35 (18) Å30.55 × 0.40 × 0.39 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4780 independent reflections
Radiation source: fine-focus sealed tube4373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 31.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.748, Tmax = 0.811k = 1313
17429 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0374P)2 + 1.0425P]
where P = (Fo2 + 2Fc2)/3
4780 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H12Cl2O2SV = 1548.35 (18) Å3
Mr = 363.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3237 (5) ŵ = 0.56 mm1
b = 9.4919 (6) ÅT = 100 K
c = 22.4037 (15) Å0.55 × 0.40 × 0.39 mm
β = 96.183 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4373 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.811Rint = 0.021
17429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.97Δρmax = 0.51 e Å3
4780 reflectionsΔρmin = 0.26 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97320 (4)0.57727 (3)0.666046 (12)0.02001 (7)
Cl21.12452 (4)1.16879 (3)0.677155 (14)0.02261 (7)
S11.08482 (4)0.86262 (3)0.702059 (12)0.01784 (7)
O10.35474 (12)0.11321 (9)0.30656 (4)0.01761 (16)
O20.81055 (13)0.85374 (9)0.49460 (4)0.02136 (18)
C10.93801 (15)0.81919 (11)0.59314 (5)0.01381 (19)
C20.97881 (15)0.96709 (12)0.59807 (5)0.01517 (19)
H180.95481.03070.56670.018*
C31.05603 (15)1.00339 (12)0.65347 (5)0.0166 (2)
C40.99005 (15)0.75105 (12)0.64645 (5)0.01516 (19)
C50.84960 (15)0.76639 (12)0.53422 (5)0.01448 (19)
C60.81083 (16)0.61554 (12)0.52385 (5)0.0159 (2)
H130.83910.55010.55440.019*
C70.73400 (15)0.57431 (12)0.46967 (5)0.0159 (2)
H120.71280.64480.44090.019*
C80.67971 (15)0.43260 (11)0.45033 (5)0.01457 (19)
C90.70770 (15)0.31296 (12)0.48855 (5)0.01504 (19)
H90.76500.32410.52740.018*
C100.65144 (15)0.18169 (12)0.46900 (5)0.01494 (19)
H80.67090.10500.49470.018*
C110.56360 (14)0.16097 (11)0.40986 (5)0.01316 (19)
C120.53666 (14)0.27935 (11)0.37112 (5)0.01365 (19)
C130.59605 (15)0.41327 (11)0.39266 (5)0.0152 (2)
H110.57830.49070.36730.018*
C140.50474 (15)0.02566 (11)0.38918 (5)0.01431 (19)
H20.52290.05220.41430.017*
C150.42044 (15)0.01046 (12)0.33156 (5)0.01419 (19)
C160.39546 (15)0.12772 (12)0.29236 (5)0.0157 (2)
H60.34020.11540.25330.019*
C170.45213 (15)0.25871 (12)0.31159 (5)0.0155 (2)
H50.43530.33500.28550.019*
C180.37100 (18)0.23386 (13)0.34421 (6)0.0225 (2)
H1A0.49780.24870.35860.034*
H1B0.32460.31490.32180.034*
H1C0.30160.21960.37770.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02618 (14)0.01646 (13)0.01724 (13)0.00090 (10)0.00169 (10)0.00379 (9)
Cl20.02353 (14)0.01989 (14)0.02423 (14)0.00595 (10)0.00179 (10)0.00808 (10)
S10.01786 (13)0.02130 (14)0.01387 (12)0.00047 (10)0.00050 (9)0.00146 (10)
O10.0221 (4)0.0145 (4)0.0154 (4)0.0021 (3)0.0015 (3)0.0017 (3)
O20.0305 (5)0.0157 (4)0.0167 (4)0.0021 (3)0.0032 (3)0.0020 (3)
C10.0133 (4)0.0139 (4)0.0142 (4)0.0005 (3)0.0019 (3)0.0009 (4)
C20.0150 (5)0.0142 (5)0.0163 (5)0.0010 (4)0.0016 (4)0.0012 (4)
C30.0154 (5)0.0164 (5)0.0181 (5)0.0025 (4)0.0022 (4)0.0029 (4)
C40.0150 (5)0.0154 (5)0.0151 (5)0.0006 (4)0.0016 (4)0.0007 (4)
C50.0143 (5)0.0147 (5)0.0145 (4)0.0014 (4)0.0017 (3)0.0010 (4)
C60.0189 (5)0.0129 (5)0.0156 (5)0.0005 (4)0.0009 (4)0.0005 (4)
C70.0173 (5)0.0141 (5)0.0161 (5)0.0003 (4)0.0015 (4)0.0000 (4)
C80.0145 (5)0.0139 (5)0.0154 (5)0.0005 (4)0.0020 (4)0.0006 (4)
C90.0163 (5)0.0156 (5)0.0128 (4)0.0007 (4)0.0004 (4)0.0003 (4)
C100.0164 (5)0.0146 (5)0.0134 (4)0.0003 (4)0.0004 (4)0.0016 (4)
C110.0122 (4)0.0142 (5)0.0131 (4)0.0002 (3)0.0013 (3)0.0002 (3)
C120.0127 (4)0.0148 (5)0.0135 (4)0.0008 (4)0.0012 (3)0.0000 (4)
C130.0170 (5)0.0135 (5)0.0148 (5)0.0001 (4)0.0010 (4)0.0014 (4)
C140.0154 (5)0.0138 (5)0.0134 (4)0.0000 (4)0.0003 (3)0.0004 (4)
C150.0131 (4)0.0147 (5)0.0148 (5)0.0003 (4)0.0018 (3)0.0019 (4)
C160.0152 (5)0.0187 (5)0.0130 (4)0.0007 (4)0.0000 (4)0.0006 (4)
C170.0166 (5)0.0170 (5)0.0126 (4)0.0007 (4)0.0004 (4)0.0016 (4)
C180.0285 (6)0.0152 (5)0.0223 (6)0.0033 (4)0.0042 (5)0.0007 (4)
Geometric parameters (Å, º) top
Cl1—C41.7148 (12)C9—C101.3694 (15)
Cl2—C31.7148 (12)C9—H90.93
S1—C31.7220 (12)C10—C111.4230 (15)
S1—C41.7231 (11)C10—H80.93
O1—C151.3657 (13)C11—C141.4167 (15)
O1—C181.4198 (14)C11—C121.4206 (15)
O2—C51.2257 (14)C12—C131.4116 (15)
C1—C41.3756 (15)C12—C171.4220 (15)
C1—C21.4371 (15)C13—H110.93
C1—C51.4930 (15)C14—C151.3772 (15)
C2—C31.3519 (15)C14—H20.93
C2—H180.93C15—C161.4174 (15)
C5—C61.4732 (15)C16—C171.3658 (16)
C6—C71.3403 (15)C16—H60.93
C6—H130.93C17—H50.93
C7—C81.4553 (15)C18—H1A0.96
C7—H120.93C18—H1B0.96
C8—C131.3811 (15)C18—H1C0.96
C8—C91.4238 (15)
C3—S1—C490.43 (5)C9—C10—H8119.5
C15—O1—C18116.50 (9)C11—C10—H8119.5
C4—C1—C2110.89 (10)C14—C11—C12120.00 (10)
C4—C1—C5131.54 (10)C14—C11—C10121.40 (10)
C2—C1—C5117.57 (10)C12—C11—C10118.60 (10)
C3—C2—C1112.49 (10)C13—C12—C11119.07 (10)
C3—C2—H18123.8C13—C12—C17122.12 (10)
C1—C2—H18123.8C11—C12—C17118.80 (10)
C2—C3—Cl2126.65 (9)C8—C13—C12121.93 (10)
C2—C3—S1113.15 (9)C8—C13—H11119.0
Cl2—C3—S1120.20 (7)C12—C13—H11119.0
C1—C4—Cl1130.82 (9)C15—C14—C11119.43 (10)
C1—C4—S1113.03 (8)C15—C14—H2120.3
Cl1—C4—S1116.14 (6)C11—C14—H2120.3
O2—C5—C6121.16 (10)O1—C15—C14125.24 (10)
O2—C5—C1117.28 (10)O1—C15—C16113.86 (9)
C6—C5—C1121.57 (10)C14—C15—C16120.89 (10)
C7—C6—C5118.79 (10)C17—C16—C15120.32 (10)
C7—C6—H13120.6C17—C16—H6119.8
C5—C6—H13120.6C15—C16—H6119.8
C6—C7—C8127.89 (10)C16—C17—C12120.54 (10)
C6—C7—H12116.1C16—C17—H5119.7
C8—C7—H12116.1C12—C17—H5119.7
C13—C8—C9118.50 (10)O1—C18—H1A109.5
C13—C8—C7118.74 (10)O1—C18—H1B109.5
C9—C8—C7122.76 (10)H1A—C18—H1B109.5
C10—C9—C8120.97 (10)O1—C18—H1C109.5
C10—C9—H9119.5H1A—C18—H1C109.5
C8—C9—H9119.5H1B—C18—H1C109.5
C9—C10—C11120.92 (10)
C4—C1—C2—C30.59 (14)C8—C9—C10—C110.10 (17)
C5—C1—C2—C3179.12 (10)C9—C10—C11—C14179.96 (10)
C1—C2—C3—Cl2179.91 (8)C9—C10—C11—C120.54 (16)
C1—C2—C3—S10.38 (13)C14—C11—C12—C13179.89 (10)
C4—S1—C3—C20.07 (9)C10—C11—C12—C130.61 (15)
C4—S1—C3—Cl2179.63 (8)C14—C11—C12—C170.70 (16)
C2—C1—C4—Cl1179.61 (9)C10—C11—C12—C17178.80 (10)
C5—C1—C4—Cl10.04 (19)C9—C8—C13—C120.61 (17)
C2—C1—C4—S10.53 (12)C7—C8—C13—C12178.84 (10)
C5—C1—C4—S1179.12 (10)C11—C12—C13—C80.03 (16)
C3—S1—C4—C10.28 (9)C17—C12—C13—C8179.36 (10)
C3—S1—C4—Cl1179.50 (7)C12—C11—C14—C150.45 (16)
C4—C1—C5—O2176.66 (12)C10—C11—C14—C15179.94 (10)
C2—C1—C5—O22.97 (15)C18—O1—C15—C141.95 (16)
C4—C1—C5—C63.43 (18)C18—O1—C15—C16178.24 (10)
C2—C1—C5—C6176.94 (10)C11—C14—C15—O1178.83 (10)
O2—C5—C6—C71.01 (17)C11—C14—C15—C161.37 (16)
C1—C5—C6—C7178.90 (10)O1—C15—C16—C17179.05 (10)
C5—C6—C7—C8178.11 (11)C14—C15—C16—C171.13 (17)
C6—C7—C8—C13177.68 (12)C15—C16—C17—C120.06 (17)
C6—C7—C8—C91.74 (19)C13—C12—C17—C16179.65 (10)
C13—C8—C9—C100.68 (17)C11—C12—C17—C160.96 (16)
C7—C8—C9—C10178.74 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H18···O2i0.932.563.2051 (14)127
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H12Cl2O2S
Mr363.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3237 (5), 9.4919 (6), 22.4037 (15)
β (°) 96.183 (1)
V3)1548.35 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.55 × 0.40 × 0.39
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.748, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
17429, 4780, 4373
Rint0.021
(sin θ/λ)max1)0.733
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 0.97
No. of reflections4780
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H18···O2i0.932.563.2051 (14)127
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the Department of Chemistry, Youngstown State University (YSU), for their assistance with the data collection. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant CAP-491 and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks the University of Mysore for sabbatical leave.

References

First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Brault, L., Migianu, E., Neguesque, A., Battagalia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1430–o1431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007a). Acta Cryst. E63, o4183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ashalatha, B. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007b). Acta Cryst. E63, o3898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, A. Y., Ghorab, M. M. & Nassar, O. M. (1998). Phosphorus Sulfur Silicon Relat. Elem. 134, 77–86.  CrossRef Google Scholar
First citationKulikova, D. A., Churkin, Y. D. & Panfilova, L. V. (1980). Pharm. Chem. J. 14, 227–229.  CrossRef Google Scholar
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324.  Google Scholar
First citationYathirajan, H. S., Narayana, B., Ashalatha, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o4440–o4441.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds