organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1828-o1829

2-Chloro-4-nitro-1H-imidazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSyngene International Ltd, Biocon Park, Plot Nos. 2 & 3, Bommasandra 4th Phase, Jigani Link Road, Bangalore 560 100, India, cOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 18 June 2010; accepted 23 June 2010; online 26 June 2010)

The mol­ecule of the title compound, C3H2ClN3O2, is almost planar; the dihedral angle between the imidazole ring and the nitro group is 1.7 (2)°. In the crystal structure, pairs of inter­molecular C—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers, generating R22(10) ring motifs. The dimers are inter­connected into two-dimensional networks parallel to (102) via inter­molecular N—H⋯N hydrogen bonds. Further stabilization is provided by short inter­molecular Cl⋯O inter­actions [3.142 (2) and 3.1475 (19) Å].

Related literature

For general background to and applications of imidazole derivatives, see: Anuradha et al. (2006[Anuradha, V., Srinivas, P. V., Aparna, P. & Madhusudana, J. R. (2006). Tetrahedron Lett. 47, 4933-4935.]); Clark & Macquarrie (1996[Clark, J. H. & Macquarrie, J. (1996). Chem. Soc. Rev. 25, 3445-3446.]); Jadhav et al. (2008[Jadhav, V. B., Kulkarni, M. V. & Rasal, V. P. (2008). Eur. J. Med. Chem. 43, 1721-1729.]); Kolavi et al. (2006[Kolavi, G., Hegde, V., Khan, I. z7 Gadag, P. (2006). Bioorg. Med. Chem. 14, 3069-3080.]); Susanta et al. (2000[Susanta, S., Frederick, F. B. & Bimal, K. B. (2000). Tetrahedron Lett. 41, 8017-8020.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related 4-nitro­imidazole crystal structures, see: Ségalas et al. (1992[Ségalas, I., Poitras, J. & Beauchamp, A. L. (1992). Acta Cryst. C48, 295-298.]); De Bondt et al. (1993[De Bondt, H. L., Ragia, E., Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 693-695.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C3H2ClN3O2

  • Mr = 147.53

  • Monoclinic, P 21 /c

  • a = 5.905 (2) Å

  • b = 10.033 (4) Å

  • c = 9.150 (3) Å

  • β = 105.180 (8)°

  • V = 523.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.29 × 0.19 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.977

  • 5484 measured reflections

  • 1509 independent reflections

  • 1195 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.11

  • 1509 reflections

  • 90 parameters

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.86 (3) 2.07 (3) 2.900 (2) 163 (2)
C2—H2⋯O1ii 0.92 (3) 2.48 (3) 3.317 (3) 151 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The nitro aromatic compounds are used as key substrates for the preparation of useful materials such as dyes, pharmaceuticals, perfumes and plastics (Susanta et al., 2000). Therefore, nitration of hydrocarbons particularly of aromatic compounds is probably one of the most widely studied organic reactions (Jadhav et al., 2008). In addition, they have proven to be valuable reagents for the synthesis of complex target molecules (Kolavi et al., 2006). Most of the substituted imidazoles are widely used in pharmaceutical ingredients (Clark & Macquarrie, 1996). The imidazole nucleus is one of the important heterocyclic groups due to its presence in a large number of bioactive pharmaceutical and agrochemicals (Anuradha et al., 2006). It was also reported that a large number of compounds containing the imidazole ring possess some moderately useful activities. The environmentally friendly nitration reaction has been the focus of recent research.

In the title imidazole derivative, the 1H-imidazole ring with atom sequence C1/N1/C2/C3/N2 is essentially planar, with a maximum deviation of 0.003 (2) Å at atom N1. The nitro group is coplanar with the attached 1H-imidazole ring, as indicated by the dihedral angle of 1.7 (2)°. The geometric parameters agree well with those reported for related 4-nitroimidazole structures (Ségalas et al., 1992; De Bondt et al., 1993).

In the crystal structure, (Fig. 2), pairs of intermolecular C2—H2···O1 hydrogen bonds (Table 1) link inversion-related molecules into dimers, generating R22(10) hydrogen bond ring motifs (Bernstein et al., 1995). These dimers are further interconnected into two-dimensional arrays parallel to the (102) plane via intermolecular N1—H1N1···N2 hydrogen bonds (Table 1). The interesting features of the crystal structure are the intermolecular short Cl···O interactions [Cl1···O1iii = 3.143 (2) and Cl1···O2i = 3.148 (2) Å; (i) 1-x, y-1/2, 1/2-z and (iii) 1+x, 3/2-y, z-1/2 ] which are shorter than the sum of the van der Waals radii of the relavant atoms and help to further stabilize the crystal structure.

Related literature top

For general background to and applications of imidazole derivatives, see: Anuradha et al. (2006); Clark & Macquarrie (1996); Jadhav et al. (2008); Kolavi et al. (2006); Susanta et al. (2000). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related 4-nitroimidazole crystal structures, see: Ségalas et al. (1992); De Bondt et al. (1993). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Nitronium tetrafluoroborate (1.42 g, 0.0107 mol) was dissolved in nitromethane (10 ml) and 2-chloroimidazole (1 g, 0.0097 mol) was then added in lot-wise. The reaction mixture was stirred at room temperature for 3 h. The reaction mixture was then neutrallized with an aqueous solution of sodium bicarbonate. The separated solid was then filtered. The crude product was purified by column chromatography using 60–120 silica gel. The fraction eluted at 10 % ethyl acetate in hexane was concentrated to afford the title compound as pale yellow single crystals (Yield 0.9 g, 62.93 %; m.p. 363–366 K).

Refinement top

Atoms H1N1 and H2 were located in a difference Fourier map and allowed to refine freely [N1—H1N1 = 0.86 (3) and C2—H2A = 0.93 (3) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, showing a two-dimensional network. Intermolecular interactions are shown as dashed lines.
2-Chloro-4-nitro-1H-imidazole top
Crystal data top
C3H2ClN3O2F(000) = 296
Mr = 147.53Dx = 1.873 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2073 reflections
a = 5.905 (2) Åθ = 3.6–30.0°
b = 10.033 (4) ŵ = 0.64 mm1
c = 9.150 (3) ÅT = 100 K
β = 105.180 (8)°Plate, yellow
V = 523.2 (3) Å30.29 × 0.19 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
1509 independent reflections
Radiation source: fine-focus sealed tube1195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 68
Tmin = 0.837, Tmax = 0.977k = 1314
5484 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1822P]
where P = (Fo2 + 2Fc2)/3
1509 reflections(Δ/σ)max = 0.001
90 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C3H2ClN3O2V = 523.2 (3) Å3
Mr = 147.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.905 (2) ŵ = 0.64 mm1
b = 10.033 (4) ÅT = 100 K
c = 9.150 (3) Å0.29 × 0.19 × 0.04 mm
β = 105.180 (8)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
1509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1195 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.977Rint = 0.037
5484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.11Δρmax = 0.42 e Å3
1509 reflectionsΔρmin = 0.44 e Å3
90 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72178 (8)0.63986 (4)0.10842 (5)0.01869 (15)
O10.0169 (3)0.65199 (14)0.47907 (19)0.0268 (4)
O20.1231 (3)0.84048 (13)0.40048 (18)0.0250 (3)
N10.4713 (3)0.49414 (15)0.25596 (19)0.0157 (3)
N20.4212 (3)0.71387 (14)0.26450 (18)0.0151 (3)
N30.1318 (3)0.71851 (16)0.41138 (19)0.0190 (3)
C10.5304 (3)0.61677 (16)0.2149 (2)0.0149 (4)
C20.3104 (3)0.51281 (17)0.3371 (2)0.0164 (4)
C30.2845 (3)0.64762 (17)0.3405 (2)0.0150 (4)
H1N10.525 (4)0.417 (3)0.240 (3)0.025 (6)*
H20.246 (4)0.441 (3)0.375 (3)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0218 (2)0.0162 (2)0.0214 (3)0.00093 (16)0.01140 (19)0.00052 (17)
O10.0311 (8)0.0228 (7)0.0340 (9)0.0028 (6)0.0221 (7)0.0015 (6)
O20.0308 (8)0.0120 (6)0.0351 (9)0.0043 (5)0.0140 (7)0.0022 (6)
N10.0193 (8)0.0096 (7)0.0196 (8)0.0010 (6)0.0078 (7)0.0003 (6)
N20.0179 (8)0.0107 (6)0.0184 (8)0.0001 (5)0.0075 (6)0.0000 (6)
N30.0206 (8)0.0151 (7)0.0231 (9)0.0008 (6)0.0090 (7)0.0017 (6)
C10.0174 (9)0.0113 (8)0.0163 (9)0.0013 (6)0.0053 (7)0.0004 (6)
C20.0186 (9)0.0114 (8)0.0208 (10)0.0010 (6)0.0082 (8)0.0001 (7)
C30.0167 (9)0.0122 (8)0.0170 (9)0.0007 (6)0.0060 (7)0.0019 (7)
Geometric parameters (Å, º) top
Cl1—C11.690 (2)N2—C11.313 (2)
O1—N31.228 (2)N2—C31.368 (2)
O2—N31.228 (2)N3—C31.430 (2)
N1—C11.359 (2)C2—C31.362 (2)
N1—C21.363 (3)C2—H20.93 (3)
N1—H1N10.86 (3)
C1—N1—C2107.01 (15)N2—C1—Cl1124.11 (14)
C1—N1—H1N1129.2 (17)N1—C1—Cl1122.87 (14)
C2—N1—H1N1123.7 (17)C3—C2—N1104.32 (16)
C1—N2—C3102.95 (15)C3—C2—H2135.0 (16)
O2—N3—O1124.46 (17)N1—C2—H2120.7 (16)
O2—N3—C3118.46 (16)C2—C3—N2112.71 (17)
O1—N3—C3117.08 (16)C2—C3—N3126.29 (18)
N2—C1—N1113.01 (17)N2—C3—N3120.99 (16)
C3—N2—C1—N10.4 (2)C1—N2—C3—C20.0 (2)
C3—N2—C1—Cl1178.70 (15)C1—N2—C3—N3179.05 (17)
C2—N1—C1—N20.6 (2)O2—N3—C3—C2177.8 (2)
C2—N1—C1—Cl1178.52 (14)O1—N3—C3—C21.9 (3)
C1—N1—C2—C30.5 (2)O2—N3—C3—N21.1 (3)
N1—C2—C3—N20.3 (2)O1—N3—C3—N2179.10 (18)
N1—C2—C3—N3179.32 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.86 (3)2.07 (3)2.900 (2)163 (2)
C2—H2···O1ii0.92 (3)2.48 (3)3.317 (3)151 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC3H2ClN3O2
Mr147.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.905 (2), 10.033 (4), 9.150 (3)
β (°) 105.180 (8)
V3)523.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.29 × 0.19 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.837, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
5484, 1509, 1195
Rint0.037
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.11
No. of reflections1509
No. of parameters90
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.86 (3)2.07 (3)2.900 (2)163 (2)
C2—H2···O1ii0.92 (3)2.48 (3)3.317 (3)151 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. AMI is grateful to the Director, National Institute of Technology-Karnataka and the Head of the Chemistry Department for their encouragement. BC is thankful to Dr John Kallikat of Syngene Inter­national Ltd for the research encouragement. AMI also thanks USM for a partially sponsored research visit to the X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia.

References

First citationAnuradha, V., Srinivas, P. V., Aparna, P. & Madhusudana, J. R. (2006). Tetrahedron Lett. 47, 4933-4935.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, J. H. & Macquarrie, J. (1996). Chem. Soc. Rev. 25, 3445–3446.  CrossRef Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Bondt, H. L., Ragia, E., Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 693–695.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJadhav, V. B., Kulkarni, M. V. & Rasal, V. P. (2008). Eur. J. Med. Chem. 43, 1721–1729.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKolavi, G., Hegde, V., Khan, I. z7 Gadag, P. (2006). Bioorg. Med. Chem. 14, 3069–3080.  Google Scholar
First citationSégalas, I., Poitras, J. & Beauchamp, A. L. (1992). Acta Cryst. C48, 295–298.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSusanta, S., Frederick, F. B. & Bimal, K. B. (2000). Tetrahedron Lett. 41, 8017–8020.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1828-o1829
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds