organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­phenyl­quinoxalin-1-ium chloride

aSchool of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, People's Republic of China
*Correspondence e-mail: wswu2002@126.com

(Received 14 June 2010; accepted 20 June 2010; online 26 June 2010)

The title compound, C20H15N2+·Cl, was prepared by the reaction of benzil with o-phenyl­enediamine in refluxing ethanol and then crystallized in 5% hydro­chloric acid. The two phenyl rings are oriented at dihedral angles of 50.93 (8) and 50.28 (8)° with respect to the quinoxalin-1-ium ring system. The dihedral angle between the two phenyl rings is 56.71 (10)°. In the crystal, the cations and anions are linked by N—H⋯Cl and C—H⋯Cl inter­actions, forming chains along the b axis.

Related literature

For general background to quinoxaline derivatives, see: Brock et al. (1999[Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). World Patent WO 9 951 688.]); Dailey et al. (2001[Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238-2243.]); Page et al. (1998[Page, S. E., Gordon, K. C. & Burrell, A. K. (1998). Inorg. Chem. 37, 4452-4459.]); Pascal et al. (1993[Pascal, R. A. Jr & Ho, D. M. (1993). J. Am. Chem. Soc. 115, 8507-8508.]). For a related structure, see: Wu et al. (2002[Wu, C. D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 5636-5637.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N2+·Cl

  • Mr = 318.79

  • Monoclinic, P 21 /c

  • a = 10.498 (3) Å

  • b = 14.773 (5) Å

  • c = 11.359 (4) Å

  • β = 112.692 (3)°

  • V = 1625.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.954

  • 9558 measured reflections

  • 2893 independent reflections

  • 2257 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.06

  • 2893 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.14 2.9684 (16) 160
C18—H18⋯Cl1 0.93 2.73 3.568 (2) 150
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinoxaline and its derivatives have received considerable attention in the past several years due to their electronic properties (Page et al., 1998), H-bonding ability (Pascal et al., 1993), and their capacity to coordinate to metals and forming interesting three-dimensional structures (Wu et al., 2002). Quinoxaline derivatives are also an important class of nitrogen containing heterocycles and constitute useful intermediates in organic synthesis which have been reported for their applications in the field of dyes (Brock et al., 1999) and have also been used as building blocks for the synthesis of organic semiconductors (Dailey et al., 2001). The title compound was synthesized as part of our study of these ligands.

The quinoxalin-1-ium ring system (N1/N2/C13-C20) is planar within ±0.035 (2) Å. The C1–C6 and C7–C12 phenyl rings form dihedral angles of 50.93 (8)° and 50.28 (8)°, respectively, with the quinoxalin-1-ium ring system. The dihedral angle between the two phenyl rings is 56.71 (10)°.

The N1—H1A···Cl1 and C18—H18···Cl1 hydrogen bonds are present in the crystal structure (Table 1), and these hydrogen bonds link the molecules into a chain along the b axis.

Related literature top

For general background to quinoxaline derivatives, see: Brock et al. (1999); Dailey et al. (2001); Page et al. (1998); Pascal et al. (1993). For a related structure, see: Wu et al. (2002).

Experimental top

A 100 ml round-bottomed flask was charged with benzil (10.5 g, 0.05 mol), o-phenylenediamine (5.4 g, 0.05 mol) and ethanol (50 ml). The mixture was refluxed, and the reaction was monitored by thin-layer chromatography until complete consumption of the starting materials (4 h). The resulting solution was concentrated to dryness under reduced pressure. The dark-brown crude product was dissolved in methanol (30 ml). The solution was filtered and the filtrate was dissolved in 5% hydrochloric acid (30 ml) and set aside for three weeks to obtain yellow crystals.

Refinement top

H atoms were placed in calculated positions and refined as riding, with C–H = 0.93 Å, N–H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,3-Diphenylquinoxalin-1-ium chloride top
Crystal data top
C20H15N2+·ClF(000) = 664
Mr = 318.79Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2838 reflections
a = 10.498 (3) Åθ = 2.1–25.1°
b = 14.773 (5) ŵ = 0.24 mm1
c = 11.359 (4) ÅT = 293 K
β = 112.692 (3)°Block, yellow
V = 1625.3 (9) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2893 independent reflections
Radiation source: fine-focus sealed tube2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.943, Tmax = 0.954k = 1717
9558 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.2666P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2893 reflectionsΔρmax = 0.18 e Å3
209 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.068 (4)
Crystal data top
C20H15N2+·ClV = 1625.3 (9) Å3
Mr = 318.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.498 (3) ŵ = 0.24 mm1
b = 14.773 (5) ÅT = 293 K
c = 11.359 (4) Å0.25 × 0.22 × 0.20 mm
β = 112.692 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2893 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2257 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.954Rint = 0.034
9558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2893 reflectionsΔρmin = 0.24 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00715 (5)0.21487 (3)0.19706 (5)0.0593 (2)
C130.25287 (17)0.73467 (11)0.12361 (16)0.0396 (4)
C60.23732 (18)0.83023 (11)0.15477 (17)0.0410 (4)
C140.35118 (18)0.70084 (11)0.07464 (17)0.0420 (4)
C10.35195 (19)0.88047 (12)0.22987 (19)0.0497 (5)
H10.43980.85530.25710.060*
C120.44507 (19)0.76230 (12)0.04193 (17)0.0442 (4)
C200.18022 (19)0.58334 (11)0.13075 (17)0.0456 (4)
C80.6742 (2)0.79882 (16)0.0578 (2)0.0698 (6)
H80.76830.78630.09010.084*
C50.10701 (19)0.86889 (12)0.11425 (18)0.0483 (5)
H50.02970.83550.06490.058*
C20.3345 (2)0.96830 (13)0.2638 (2)0.0593 (5)
H20.41081.00160.31540.071*
C150.2795 (2)0.55363 (12)0.08495 (17)0.0483 (5)
C40.0922 (2)0.95729 (13)0.14748 (19)0.0544 (5)
H40.00480.98340.11900.065*
C30.2050 (2)1.00672 (13)0.2220 (2)0.0586 (6)
H30.19411.06600.24420.070*
C180.1142 (2)0.43199 (14)0.1498 (2)0.0664 (6)
H180.06180.39050.17340.080*
C70.5854 (2)0.74393 (14)0.0890 (2)0.0578 (5)
H70.62000.69420.14210.069*
C170.2095 (3)0.40062 (13)0.1005 (2)0.0677 (6)
H170.21710.33880.08950.081*
C110.3943 (2)0.83694 (13)0.03710 (18)0.0508 (5)
H110.30060.85050.06800.061*
C190.0969 (2)0.52241 (13)0.16366 (19)0.0564 (5)
H190.03170.54300.19410.068*
C160.2915 (2)0.45917 (13)0.0684 (2)0.0604 (6)
H160.35450.43740.03600.072*
C100.4835 (2)0.89082 (15)0.0695 (2)0.0642 (6)
H100.44930.93980.12400.077*
C90.6229 (2)0.87214 (17)0.0213 (2)0.0733 (7)
H90.68270.90920.04220.088*
N10.17297 (15)0.67478 (9)0.14856 (14)0.0431 (4)
H1A0.11340.69420.17740.052*
N20.36430 (16)0.61318 (10)0.05822 (15)0.0489 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0709 (4)0.0488 (3)0.0721 (4)0.0091 (2)0.0429 (3)0.0097 (2)
C130.0447 (9)0.0376 (9)0.0363 (10)0.0010 (7)0.0152 (8)0.0010 (7)
C60.0522 (10)0.0352 (9)0.0420 (10)0.0013 (8)0.0251 (8)0.0027 (8)
C140.0503 (10)0.0391 (9)0.0378 (10)0.0026 (8)0.0183 (8)0.0010 (7)
C10.0525 (11)0.0440 (10)0.0567 (12)0.0004 (8)0.0256 (9)0.0038 (9)
C120.0537 (11)0.0414 (9)0.0436 (11)0.0014 (8)0.0257 (9)0.0053 (8)
C200.0562 (11)0.0367 (9)0.0413 (10)0.0013 (8)0.0162 (9)0.0007 (8)
C80.0539 (12)0.0829 (16)0.0802 (16)0.0013 (11)0.0342 (12)0.0017 (13)
C50.0530 (11)0.0476 (10)0.0475 (11)0.0025 (8)0.0230 (9)0.0024 (8)
C20.0686 (13)0.0436 (10)0.0722 (15)0.0085 (10)0.0343 (12)0.0121 (10)
C150.0598 (11)0.0384 (9)0.0449 (11)0.0005 (8)0.0183 (9)0.0008 (8)
C40.0653 (13)0.0503 (11)0.0570 (12)0.0179 (10)0.0339 (11)0.0089 (10)
C30.0823 (15)0.0378 (10)0.0691 (14)0.0048 (10)0.0441 (12)0.0011 (9)
C180.0847 (16)0.0457 (11)0.0668 (14)0.0142 (11)0.0272 (12)0.0036 (10)
C70.0577 (12)0.0540 (11)0.0684 (14)0.0113 (10)0.0317 (11)0.0039 (10)
C170.0913 (16)0.0349 (10)0.0705 (15)0.0045 (11)0.0242 (13)0.0022 (10)
C110.0544 (11)0.0532 (11)0.0456 (11)0.0004 (9)0.0201 (9)0.0025 (9)
C190.0684 (13)0.0457 (11)0.0567 (13)0.0071 (9)0.0261 (10)0.0020 (9)
C160.0754 (14)0.0397 (10)0.0624 (13)0.0030 (10)0.0225 (11)0.0066 (9)
C100.0742 (15)0.0642 (13)0.0553 (13)0.0057 (11)0.0264 (11)0.0136 (11)
C90.0718 (15)0.0853 (16)0.0735 (16)0.0172 (13)0.0398 (13)0.0062 (13)
N10.0508 (9)0.0383 (8)0.0444 (9)0.0024 (7)0.0230 (7)0.0014 (7)
N20.0590 (9)0.0388 (8)0.0508 (10)0.0033 (7)0.0234 (8)0.0024 (7)
Geometric parameters (Å, º) top
C13—N11.323 (2)C2—H20.93
C13—C141.438 (2)C15—N21.367 (2)
C13—C61.480 (2)C15—C161.420 (3)
C6—C51.387 (2)C4—C31.371 (3)
C6—C11.391 (3)C4—H40.93
C14—N21.323 (2)C3—H30.93
C14—C121.489 (2)C18—C191.365 (3)
C1—C21.386 (3)C18—C171.400 (3)
C1—H10.93C18—H180.93
C12—C71.387 (3)C7—H70.93
C12—C111.392 (3)C17—C161.366 (3)
C20—N11.372 (2)C17—H170.93
C20—C191.402 (3)C11—C101.383 (3)
C20—C151.403 (2)C11—H110.93
C8—C91.377 (3)C19—H190.93
C8—C71.381 (3)C16—H160.93
C8—H80.93C10—C91.379 (3)
C5—C41.385 (3)C10—H100.93
C5—H50.93C9—H90.93
C2—C31.378 (3)N1—H1A0.86
N1—C13—C14117.35 (15)C5—C4—H4119.7
N1—C13—C6116.70 (15)C4—C3—C2119.74 (18)
C14—C13—C6125.88 (15)C4—C3—H3120.1
C5—C6—C1119.53 (16)C2—C3—H3120.1
C5—C6—C13119.95 (16)C19—C18—C17121.2 (2)
C1—C6—C13120.44 (16)C19—C18—H18119.4
N2—C14—C13121.60 (16)C17—C18—H18119.4
N2—C14—C12116.54 (15)C8—C7—C12120.5 (2)
C13—C14—C12121.85 (14)C8—C7—H7119.7
C2—C1—C6119.62 (18)C12—C7—H7119.7
C2—C1—H1120.2C16—C17—C18121.22 (19)
C6—C1—H1120.2C16—C17—H17119.4
C7—C12—C11119.33 (18)C18—C17—H17119.4
C7—C12—C14119.44 (17)C10—C11—C12119.84 (18)
C11—C12—C14121.22 (16)C10—C11—H11120.1
N1—C20—C19121.12 (17)C12—C11—H11120.1
N1—C20—C15117.01 (15)C18—C19—C20118.2 (2)
C19—C20—C15121.79 (16)C18—C19—H19120.9
C9—C8—C7119.8 (2)C20—C19—H19120.9
C9—C8—H8120.1C17—C16—C15119.3 (2)
C7—C8—H8120.1C17—C16—H16120.3
C4—C5—C6119.88 (18)C15—C16—H16120.3
C4—C5—H5120.1C9—C10—C11120.2 (2)
C6—C5—H5120.1C9—C10—H10119.9
C3—C2—C1120.58 (19)C11—C10—H10119.9
C3—C2—H2119.7C8—C9—C10120.3 (2)
C1—C2—H2119.7C8—C9—H9119.9
N2—C15—C20121.46 (16)C10—C9—H9119.9
N2—C15—C16120.29 (18)C13—N1—C20123.43 (15)
C20—C15—C16118.24 (17)C13—N1—H1A118.3
C3—C4—C5120.63 (18)C20—N1—H1A118.3
C3—C4—H4119.7C14—N2—C15119.11 (16)
N1—C13—C6—C549.4 (2)C9—C8—C7—C120.4 (3)
C14—C13—C6—C5133.74 (19)C11—C12—C7—C80.2 (3)
N1—C13—C6—C1127.41 (18)C14—C12—C7—C8178.61 (19)
C14—C13—C6—C149.4 (3)C19—C18—C17—C162.1 (3)
N1—C13—C14—N21.8 (3)C7—C12—C11—C101.1 (3)
C6—C13—C14—N2175.02 (17)C14—C12—C11—C10177.61 (18)
N1—C13—C14—C12179.30 (16)C17—C18—C19—C201.9 (3)
C6—C13—C14—C123.9 (3)N1—C20—C19—C18176.65 (19)
C5—C6—C1—C20.4 (3)C15—C20—C19—C180.2 (3)
C13—C6—C1—C2176.49 (17)C18—C17—C16—C150.2 (3)
N2—C14—C12—C749.1 (2)N2—C15—C16—C17177.39 (19)
C13—C14—C12—C7129.83 (19)C20—C15—C16—C171.8 (3)
N2—C14—C12—C11129.61 (18)C12—C11—C10—C91.6 (3)
C13—C14—C12—C1151.4 (2)C7—C8—C9—C100.1 (4)
C1—C6—C5—C40.8 (3)C11—C10—C9—C81.1 (4)
C13—C6—C5—C4177.62 (16)C14—C13—N1—C200.4 (2)
C6—C1—C2—C31.2 (3)C6—C13—N1—C20176.73 (16)
N1—C20—C15—N20.6 (3)C19—C20—N1—C13177.36 (17)
C19—C20—C15—N2177.17 (17)C15—C20—N1—C130.7 (3)
N1—C20—C15—C16178.58 (17)C13—C14—N2—C152.0 (3)
C19—C20—C15—C162.0 (3)C12—C14—N2—C15179.07 (15)
C6—C5—C4—C31.1 (3)C20—C15—N2—C140.8 (3)
C5—C4—C3—C20.3 (3)C16—C15—N2—C14179.90 (18)
C1—C2—C3—C40.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.142.9684 (16)160
C18—H18···Cl10.932.733.568 (2)150
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15N2+·Cl
Mr318.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.498 (3), 14.773 (5), 11.359 (4)
β (°) 112.692 (3)
V3)1625.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.943, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
9558, 2893, 2257
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.06
No. of reflections2893
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.142.9684 (16)160
C18—H18···Cl10.932.733.568 (2)150
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The author gratefully acknowledges the Natural Science Foundation of Guangdong Province of China (No. 8452606101000739) and the Natural Science Foundation of Zhaoqing University (No. 0933) for financial support.

References

First citationBrock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). World Patent WO 9 951 688.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPage, S. E., Gordon, K. C. & Burrell, A. K. (1998). Inorg. Chem. 37, 4452–4459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPascal, R. A. Jr & Ho, D. M. (1993). J. Am. Chem. Soc. 115, 8507–8508.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 5636–5637.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds